
A Proofs

A.1 Proof of Theorem 1

Proof. Initially, by definition of Y0, the observed y0 can be expressed as

y0 = Φ

 γ + E[
∑T
i=1 Zi]√

Var(
∑T
i=1 Zi)

 = Φ

 γ√∑
i,j Σ(i,j)


and γ can be uniquely identified as

γ = Φ−1(y0)

√∑
i,j

Σ(i,j).

Similarly, definition of Yt gives

Yt = 1− Φ

(
−γ −

∑t−1
i=1 Zi − Zt − µ̄t
σ̄t

)
.

By symmetry, we have

Yt = Φ

(
γ +

∑t−1
i=1 Zi + Zt + µ̄t

σ̄t

)

Φ−1(Yt) =
γ +

∑t−1
i=1 Zi + Zt + µ̄t

σ̄t
, (4)

where Φ(·) is the standard normal cumulative density function (CDF); µ̄t and σ̄t are respectively
the mean and standard deviation of the Gaussian variable

∑T
i=t+1 Zi conditioned on previous latent

information variable values.

Now we show how to obtain the defining parameters µ̄t and σ̄t for the conditional distribution of
(
∑T
i=t+1 Zi | Z1 = z1, . . . , Zt = zt).

At time t, given the realization of the latent information variables z1, . . . , zt, the remaining ones will
follow a multivariate Gaussian distribution:

(Zt+1, . . . , ZT | Z1 = z1, . . . , Zt = zt) ∼ N (µt,Σt) (5)

with

µt = Σt
21

(
Σt

11

)−1
[z1, . . . , zt]

T

Σt = Σt
22 −Σt

21

(
Σt

11

)−1
Σt

12.

The terms µt and Σt are simply the conditional mean and variance of the multivariate Gaussian
distribution N (0,Σ) when conditioned on the first t latent information variables.

Then the conditional sum (
∑T
i=t+1 Zi | Z1 = z1, . . . , Zt = zt) will follow a Gaussian distribution

N (µ̄t, σ̄
2
t ). Let at be 1TΣt

21 (Σt
11)
−1, we have mean µ̄t and variance σ̄2

t being

µ̄t = 1Tµt

= 1TΣt
21

(
Σt

11

)−1
[z1, . . . , zt]

T

= at[z1, . . . , zt]
T =

t∑
i=1

at(i)zi

σ̄2
t =

∑
i, j

Σt
(i,j),

where Σt
(i,j) is the element at the i-th row, j-th column in Σt.
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Once we have observed yt and identified z1, . . . , zt−1, by substituting and rearranging Eq. (4), we
can uniquely identify Zt:

Zt = zt =
σ̄tΦ

−1(yt)−
∑t−1
i=1(1 + at(i))zi − γ

1 + at(t)
.

Therefore, given Σ and γ, once we have observed y1, . . . , yt, we can uniquely identify z1, . . . , zt. As
a result, (Φ−1(Yt) | Yt−1 = yt−1, . . . , Y1 = y1) is equivalent of (Φ−1(Yt) | Zt−1 = zt−1, . . . , Z1 =
z1).

Now we are going to find the conditional distribution for (Φ−1(Yt) | Zt−1 = zt−1, . . . , Z1 = z1).

As shown in Eq. (5), when conditioning on the first t latent information variables Zs, the remaining
ones follow distribution N (µt,Σt). Then when conditioned on (Zt−1 = zt−1, . . . , Z1 = z1), the
mean and variance of the conditional marginal distribution of Zt are simply the first elements in µt−1
and Σt−1, namely:

(Zt | Zt−1 = zt−1, . . . , Z1 = z1) ∼ N (µt−1(1) ,Σ
t−1
(1,1)).

Substituting µ̄t, σ̄2
t , and replacing the conditioned Zt−1, . . . , Z1 with zt−1, . . . , z1 in Eq. (4), we can

obtain the conditional distribution of Φ−1(Yt), which is a linear transformation of (Zt | Zt−1 =
zt−1, . . . , Z1 = z1):

(Φ−1(Yt) | Zt−1 = zt−1, . . . , Z1 = z1) ∼ N (µ̃t, σ̃
2
t ),

with

µ̃t =
γ +

∑t−1
i=1(1 + at(i))zi + (1 + at(t))µ

t−1
(1)

σ̄t

σ̃t =

√
Σt−1

(1,1)(1 + at(t))

σ̄t
.

Finally, by applying change-of-variable trick, we are able to write out the conditional likelihood
P (Yt = yt | yt−1, . . . y1; Σ, γ) in terms of Φ−1(yt) for 0 < t < T as

P (Yt = yt | yt−1, . . . y1; Σ, γ)

= P (Yt = yt | zt−1, . . . z1; Σ, γ)

= P (Φ−1(Yt) = Φ−1(yt) | zt−1, . . . z1; Σ, γ)×

∣∣∣∣∣ ∂Φ−1(y)

∂y

∣∣∣∣
y=yt

∣∣∣∣∣
=
ϕ(Φ−1(yt); µ̃t, σ̃

2
t )

ϕ(Φ−1(yt))
, (6)

where ϕ(·; µ̃t, σ̃2
t ) is the PDF of a normal distribution with mean µ̃t and variance σ̃2

t and ϕ(·) is
the standard normal PDF. When t = T , we have P (YT = yT | yT−1, . . . y1; Σ, γ) = P (YT =
yT | yT−1) = yyTT−1(1 − yT−1)(1−yT ) as it follows a Bernoulli distribution with p = yT−1 by
definition. Multiplying P (Yt = yt | yt−1, . . . y1; Σ, γ) for all 0 < t ≤ T gives the likelihood of the
path y1, . . . , yT . With expansion of normal PDFs, log transformation, and some rearrangement of
constants, we have the expression for log PDF of y1, . . . , yT as presented in Theorem 1.

A.2 Proof of Corollary 1

Proof. If Σ is diagonal, we have Σt
21 = Σt

12 = 0 for t = 1, . . . , T , indicating Σt = Σt
22, µt = 0,

and at = 0.

We have,

zt =
σ̄tΦ

−1(yt)−
∑t−1
i=1(1 + at(i))zi − γ

1 + at(t)

=

√√√√ T∑
i=t+1

σ2
iΦ−1(yt)−

t−1∑
i=1

zi − γ.
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Hence,

γ +

t∑
i=1

zi =

√√√√ T∑
i=t+1

σ2
iΦ−1(yt).

Then

µ̃t =
γ +

∑t−1
i=1 zi√∑T

i=t+1 σ
2
i

= Φ−1(yt−1)

√√√√ ∑T
i=t σ

2
i∑T

i=t+1 σ
2
i

σ̃t =

√
Σt−1

(1,1)√∑
i,j Σt

(i,j)

=
σt√∑T
i=t σ

2
i

.

A.3 Proof of Proposition 1

Proof. The proof follows by repeatedly applying the law of iterated expectations. In particular,

E[Yt+1 | Y0, . . . , Yt]
= E[E[Yt+1 | Z1, . . . , Zt] | Y0, . . . , Yt]
= E[E[E[YT | Z1, . . . , Zt+1] | Z1, . . . , Zt] | Y0, . . . , Yt]
= E[E[YT | Z1, . . . , Zt] | Y0, . . . , Yt]
= E[Yt | Y0, . . . , Yt]
= Yt.

B Synthetic Data Simulation Study

In addition to the real-world datasets we have studied, we also examine the expressiveness of GLIM
by generating probability paths under the model with different parameter settings. In particular, we
consider paths of length T = 10, with a constant covariate X = 1, initial value y0 = 0.75, and
Gβ(X, t) = exp(βX(t− 1)). Figure 6 shows the path distribution for several different combinations
of ρ and β values. As is visually apparent from the figure, even with such simple parameterization
of the covariance matrix, the model can produce paths exhibiting a wide range of structures while
maintaining the martingale property. For example, one can generate paths exhibiting variance near
the end of the time period (β = 1), or near the beginning (β = −1).

Under quite general regularity conditions, Bayesian posterior means yield consistent parameter
estimates [Miller, 2018], yet their finite-sample properties are not always as nice. Here, we explore
the efficacy of GLIM to recover estimates in a limited data setting.

In our simulated setting, we consider a time horizon of T = 5 steps, with probability paths associated
with a single binary covariate X . We tested 5 × 5 = 25 different pairs of β and ρ values, ranging
from -0.4 to 0.4. For each (β, ρ) pair, we generated 50 synthetic datasets, with each dataset comprised
of 500 probability paths, and half of the paths having X = 0 and the other having X = 1. On each
synthetic dataset, we fit a GLIM model with MCMC to compute the posterior means β̂ and ρ̂ of the
model parameters.

We plot the results of this exercise in Figure 7. For each parameter choice, we plot the mean and
standard deviation of β̂ and ρ̂ across the 50 synthetic datasets. For all choices of β and ρ, the posterior
means are tightly clustered around the true values, indicating our inference is generally working well,
even with short paths and relatively small datasets. Estimates are somewhat more dispersed when
the correlation across latent variables is higher (e.g., when ρ = 0.4), ostensibly because we shrink
the effective number of sample points in this case, creating a more challenging inference problem.
Nevertheless, these results suggest GLIM is often able to effectively recover model parameters.
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Figure 6: The distribution of probability paths for different co-
variance structures of the latent variables, parameterized by β and
ρ. The grey lines show 100 sample probability paths, and the red
lines show the path sample means over time.
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Figure 7: The distribution of in-
ferred parameters across synthetic
datasets, for different choices of ρ
and β.

C Variance Function Specifications

C.1 Basketball variance function

For the basketball dataset, we set Gβ(X, t) = exp(c · sigmoid(βX)(t − 1)) where c is a fixed
scaling constant to limit the maximum possible value of variance. We set c to be 5

T−1 = 5
23 for

the basketball dataset. This structure implies the minimum diagonal variance should be have an
increasing structure overtime as suggested by analysis in Foster and Stine [2021] and should be
between 1 and exp(5) ≈ 148, preventing extreme values that might be introduced by the exponential
function.

C.2 Weather variance function

For the weather dataset, we set Gβ,p(X, t) = exp(a(t − 1)2 + b(t − 1) + ct), where a =
softplus(βX) = log(1 + exp(βX)), b = −pa. p is constrained to be between 4 and 5, and
c = [c1, . . . , cT ] = [−0.7,−1.5,−1.5,−1.5,−1.5,−1.5,−0.3, 2] is a fixed constant intercept vec-
tor determined empirically. This formulation is used because we notice a significant variance of those
path are concentrating around the last step during the analysis of the weather probability paths. As a
result, we use c to regularize the overall shape of the variance function and let the learned β and p
parameter to account for idiosyncratic structure for each individual path.

D Outcome Prediction Model Calibration

Figure 8 shows the calibration plots for the predictions we observe in the basketball and weather
prediction datasets. In both datasets, observed predictions are generally well-calibrated.
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(b) Weather

Figure 8: Outcome model calibration plots. Ground truth probability paths are generally well
calibrated for both basketball and weather datasets.
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