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Objectives

• Introduce a topological perspective towards
disconnected manifold learning in GANs
•Demonstrate the importance of prior-space
topology in disconnected manifold learning.
•Run initial experiments on a novel noise module
for learning topologically constrained priors.
•Run initial experiments on a homeomorphism
constrained generator.

Introduction

Learning distribution with disconnected manifold is a
challenging problem. The distribution learned by a reg-
ular vanilla GAN, with unimanifolded-prior, creates a
global cover over the disconnected components. This
produces samples, which are unrealistic interpolation
between two completely distinct classes.
Motivation for exploring topological perspective towards
disconnected manifold learning:

•Disconnectedness in manifold is topologically
represented as 0th dimensional holes in space. This
makes it interesting to study a generalized form of
manifold disconnectedness in terms of d-dimensional
holes.
• current method are either resource intensive
(multi-generator) or have lower overall
precision.(rejection sampling)

Proposed Solution

We found empirical evidence on the important of prior
space topology in learning disconnected posteriors.
Based on that we divide the learning problem in two
parts:

•Prior Topology Optimization: We explicitly
introduce d-dimensional holes in the unimanifolded
prior space, by regularizing it to be homologically
similar to the data space
•Homeomorphic density estimation: Next, we
learn an isometric map from the learned prior to the
posterior space. This ensures, the d-dimensional
holes in the prior space, are preserved during GAN
training.

Method Overview

•By leveraging a Neural Network, we learn a mapping
from a gaussian distribution to a latent space. Using
results from [1] we create a synthetic prior space,
with a sample space regularized to be topologically
similar to the data space.
•We use a lispchitz-constrained GAN to learn a
homeomorphism between the synthetic prior space
and the target data space (i.e., the posterior space).
The weights of the generator are singular-value
normalized to ensure 1-Lipschitz continuity. Along
with 1-Lipschitz learnable layers, usage of
1-Lipschitz activations in the generator ensures
L ≤ 1 throughout, thus explicitly establishing an
isometry, thereby homeomorphism. [2]

Optimization Objective

Let X = {x0, x1, . . . } with xi ∈ Rd denote the origi-
nal data samples, which we consider to be samples from
an underlying manifold MX , and probability distribu-
tion P (X ). Let the generator of the proposed GAN be
represented as Gθ and the discriminator as Dφ. Sim-
ilarly, a parametric function Nψ with a latent sample
spaceN, is used for mappingN (0, 1)→ P (N), whose
sample space manifold,Mη, is explicitly regularized to
be topologically similar toMX This topological similar-
ity is explicitly induced using signature loss L(X ,N)
defined as:

L(N,X ) =
1

2
‖DX [ΠX ]−DN[ΠX ]‖2 +

1

2
‖DX [ΠN]−DN[ΠN]‖2

Where DX and DN denotes the pairwise distances be-
tween sample sets X and N respectively. ΠX and
ΠN are the indices of topologically significant simplices
found by Vietoris–Rips Filtration Rε(X ) and Rε(N)
of sample spaces X and N.
In adversarial optimization, the discriminator objective
remains the same, Whereas the generator loss is ap-
pended with L as a regularization term.

Ez′∼P (N) [ln(1−Dφ(Gθ(z′)))] +[
1

B

∑
L(Nψ(z), xr)

]
z∼N (0,1),xr∼P (X )

Experiments

The following observations are made in our
experiments.
• increasing the dimension of prior space, reduces the
quality of samples generated by a GAN.
•Neural Networks are inherently not suitable are
introducing holes in the manifold. Demonstrated by
the “stretching effect” of a manifold when topological
regularization is performed. (See figure 1(a))
•Lipschitz constraining the generator although makes
the training highly unstable, does have a
homeomorphic effect with respect to the prior. (See
figure 1(b))

(a) (b)

Figure 1(a), the sparsely spread samples between two distribution
demonstrates the “stretching effect” of topo-regularization. Figure
1(b), GAN learns a hole preserving map between prior and posterior.
Here disconnected prior was used to learn a disconnected posterior.

For more information please refer to the paper.

Conclusion

•This work studies the problem of learning
disconnected sample space manifolds in GANs by
topologically aligning the prior space to the original
data space.
•We introduce a persistent homology perspective
towards augmenting the prior distribution to stay in
the same homology class as that of our unknown
data manifold.
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