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B Proof of Theorem 1

Proof. The following lemma holds:

Lemma 3. [10, 9] Let X , Z be random variables residing in metric spaces X , Z , respectively.
Let also F ,G be the two separable RKHSs on X ,Z induced by kX and kZ , respectively. Then, the
following inequality holds:

HSIC(X,Z) ≥ sup
s∈F,t∈G

Cov[s(X), t(Z)]. (13)
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Lemma 3 shows that HSIC bounds the supremum of the covariance between any pair of functions in
the RKHS, F ,G. Assumption 2 states that functions in F and G are uniformly bounded by MF > 0
and MG > 0, respectively. Let F̃ and G̃ be the restriction of F and G to functions in the unit ball of
the respective RKHSs through rescaling, i.e.:

F̃ =

{
h

MF
: h ∈ F

}
and G̃ =

{
g

MG
: g ∈ G

}
. (14)

The following lemma links the covariance of the functions in the original RKHSs to their normalized
version:

Lemma 4. [9] Suppose F and G are RKHSs over X and Z , s.t. ‖s‖∞ ≤ MF for all s ∈ F and
‖t‖∞ ≤MG for all t ∈ G. Then the following holds:

sup
s∈F,t∈G

Cov[s(X),t(Z)] = MFMG sup
s∈F̃,t∈G̃

Cov[s(X), t(Z)]. (15)

For simplicity in notation, we define the following sets containing functions that satisfy Assumption
1:

Cb(X ) = {h ∈ C(X ) : ||h||∞ ≤MX } and Cb(Z) = {g ∈ C(Z) : ||g||∞ ≤MZ} . (16)

In Assumption 2, we mention that functions in F and G may require appropriate rescaling to keep
the universality of corresponding kernels. To make the rescaling explicit, we define the following
rescaled RKHSs:

F̂ =

{
MX
MF

· h : h ∈ F
}

and Ĝ =

{
MZ
MG
· g : g ∈ G

}
. (17)

This rescaling ensures that ||ĥ||∞ ≤MX for every ĥ ∈ F̂ . Similarly, ||ĝ||∞ ≤MZ for every ĝ ∈ Ĝ.

We also want to proveF is convex. Given f, g ∈ F , we need to show for all 0 ≤ α ≤ 1, the function
αf +(1−α)g ∈ F . As linear summation of RKHS functions is in the RKHS, we just need to check
that ||αf + (1− α)g||∞ ≤MF ; indeed:

||αf + (1− α)g||∞ ≤ α||f ||∞ + (1− α)||g||∞ ≤ αMF + (1− α)MF (18)

We thus conclude that the bounded RKHS F is indeed convex. Hence any rescaling of the function,
as long as it has a norm less than MF , remains inside F .

Indeed, the following lemma holds:

Lemma 5. If F ,G are universal with respect to Cb(X ), Cb(Z), then:

F̂ = Cb(X ) and Ĝ = Cb(Z). (19)

Proof. We prove this by first showing Cb(X ) ⊆ F̂ and then F̂ ⊆ Cb(X ), which leads to equality of
the sets.

• Cb(X ) ⊆ F̂ : For all h ∈ Cb(X ), we show h ∈ F̂ . Based on the definition of Cb(X )
in (16), we know ‖h‖∞ ≤ MX . From universality stated in Assumption 2, h ∈ F . Let
g = MF

MX
h. Then ‖g‖∞ = ‖MF

MX
h‖∞ = MF

MX
||h||∞ ≤ MF . Based on the convexity of F ,

g ∈ F . We rescale every function in F by MX
MF

to form F̂ , so MX
MF

g = MX
MF

MF
MX

h = h ∈ F̂ .

• F̂ ⊆ Cb(X ): On the other hand, for all h ∈ F̂ , h is continuous and bounded by MX . So
based on the definition of Cb(X ) in (16), h ∈ Cb(X ). Thus, F̂ ⊆ Cb(X ).

Having both side of the inclusion we conclude that F̂ = Cb(X ). One can prove Ĝ = Cb(Z)
similarly.
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Applying the universality of kernels from Assumption 2 we can prove the following lemma:

Lemma 6. Let X , Z be random variables residing in metric spaces X , Z with separable RKHSs
F , G induced by kernel functions kX and kZ , respectively, for which Assumption 2 holds. Let F̂ and
Ĝ be the rescaled RKHSs defined in (17). Then:

MXMZ
MFMG

sup
s∈F,t∈G

Cov[s(X), t(Z)] = sup
s∈F̂,t∈Ĝ

Cov[s(X), t(Z)] = sup
s∈Cb(X ),t∈Cb(Z)

Cov[s(X), t(Z)],

(20)
where Cb(X ), Cb(Z) are defined in (16).

Proof. The right equality of Lemma 6 immediately follows by Lemma 5:

sup
s∈F̂,t∈Ĝ

Cov[s(X), t(Z)] = sup
s∈Cb(X ),t∈Cb(Z)

Cov[s(X), t(Z)]. (21)

Applying Lemma 4 on F ,G, F̃ , G̃, we have:

sup
s∈F,t∈G

Cov[s(X), t(Z)] = MFMG sup
s∈F̃,t∈G̃

Cov[s(X), t(Z)]. (22)

Note that from (17) and (14), we have that the corresponding normalized space for F̂ is:{
h

MX
: h ∈ F̂

}
=

{
MX
MF

h

MX
: h ∈ F

}
=

{
h

MF
: h ∈ F

}
= F̃ . (23)

Similarly, the normalized space for Ĝ is:{
g

MZ
: g ∈ Ĝ

}
=

{
g

MG
: g ∈ G

}
= G̃. (24)

Equation (23) implies that the normalized space induced from F̂ coincides with the normalized
space induced from F . Similarly, Equation (24) implies the normalized spaces for G and Ĝ also
coincide. Moreover, for all ĥ ∈ F̂ , ||ĥ||∞ ≤MX and for all ĝ ∈ Ĝ, ||ĝ||∞ ≤MZ . Hence, applying
Lemma 4 on F̂ , Ĝ, F̃ , G̃, we have:

sup
s∈F̂,t∈Ĝ

Cov[s(X), t(Z)] = MXMZ sup
s∈F̃,t∈G̃

Cov[s(X), t(Z)]. (25)

By dividing Equation (22) and (25), we prove the left part of Lemma 6:

MXMZ
MFMG

sup
s∈F,t∈G

Cov[s(X), t(Z)] = sup
s∈F̂,t∈Ĝ

Cov[s(X), t(Z)]. (26)

By combining Theorem 3 and Lemma 6, we have the following result:

MXMZ
MFMG

HSIC(X,Z) ≥ sup
s∈Cb(X ),t∈Cb(Z)

Cov[s(X), t(Z)]. (27)

Recall that hθ is a neural network from X to Y , such that it can be written as composition of g ◦ f ,
where f : X → Z and g : Z → Y . Moreover, hθ ∈ Cb(X ) and g ∈ Cb(Z). Using the fact that the
supremum on a subset of a set is smaller or equal than the supremum on the whole set, we conclude
that:

MXMZ
MFMG

HSIC(X,Z) ≥ sup
θ

Cov[hθ(X), g(Z))]

= sup
θ

Cov[hθ(X), g ◦ f(X)]

= sup
θ

Var[hθ(X)].

(28)
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C Proof of Theorem 2

Proof. Let ti : RdX → R, i = 1, 2, ..., dX be the following truncation functions:

ti(X) =


−R, if Xi < −R,
Xi, if −R ≤ Xi ≤ R,
R, if Xi > R.

(29)

where 0 < R < ∞ and Xi is the i-th dimension of X . Functions ti are continous and bounded in
X , and

ti ∈ Cb′(X ), where Cb′(X ) = {t ∈ C(X ) : ‖t‖∞ ≤ R} (30)

Moreover, g satisfies Assumptions 1 and 2. Similar to the proof of Theorem 1, by combining Theo-
rem 3 and Lemma 6, we have that:

RMZ
MFMG

HSIC(X,Z) ≥ sup
t∈Cb′(X), g∈Cb(Z)

Cov[t(X), g(Z)]

≥ Cov[ti(X), hθ(X)], i = 1, . . . , dX .

(31)

Moreover, the following lemma holds:

Lemma 7. Let X ∼ N (0, σ2I) and ti(X) defined by (29). For all hθ that satisfy Assumption 1, we
have:

Cov[Xi, hθ(X)]− Cov[ti(X), hθ(X)] ≤ 2MXσ√
2π

exp(− R2

2σ2
), for all i = 1, 2, . . . , dX . (32)

Proof.

LHS =

∫ ∞
−∞

(xi − ti(x))hθ(x)
1√

2πσ2
exp(− x2

i

2σ2
)dxi (33a)

=
1√

2πσ2

(∫ −R
−∞

(xi +R)hθ(x) exp(− x2
i

2σ2
)dxi +

∫ ∞
R

(xi −R)hθ(x) exp(− x2
i

2σ2
)dxi

)
(33b)

≤ 2MX√
2πσ2

∫ ∞
R

(xi −R) exp(− x2
i

2σ2
)dxi (33c)

=
2MX√
2πσ2

∫ ∞
R

xi exp(− x2
i

2σ2
)dxi −

2MXR√
2πσ2

∫ ∞
R

exp(− x2
i

2σ2
)dxi (33d)

≤ 2MX√
2πσ2

∫ ∞
R

xi exp(− x2
i

2σ2
)dxi (33e)

=
2MXσ√

2π
exp(− R2

2σ2
), (33f)

where (33a), (33b), (33d), (33f) are direct results from definition or simple calculation, (33c) comes
from the fact that MX = max ‖hθ(X)‖∞ and the symmetry of two integrals, and (33e) is due to the
non-negativity of the probability density function.

Combining Lemma 7 with (31), we have the following result:

RMZ
MFMG

HSIC(X,Z) +
2MXσ√

2π
exp(− R2

2σ2
) ≥ Cov[Xi, hθ(X)], for all i = 1, . . . , dX . (34)

We can further bridge HSIC to adversarial robustness directly by taking advantage of the following
lemma:
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Lemma 8 (Stein’s Identity [15]). Let X = (X1, X2, . . . XdX ) be multivariate normally dis-
tributed with arbitrary mean vector µ and covariance matrix Σ. For any function h(x1, . . . , xdX )
such that ∂h

∂xi
exists almost everywhere and E| ∂∂xi | < ∞, i = 1, . . . , dX , we write ∇h(X) =

(∂h(X)
∂x1

, . . . , ∂h(X)
∂xdX

)>. Then the following identity is true:

Cov[X,h(X)] = ΣE[∇h(X)]. (35)
Specifically,

Cov [X1, h (X1, . . . , XdX )] =

dX∑
i=1

Cov (X1, Xi)E

[
∂

∂xi
h (X1, . . . , XdX )

]
(36)

Given that X ∼ N (0, σ2I), Lemma 8 implies:

Cov [Xi, hθ (X)] = σ2E
[
∂

∂xi
hθ (X)

]
. (37)

Combining (34) and (37), we have:
RMZ
MFMG

HSIC(X,Z) +
2MXσ√

2π
exp(− R2

2σ2
) ≥ σ2E

[
∂

∂xk
hθ (X)

]
. (38)

Note that a similar derivation could be repeated exactly by replacing hθ(X) with −hθ(X). Thus,
for every i = 1, 2, . . . , dX , we have:

RMZ
MFMG

HSIC(X,Z) +
2MXσ√

2π
exp(− R2

2σ2
) ≥ σ2E

[∣∣∣∣ ∂∂xihθ (X)

∣∣∣∣] . (39)

Summing up both sides in (39) for i = 1, 2, . . . , dX , we have:

dXRMZ
MFMG

HSIC(X,Z) +
2dXMXσ√

2π
exp(− R2

2σ2
) ≥ σ2E

[
dX∑
i=1

∣∣∣∣ ∂∂xihθ (X)

∣∣∣∣
]
. (40)

On the other hand, for δ ∈ Sr, by Taylor’s theorem:
E[|hθ(X + δ)− hθ(X)|] ≤ E[|δ>∇Xhθ(X)|] + o(r) (41a)

≤ E [‖δ‖∞‖∇Xhθ(X)‖1] + o(r) (41b)

≤ rE

[
dX∑
i=1

∣∣∣∣ ∂∂xihθ (X)

∣∣∣∣
]

+ o(r), (41c)

where (41b) is implied by Hölder’s inequality, and (41c) is implied by the triangle inequality.

Combining (40) and (41), we have:
rdXRMZ
σ2MFMG

HSIC(X,Z) +
2rdXMX√

2πσ
exp(− R2

2σ2
) + o(r) ≥ E[|hθ(X + δ)− hθ(X)|]. (42)

Let R = σ
√
−2 log o(1) where, here, o(1) stands for an arbitrary function w : R→ R s.t.

lim
r→0

w(r) = 0. (43)

Then, we have 2rdXMX√
2πσ

exp(− R2

2σ2 ) = o(r), because:

lim
r→0

2rdXMX√
2πσ

exp(− R2

2σ2
)/r = lim

r→0

2dXMX√
2πσ

exp(log o(1))

= lim
r→0

2dXMX√
2πσ

o(1)

= 0

(44)

Thus, we conclude that:
r
√
−2 log o(1)dXMZ
σMFMG

HSIC(X,Z) + o(r) ≥ E[|hθ(X + δ)− hθ(X)|]. (45)
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D Licensing of Existing Assets

We provide the licensing information of each existing asset below:

Datasets.

• MNIST mnist is licensed under the Creative Commons Attribution-Share Alike 3.0 license.
• CIFAR-10 and CIFAR-100 [12] are licensed under the MIT license.

Models.

• The implementations of LeNet [17] and ResNet-18 [11] in our paper are licensed under BSD
3-Clause License.

• The implementation of WideResNet-28-10 [35] is licensed under the MIT license.

Algorithms.

• The implementations of SWHB [16], PGD [17], TRADES [36] are licensed under the MIT
license.

• The implementation of VIB [1] is licensed under the Apache License 2.0.
• There are no licenses for MART [30] and XIC [9].

Adversarial Attacks. The implementations of FGSM [8], PGD [17], CW [3] and AutoAttack [5]
are all licensed under the MIT license.

E Algorithm Details and Hyperparameter Tuning

Non-adversarial learning, information bottleneck based methds:

• Cross-Entropy (CE), which includes only loss L.
• Stage-Wise HSIC Bottleneck (SWHB) [16]: This is the original HSIC bottleneck. It does not

include full backpropagation over the HSIC objective: early layers are fixed stage-wise, and
gradients are computed only for the current layer.

• XIC [9]: To enhance generalization over distributional shifts, this penalty includes inputs and
residuals (i.e., HSIC(X,Y − h(X))).

• Variational Information Bottleneck (VIB) [1]: this is a variational autoencoder that includes a
mutual information bottleneck penalty.

Adversarial learning methods:

• Projected Gradient Descent (PGD) [17]: This optimizesLr, given by (3) via projected gradient
ascent over Sr .

• TRADES [36]: This uses a regularization term that minimizes the difference between the pre-
dictions of natural and adversarial examples to get a smooth decision boundary.

• MART [30]: Compared to TRADES, MART pays more attention to adversarial examples from
misclassified natural examples and add a KL-divergence term between natural and adversarial
examples to the binary cross-entropy loss.

We use code provided by authors, including the recommended hyperparameter settings and tuning
strategies. In both SWHB and HBaR, we apply Gaussian kernels forX and Z and a linear kernel for
Y . For Gaussian kernels, we set σ = 5

√
d, where d is the dimension of the corresponding random

variable.

We report all tuning parameters in Table 4. In particular, we report the parameter settings on the
4-layer LeNet [17] for MNIST, ResNet-18 [11] and WideResNet-28-10 [35] for CIFAR-10, and
WideResNet-28-10 [35] for CIFAR-100 with the basic HBaR and when combining HBaR with
state-of-the-art (i.e., PGD, TRADES, MART) adversarial learning.

For HBaR, to make a fair comparison with SWHB [16], we build our code, along with the im-
plementation of PGD and PGD+HBaR, upon their framework. When combining HBaR with other
state-of-the-art adversarial learning (i.e., TRADES and MART), we add our HBaR implemention to
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the MART framework and use recommended hyperparameter settings/tuning strategies from MART
and TRADES. To make a fair comparison, we use the same network architectures among all methods
with the same random weight initialization and report last epoch results.

Table 4: Parameter Summary for MNIST, CIFAR-10, and CIFAR-100. λx and λy are balancing hyperparame-
ters for HBaR; λ is balancing hyperparameter for TRADES and MART.

Dataset param. HBaR PGD PGD+HBaR TRADES TRADES+HBaR MART MART+HBaR

MNIST

λx 1 - 0.003 - 0.001 - 0.001
λy 50 - 0.001 - 0.005 - 0.005
λ - 5 5 5 5

batch size 256 256
optimizer adam sgd

learning rate 0.0001 0.01
lr scheduler divided by 2 at the 65-th and 90-th epoch divided by 10 at the 20-th and 40-th epoch

# epochs 100 50

CIFAR-10/100

λx 0.006 - 0.0005 - 0.0001 - 0.0001
λy 0.05 - 0.005 - 0.0005 - 0.0005
λ - 5 5 5 5

batch size 128 128
optimizer adam sgd

learning rate 0.01 0.01
lr scheduler cosine annealing divided by 10 at the 75-th and 90-th epoch

# epochs 300 95 95
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F Sensitivity of Regularization Hyperparameters λx and λy

We provide a comprehensive ablation study on the sensitivity of λx and λy on MNIST and CIFAR-
10 dataset with (Table 5 and 6) and without (Table 7 and 8) adversarial training. As a conclusion,
(a) we set the weight of cross-entropy loss as 1, and empirically set λx and λy according to the
performance on a validation set. (b) For MNIST with adversarial training, we empirically discover
that λx : λy ranging around 5 : 1 provides better performance; for MNIST without adversarial
training, λx = 1 and λy = 50, inspired by SWHB (Ma et al., 2020), provide the best performance.
(c) for CIFAR-10 (and CIFAR-100), with and without adversarial training, λx : λy ranging from
1 : 5 to 1 : 10 provides better performance.

Table 5: MNIST by LeNet with adversarial training: Ablation study on HBaR regularization hyperparam-
eters λx and λy trained by HBaR +TRADES over the metric of natural test accuracy (%) and adversarial test
robustness (PGD40 and AA, %).

λx λy Natural PGD40 AA

0.003 0.001 98.66 94.35 91.57
0.003 0 98.92 93.05 90.95

0 0.001 98.86 91.77 88.21
0.0025 0.0005 98.96 94.52 91.42
0.002 0.0005 98.92 94.13 91.33

0.0015 0.0005 98.93 94.06 91.43
0.001 0.0005 98.95 93.76 91.14
0.001 0.0002 98.92 94.61 91.37

0.0008 0.0002 98.94 94.15 91.07
0.0006 0.0002 98.91 94.13 90.72
0.0004 0.0002 98.90 93.96 90.56

Table 6: CIFAR-10 by WideResNet-28-10 with adversarial training: Ablation study on HBaR regularization
hyperparameters λx and λy trained by HBaR +TRADES over the metric of natural test accuracy (%), and
adversarial test robustness (PGD20 and AA, %).

λx λy Natural PGD20 AA

0.0001 0.0005 85.61 56.51 53.53
0.0001 0 80.19 49.49 45.33

0 0.0005 84.74 55.00 51.50
0.001 0.005 85.70 55.74 52.78
0.0005 0.005 84.42 55.95 52.66

0.00005 0.0005 85.37 56.43 53.40
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Table 7: MNIST by LeNet without adversarial training: Ablation study on HBaR regularization hyperpa-
rameters λx and λy over the metric of HSIC(X,ZM ), HSIC(Y,ZM ), natural test accuracy (%), and adversar-
ial test robustness (PGD40, %).

λx λy
HSIC Natural PGD40

(X,ZM ) (Y,ZM )

CE only 45.29 8.73 99.23 0.00
0.0001 0 21.71 8.01 99.28 0.00
0.001 0 5.82 6.57 99.36 0.00
0.01 0 3.22 4.28 99.13 0.00

0 1 56.45 9.00 98.92 0.00
0.001 0.05 53.70 8.99 99.13 0.03
0.001 0.01 10.44 8.51 99.37 0.00
0.001 0.005 8.86 8.24 99.38 0.00
0.01 0.5 16.13 8.90 99.14 5.00
0.1 5 15.81 8.90 98.96 7.72
1 50 15.68 8.89 98.90 8.33

1.1 55 15.90 8.88 98.88 6.99
1.2 60 15.76 8.89 98.95 7.24
1.5 75 15.62 8.89 98.94 8.23
2 100 15.41 8.89 98.91 7.00

Table 8: CIFAR-10 by ResNet-18 without adversarial training: Ablation study on HBaR regularization
hyperparameters λx and λy over the metric of HSIC(X,ZM ), HSIC(Y,ZM ), natural test accuracy (%), and
adversarial test robustness (PGD20, %).

λx λy
HSIC Natural PGD20

(X,ZL) (Y,ZL)

CE only 3.45 4.76 95.32 8.57
0.001 0.05 43.48 8.93 95.36 2.91
0.002 0.05 43.15 8.92 95.55 2.29
0.003 0.05 41.95 8.90 95.51 3.98
0.004 0.05 30.12 8.77 95.45 5.23
0.005 0.05 11.56 8.45 95.44 23.73
0.006 0.05 6.07 8.30 95.35 34.85
0.007 0.05 4.81 8.24 95.13 15.80
0.008 0.05 4.44 8.21 95.13 8.43
0.009 0.05 3.96 8.14 94.70 10.83
0.01 0.05 4.09 7.87 92.33 2.90

Table 9: MNIST by LeNet: Mean and Standard deviation of natural test accuracy (in %) and adversarial
robustness ((in %) on FGSM, PGD, CW, and AA attacked test examples) of adversarial learning baselines and
combining HBaR with each correspondingly.

Methods MNIST by LeNet
Natural FGSM PGD20 PGD40 CW AA

PGD 98.40 ± 0.018 93.44 ± 0.177 94.56 ± 0.079 89.63 ± 0.117 91.20 ± 0.097 86.62 ± 0.166
HBaR + PGD 98.66 ± 0.026 96.02 ± 0.161 96.44±0.030 94.35±0.130 95.10±0.106 91.57±0.123

TRADES 97.64±0.017 94.73±0.196 95.05±0.006 93.27±0.088 93.05±0.025 89.66±0.085
HBaR + TRADES 97.64±0.030 95.23±0.106 95.17±0.023 93.49±0.147 93.47±0.089 89.99±0.155

MART 98.29±0.059 95.57±0.113 95.23±0.144 93.55±0.018 93.45±0.077 88.36±0.179
HBaR + MART 98.23±0.054 96.09±0.074 96.08±0.035 94.64±0.125 94.62±0.06 89.99±0.13

G Error Bar for Combining HBaR with Adversarial Examples

We show how HBaR can be used to improve robustness when used as a regularizer, as described
in Section 4.2, along with state-of-the-art adversarial learning methods. We run each experiment
by five times. Figure 5 illustrates mean and standard deviation of the natural test accuracy and
adversarial robustness against various attacks on CIFAR-10 by ResNet-18 and WideResNet-28-10.
Table 9, 10, 11, and 12 show the detailed standard deviation. Combined with the adversarial training
baselines, HBaR consistently improves adversarial robustness against all types of attacks with small
variance.
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Figure 5: Error bar of natural test accuracy (in %) and adversarial robustness ((in %) on FGSM, PGD, CW, and
AA attacked test examples) on MNIST by LeNet, CIFAR-100 by WideResNet-28-10, CIFAR-10 by ResNet-18
and WideResNet-28-10 of adversarial learning baselines and combining HBaR with each correspondingly.

Table 10: CIFAR-10 by ResNet-18: Mean and Standard deviation of natural test accuracy (in %) and adversar-
ial robustness ((in %) on FGSM, PGD, CW, and AA attacked test examples) of adversarial learning baselines
and combining HBaR with each correspondingly.

Methods CIFAR-10 by ResNet-18
Natural FGSM PGD10 PGD20 CW AA

PGD 84.71±0.16 55.95±0.097 49.37±0.075 47.54±0.080 41.17±0.086 43.42±0.064
HBaR + PGD 85.73±0.166 57.13±0.099 49.63±0.058 48.32±0.103 41.80±0.116 44.46±0.169

TRADES 84.07±0.201 58.63±0.167 53.21±0.118 52.36±0.189 50.07±0.106 49.38±0.069
HBaR + TRADES 84.10±0.104 58.97±0.093 53.76±0.080 52.92±0.175 51.00±0.085 49.43±0.064

MART 82.15±0.117 59.85±0.154 54.75±0.089 53.67±0.088 50.12±0.106 47.97±0.156
HBaR + MART 82.44±0.156 59.86±0.132 54.84±0.051 53.89±0.135 50.53±0.069 48.21±0.100
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Table 11: CIFAR-10 by WideResNet-28-10: Mean and Standard deviation of natural test accuracy (in %) and
adversarial robustness ((in %) on FGSM, PGD, CW, and AA attacked test examples) of adversarial learning
baselines and combining HBaR with each correspondingly.

Methods CIFAR-10 by WideResNet-28-10
Natural FGSM PGD10 PGD20 CW AA

PGD 86.63±0.186 58.53±0.073 52.21±0.084 50.59±0.096 49.32±0.089 47.25±0.124
HBaR + PGD 87.91±0.102 59.69±0.097 52.72±0.081 51.17±0.152 49.52±0.174 47.60±0.131

TRADES 85.66±0.103 61.55±0.134 56.62±0.097 55.67±0.098 54.02±0.106 52.71±0.169
HBaR + TRADES 85.61±0.0133 62.20±0.102 57.30±0.059 56.51±0.136 54.89±0.098 53.53±0.127

MART 85.94±0.156 59.39±0.109 51.30±0.052 49.46±0.136 47.94±0.098 45.48±0.100
HBaR + MART 85.52±0.136 60.54±0.071 53.42±0.142 51.81±0.177 49.32±0.131 46.99±0.137

Table 12: CIFAR-100 by WideResNet-28-10: Mean and Standard deviation of natural test accuracy (in %)
and adversarial robustness ((in %) on FGSM, PGD, CW, and AA attacked test examples) of adversarial learning
baselines and combining HBaR with each correspondingly.

Methods CIFAR-100 by WideResNet-28-10
Natural FGSM PGD20 PGD40 CW AA

PGD 59.91±0.116 29.85±0.117 26.05±0.106 25.38±0.129 22.28±0.079 20.91±0.133
HBaR + PGD 63.84±0.105 31.59±0.054 27.90±0.030 27.21±0.025 23.23±0.088 21.61±0.061

TRADES 60.29±0.122 34.19±0.132 31.32±0.134 30.96±0.135 28.20±0.097 26.91±0.172
HBaR + TRADES 60.55±0.065 34.57±0.068 31.96±0.067 31.57±0.079 28.72±0.071 27.46±0.098

MART 58.42±0.164 32.94±0.160 29.17±0.166 28.19±0.252 27.31±0.096 25.09±0.179
HBaR + MART 58.93±0.102 33.49±0.144 30.72±0.130 30.16±0.133 28.89±0.118 25.21±0.111

H Limitations

One limitation of our method is that the robustness gain, though beating other IB-based methods,
is modest when training with only natural examples. However, the potential of getting adversarial
robustness without adversarial training is interesting and worth further exploration in the future.
Another limitation of our method, as well as many proposed adversarial defense methods, is the
uncertain performance to new attack methods. Although we have established concrete theories
and conducted comprehensive experiments, there is no guarantee that our method is able to handle
novel, well-designed attacks. Finally, in our theoretical analysis in Section 4.3, we have made
several assumptions for Theorem 2. While Assumptions 1 and 2 hold in practice, the distribution of
input feature is not guaranteed to be standard Gaussian. Although the empirical evaluation supports
the correctness of the theorem, we admit that the claim is not general enough. We aim to proof
a more general version of Theorem 2 in the future, hopefully agnostic to input distributions. We
will keep track of the advances in the adversarial robustness field and further improve our work
correspondingly.

I Potential Societal Negative Impact

Although HBaR has great potential as a general strategy to enhance the robustness for various ma-
chine learning systems, we still need to be aware of the potential negative societal impacts it might
result in. For example, over-confidence in the adversarially-robust models produced by HBaR as
well as other defense methods may lead to overlooking their potential failure on newly-invented
attack methods; this should be taken into account in safety-critical applications like healthcare [6]
or security [26]. Another example is that, one might get insights from the theoretical analysis of
our method to design stronger adversarial attacks. These attacks, if fall into the wrong hands, might
cause severe societal problems. Thus, we encourage our machine learning community to further
explore this field and be judicious to avoid misunderstanding or misusing of our method. Moreover,
we propose to establish more reliable adversarial robustness checking routines for machine learning
models deployed in safety-critical applications. For example, we should test these models with the
latest adversarial attacks and make corresponding updates to them annually.
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