
A Additional Results

A.1 Architecture Ablations

40 60 80 100 120 140 160 180

time (hrs)

14

16

18

20

22

24

26

F
ID

ch=128, res=4

ch=160, res=2

ch=160, res=2, heads=4

ch=160, res=2, multi-res attn

ch=160, res=2, biggan up/down

ch=160, res=2, skip rescale

ch=160, res=2, heads=4, multi-res attn, biggan up/down

20 40 60 80 100

time (hrs)

14

16

18

20

22

24

26

28

F
ID

1 head

2 heads

4 heads

8 heads

32 head channels

64 head channels

128 head channels

Figure 5: Ablation of various architecture changes, showing FID as a function of wall-clock time.
FID evaluated over 10k samples instead of 50k for efficiency.

Table 6: Ablating the element-wise operation used when projecting timestep and class embeddings
into each residual block. Replacing AdaGN with the Addition + GroupNorm layer from Ho et al.
[31] makes FID worse.

Operation FID

Addition + GroupNorm 15.08
AdaGN 13.06

A.2 Guidance

0.75 0.80 0.85 0.90 0.95

Precision

0.0

0.1

0.2

0.3

0.4

0.5

R
e
c
a
ll

BigGAN-deep

Classifier guidance (ours)

120 140 160 180 200 220 240 260

IS

5

10

15

20

25

30

F
ID

BigGAN-deep

Classifier guidance (ours)

Figure 6: Trade-offs when varying truncation for BigGAN-deep and gradient scale for classifier
guidance. Models are evaluated on ImageNet 128×128. The BigGAN-deep results were produced
using the TFHub model [15] at truncation levels [0.1, 0.2, 0.3, ..., 1.0].

16

B Computational Requirements

Compute is essential to modern machine learning applications, and more compute typically yields
better results. It is thus important to compare our method’s compute requirements to competing
methods. In this section, we demonstrate that we can achieve results better than StyleGAN2 and
BigGAN-deep with the same or lower compute budget.

B.1 Throughput

We first benchmark the throughput of our models in Table 7. For the theoretical throughput, we
measure the theoretical FLOPs for our model using THOP [79], and assume 100% utilization of an
NVIDIA Tesla V100 (120 TFLOPs), while for the actual throughput we use measured wall-clock
time. We include communication time across two machines whenever our training batch size doesn’t
fit on a single machine, where each of our machines has 8 V100s.

We find that a naive implementation of our models in PyTorch 1.7 is very inefficient, utilizing only
20-30% of the hardware. We also benchmark our optimized version, which use larger per-GPU batch
sizes, fused GroupNorm-Swish and fused Adam CUDA ops. For our ImageNet 128×128 model in
particular, we find that we can increase the per-GPU batch size from 4 to 32 while still fitting in GPU
memory, and this makes a large utilization difference. Our implementation is still far from optimal,
and further optimizations should allow us to reach higher levels of utilization.

Table 7: Throughput of our ImageNet models, measured in Images per V100-sec.

Model Implementation Batch Size Throughput Utilizationper GPU Imgs per V100-sec

64×64
Theoretical - 182.3 100%
Naive 32 37.0 20%
Optimized 96 74.1 41%

128×128
Theoretical - 65.2 100%
Naive 4 11.5 18%
Optimized 32 24.8 38%

256×256
Theoretical - 17.9 100%
Naive 4 4.4 25%
Optimized 8 6.4 36%

64 → 256
Theoretical - 31.7 100%
Naive 4 6.3 20%
Optimized 12 9.5 30%

128 → 512
Theoretical - 8.0 100%
Naive 2 1.9 24%
Optimized 2 2.3 29%

B.2 Early Stopping

In addition, we can train for many fewer iterations while maintaining sample quality superior to
BigGAN-deep. Table 8 and 9 evaluate our ImageNet 128×128 and 256×256 models throughout
training. We can see that the ImageNet 128×128 model beats BigGAN-deep’s FID (6.02) after 500K
training iterations, only one eighth of the way through training. Similarly, the ImageNet 256×256
model beats BigGAN-deep after 750K iterations, roughly a third of the way through training.

Table 8: Evaluating an ImageNet 128×128 model throughout training (classifier scale 1.0).

Iterations FID sFID Precision Recall

250K 7.97 6.48 0.80 0.50
500K 5.31 5.97 0.83 0.49

1000K 4.10 5.80 0.81 0.51
2000K 3.42 5.69 0.83 0.53
4360K 3.09 5.59 0.82 0.54

17

Table 9: Evaluating an ImageNet 256×256 model throughout training (classifier scale 1.0).

Iterations FID sFID Precision Recall

250K 12.21 6.15 0.78 0.50
500K 7.95 5.51 0.81 0.50
750K 6.49 5.39 0.81 0.50

1000K 5.74 5.29 0.81 0.52
1500K 5.01 5.20 0.82 0.52
1980K 4.59 5.25 0.82 0.52

B.3 Training Compute Comparison

Finally, in Table 10 we compare the compute of our models with StyleGAN2 and BigGAN-deep, and
show we can obtain better FIDs with a similar compute budget. For BigGAN-deep, Brock et al. [8] do
not explicitly describe the compute requirements for training their models, but rather provide rough
estimates in terms of days on a Google TPUv3 pod [26]. We convert their TPU-v3 estimates to V100
days according to 2 TPU-v3 day = 1 V100 day. For StyleGAN2, we use the reported throughput of
25M images over 32 days 13 hour on one V100 for config-f [50]. We note that our classifier training
is relatively lightweight compared to training the generative model.

Table 10: Training compute requirements for our diffusion models compared to StyleGAN2 and
BigGAN-deep. Training iterations for each diffusion model are mentioned in parenthesis. Compute
is measured in V100-days. †ImageNet 256×256 classifier with 150K iterations (instead of 500K).
‡ImageNet 64×64 classifier with batch size 256 (instead of 1024). *ImageNet 128×128 classifier
with batch size 256 (instead of 1024).

Model Generator Classifier Total FID sFID Precision Recall
Compute Compute Compute

LSUN Horse 256×256
StyleGAN2 [34] 130 3.84 6.46 0.63 0.48
ADM (250K) 116 - 116 2.95 5.94 0.69 0.55
ADM (dropout, 250K) 116 - 116 2.57 6.81 0.71 0.55

LSUN Cat 256×256
StyleGAN2 [34] 115 7.25 6.33 0.58 0.43
ADM (dropout, 200K) 92 - 92 5.57 6.69 0.63 0.52

ImageNet 128×128
BigGAN-deep [8] 64-128 6.02 7.18 0.86 0.35
ADM-G (4360K) 521 9 530 3.09 5.59 0.82 0.54
ADM-G (450K) 54 9 63 5.67 6.19 0.82 0.49

ImageNet 256×256
BigGAN-deep [8] 128-256 6.95 7.36 0.87 0.28
ADM-G (1980K) 916 46 962 4.59 5.25 0.82 0.52
ADM-G (750K) 347 46 393 6.49 5.39 0.81 0.50
ADM-G (750K) 347 14† 361 6.68 5.34 0.81 0.51
ADM-G (540K), ADM-U (500K) 329 30 359 3.85 5.86 0.84 0.53
ADM-G (540K), ADM-U (150K) 219 30 249 4.15 6.14 0.82 0.54
ADM-G (200K), ADM-U (150K) 110 10‡ 126 4.93 5.82 0.82 0.52

ImageNet 512×512
BigGAN-deep [8] 256-512 8.43 8.13 0.88 0.29
ADM-G (4360K), ADM-U (1050K) 1878 36 1914 3.85 5.86 0.84 0.53
ADM-G (500K), ADM-U (100K) 189 9* 198 7.59 6.84 0.84 0.53

18

C Detailed Formulation of DDPM

Here, we provide a detailed review of the formulation of Gaussian diffusion models from Ho et al.
[31]. We start by defining our data distribution x0 ∼ q(x0) and a Markovian noising process q which
gradually adds noise to the data to produce noised samples x1 through xT . In particular, each step of
the noising process adds Gaussian noise according to some variance schedule given by βt:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Ho et al. [31] note that we need not apply q repeatedly to sample from xt ∼ q(xt|x0). Instead,
q(xt|x0) can be expressed as a Gaussian distribution. With αt := 1− βt and ᾱt :=

∏t
s=0 αs

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

=
√
ᾱtx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I) (3)

Here, 1− ᾱt tells us the variance of the noise for an arbitrary timestep, and we could equivalently
use this to define the noise schedule instead of βt.

Using Bayes theorem, one finds that the posterior q(xt−1|xt, x0) is also a Gaussian with mean
µ̃t(xt, x0) and variance β̃t defined as follows:

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (4)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (5)

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (6)

If we wish to sample from the data distribution q(x0), we can first sample from q(xT) and then sample
reverse steps q(xt−1|xt) until we reach x0. Under reasonable settings for βt and T , the distribution
q(xT) is nearly an isotropic Gaussian distribution, so sampling xT is trivial. All that is left is to
approximate q(xt−1|xt) using a neural network, since it cannot be computed exactly when the data
distribution is unknown. To this end, Sohl-Dickstein et al. [63] note that q(xt−1|xt) approaches a
diagonal Gaussian distribution as T →∞ and correspondingly βt → 0, so it is sufficient to train a
neural network to predict a mean µθ and a diagonal covariance matrix Σθ:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (7)

To train this model such that p(x0) learns the true data distribution q(x0), we can optimize the
following variational lower-bound Lvlb for pθ(x0):

Lvlb := L0 + L1 + ...+ LT−1 + LT (8)
L0 := − log pθ(x0|x1) (9)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (10)
LT := DKL(q(xT |x0) || p(xT)) (11)

While the above objective is well-justified, Ho et al. [31] found that a different objective produces
better samples in practice. In particular, they do not directly parameterize µθ(xt, t) as a neural
network, but instead train a model ϵθ(xt, t) to predict ϵ from Equation 3. This simplified objective is
defined as follows:

Lsimple := Et∼[1,T],x0∼q(x0),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t)||2] (12)

During sampling, we can use substitution to derive µθ(xt, t) from ϵθ(xt, t):

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
(13)

Note that Lsimple does not provide any learning signal for Σθ(xt, t). Ho et al. [31] find that instead of
learning Σθ(xt, t), they can fix it to a constant, choosing either βtI or β̃tI. These values correspond
to upper and lower bounds for the true reverse step variance.

19

D Derivations for Classifier Guidance

D.1 Conditional Diffusion Process

We start by showing that conditional sampling can be achieved with a transition operator proportional
to pθ(xt|xt+1)pϕ(y|xt), where pθ(xt|xt+1) approximates q(xt|xt+1) and pϕ(y|xt) approximates
the label distribution for a noised sample xt.

We start by defining a conditional Markovian noising process q̂ similar to q, and assume that q̂(y|x0)
is a known and readily available label distribution for each sample.

q̂(x0) := q(x0) (14)
q̂(y|x0) := Known labels per sample (15)

q̂(xt+1|xt, y) := q(xt+1|xt) (16)

q̂(x1:T |x0, y) :=

T∏
t=1

q̂(xt|xt−1, y) (17)

While we defined the noising process q̂ conditioned on y, we can prove that q̂ behaves exactly like
q when not conditioned on y. Along these lines, we first derive the unconditional noising operator
q̂(xt+1|xt):

q̂(xt+1|xt) =

∫
y

q̂(xt+1, y|xt) dy (18)

=

∫
y

q̂(xt+1|xt, y)q̂(y|xt) dy (19)

=

∫
y

q(xt+1|xt)q̂(y|xt) dy (20)

= q(xt+1|xt)

∫
y

q̂(y|xt) dy (21)

= q(xt+1|xt) (22)
= q̂(xt+1|xt, y) (23)

Following similar logic, we find the joint distribution q̂(x1:T |x0):

q̂(x1:T |x0) =

∫
y

q̂(x1:T , y|x0) dy (24)

=

∫
y

q̂(y|x0)q̂(x1:T |x0, y) dy (25)

=

∫
y

q̂(y|x0)

T∏
t=1

q̂(xt|xt−1, y) dy (26)

=

∫
y

q̂(y|x0)

T∏
t=1

q(xt|xt−1) dy (27)

=

T∏
t=1

q(xt|xt−1)

∫
y

q̂(y|x0) dy (28)

=

T∏
t=1

q(xt|xt−1) (29)

= q(x1:T |x0) (30)

20

Using Equation 30, we can now derive q̂(xt):

q̂(xt) =

∫
x0:t−1

q̂(x0, ..., xt) dx0:t−1 (31)

=

∫
x0:t−1

q̂(x0)q̂(x1, ..., xt|x0) dx0:t−1 (32)

=

∫
x0:t−1

q(x0)q(x1, ..., xt|x0) dx0:t−1 (33)

=

∫
x0:t−1

q(x0, ..., xt) dx0:t−1 (34)

= q(xt) (35)
(36)

Using the identities q̂(xt) = q(xt) and q̂(xt+1|xt) = q(xt+1|xt), it is trivial to show via Bayes rule
that the unconditional reverse process q̂(xt|xt+1) = q(xt|xt+1).

One observation about q̂ is that it gives rise to a noisy classification function, q̂(y|xt). We can show
that this classification distribution does not depend on xt+1 (a noisier version of xt), a fact which we
will later use:

q̂(y|xt, xt+1) = q̂(xt+1|xt, y)
q̂(y|xt)

q̂(xt+1|xt)
(37)

= q̂(xt+1|xt)
q̂(y|xt)

q̂(xt+1|xt)
(38)

= q̂(y|xt) (39)
(40)

We can now derive the conditional reverse process:

q̂(xt|xt+1, y) =
q̂(xt, xt+1, y)

q̂(xt+1, y)
(41)

=
q̂(xt, xt+1, y)

q̂(y|xt+1)q̂(xt+1)
(42)

=
q̂(xt|xt+1)q̂(y|xt, xt+1)q̂(xt+1)

q̂(y|xt+1)q̂(xt+1)
(43)

=
q̂(xt|xt+1)q̂(y|xt, xt+1)

q̂(y|xt+1)
(44)

=
q̂(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(45)

=
q(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(46)

(47)

The q̂(y|xt+1) term can be treated as a constant since it does not depend on xt. We thus want to
sample from the distribution Zq(xt|xt+1)q̂(y|xt) where Z is a normalizing constant. We already
have a neural network approximation of q(xt|xt+1), called pθ(xt|xt+1), so all that is left is an
approximation of q̂(y|xt). This can be obtained by training a classifier pϕ(y|xt) on noised images xt

derived by sampling from q(xt).

21

D.2 Deriving Algorithm 1: Conditional Sampling for DDPM

We showed in the previous section that to condition a diffusion process on a label y, it suffices to
sample each transition2 according to

pθ,ϕ(xt|xt+1, y) = Zpθ(xt|xt+1)pϕ(y|xt) (48)

where Z is a normalizing constant. It is typically intractable to sample from this distribution exactly,
but Sohl-Dickstein et al. [63] show that it can be approximated as a perturbed Gaussian distribution.
Here, we review this derivation.

Recall that our diffusion model predicts the previous timestep xt from timestep xt+1 using a Gaussian
distribution:

pθ(xt|xt+1) = N (µ,Σ) (49)

log pθ(xt|xt+1) = −
1

2
(xt − µ)TΣ−1(xt − µ) + C (50)

We can assume that logϕ p(y|xt) has low curvature compared to Σ−1. This assumption is reasonable
in the limit of infinite diffusion steps, where ||Σ|| → 0. In this case, we can approximate log pϕ(y|xt)
using a Taylor expansion around xt = µ as

log pϕ(y|xt) ≈ log pϕ(y|xt)|xt=µ + (xt − µ)∇xt
log pϕ(y|xt)|xt=µ (51)

= (xt − µ)g + C1 (52)

Here, g = ∇xt log pϕ(y|xt)|xt=µ, and C1 is a constant. This gives

log(pθ(xt|xt+1)pϕ(y|xt)) ≈ −
1

2
(xt − µ)TΣ−1(xt − µ) + (xt − µ)g + C2 (53)

= −1

2
(xt − µ− Σg)TΣ−1(xt − µ− Σg) +

1

2
gTΣg + C2 (54)

= −1

2
(xt − µ− Σg)TΣ−1(xt − µ− Σg) + C3 (55)

= log p(z) + C4, z ∼ N (µ+Σg,Σ) (56)

We can safely ignore the constant term C4, since it corresponds to the normalizing coefficient Z in
Equation 48. We have thus found that the conditional transition operator can be approximated by a
Gaussian similar to the unconditional transition operator, but with its mean shifted by Σg.

D.3 Deriving Algorithm 2: Conditional Sampling for DDIM

The above derivation for conditional sampling is only valid for the stochastic diffusion sampling
process, and cannot be applied to deterministic sampling methods like DDIM [64]. To this end, we
use a score-based conditioning trick adapted from Song et al. [67], which leverages the connection
between diffusion models and score matching [66]. In particular, if we have a model ϵθ(xt) that
predicts the noise added to a sample, then this can be used to derive a score function:

∇xt
log pθ(xt) = −

1√
1− ᾱt

ϵθ(xt) (57)

We can now substitute this into the score function for p(xt)p(y|xt):
∇xt log(pθ(xt)pϕ(y|xt)) = ∇xt log pθ(xt) +∇xt log pϕ(y|xt) (58)

= − 1√
1− ᾱt

ϵθ(xt) +∇xt log pϕ(y|xt) (59)

Finally, we can define a new epsilon prediction ϵ̂(xt) which corresponds to the score of the joint
distribution:

ϵ̂(xt) := ϵθ(xt)−
√
1− ᾱt∇xt log pϕ(y|xt) (60)

We can then use the exact same sampling procedure as used for regular DDIM, but with the modified
noise predictions ϵ̂θ(xt) instead of ϵθ(xt).

2We must also sample xT conditioned on y, but a noisy enough diffusion process causes xT to be nearly
Gaussian even in the conditional case.

22

E Nearest Neighbors for Samples

Figure 7: Nearest neighbors for samples from a classifier guided model on ImageNet 256×256. For
each image, the top row is a sample, and the remaining rows are the top 3 nearest neighbors from the
dataset. The top samples were generated with classifier scale 1 and 250 diffusion sampling steps (FID
4.59). The bottom samples were generated with classifier scale 2.5 and 25 DDIM steps (FID 5.44).

Our models achieve their best FID when using a classifier to reduce the diversity of the generations.
One might fear that such a process could cause the model to recall existing images from the training
dataset, especially as the classifier scale is increased. To test this, we looked at the nearest neighbors
(in InceptionV3 [68] feature space) for a handful of samples. Figure 7 shows our results, revealing
that the samples are indeed unique and not stored in the training set.

F Effect of Varying the Classifier Scale

Figure 8: Samples when increasing the classifier scale from 0.0 (left) to 5.5 (right) for a class
conditional ImageNet 256×256 model. Each row corresponds to a fixed noise seed. We observe that
the classifier drastically changes some images, while leaving others relatively unaffected.

23

G LSUN Diversity Comparison

Figure 9: Samples from StyleGAN2 (or StyleGAN for bedrooms) with truncation 1.0 (left) vs
samples from our diffusion models (middle) and samples from the training set (right).

24

H Interpolating Between Dataset Images Using DDIM

The DDIM [64] sampling process is deterministic given the initial noise xT , thus giving rise to an
implicit latent space. It corresponds to integrating an ODE in the forward direction, and we can run
the process in reverse to get the latents that produce a given real image. Here, we experiment with
encoding real images into this latent space and then interpolating between them.

Equation 13 for the generative pass in DDIM looks like

xt−1 − xt =
√
ᾱt−1

[(√
1/ᾱt −

√
1/ᾱt−1

)
xt +

(√
1/ᾱt−1 − 1−

√
1/ᾱt − 1

)
ϵθ(xt)

]
Thus, in the limit of small steps, we can expect the reversal of this ODE in the forward direction
looks like

xt+1 − xt =
√
ᾱt+1

[(√
1/ᾱt −

√
1/ᾱt+1

)
xt +

(√
1/ᾱt+1 − 1−

√
1/ᾱt − 1

)
ϵθ(xt)

]
We found that this reverse ODE approximation allows us to obtain latents for real images with
reasonable reconstructions, even with as few as 250 reverse steps. However, we noticed some noise
artifacts when reversing all 250 steps, and find that reversing the first 249 steps gives much better
reconstructions. To interpolate the latents, class embeddings, and classifier log probabilities, we use
cos(θ)x0 + sin(θ)x1 where θ sweeps linearly from 0 to π

2 .

Figures 10a through 10c show DDIM latent space interpolations on a class-conditional 256×256
model, while varying the classifier scale. The left and rightmost images are randomly selected ground
truth dataset examples, and between them are reconstructed interpolations in DDIM latent space
(including both endpoints). We see that the model with no guidance has almost perfect reconstructions
due to its high recall, whereas raising the guidance scale to 2.5 only finds approximately similar
reconstructions.

Figure 10a: DDIM latent reconstructions and interpolations on real images with no classifier guidance.

25

Figure 10b: DDIM latent reconstructions and interpolations on real images with classifier scale 1.0.

Figure 10c: DDIM latent reconstructions and interpolations on real images with classifier scale 2.5.

26

I Reduced Temperature Sampling

We achieved our best ImageNet samples by reducing the diversity of our models using classifier
guidance. For many classes of generative models, there is a much simpler way to reduce diversity:
reducing the temperature [1]. The temperature parameter τ is typically setup so that τ = 1.0 corre-
sponds to standard sampling, and τ < 1.0 focuses more on high-density samples. We experimented
with two ways of implementing this for diffusion models: first, by scaling the Gaussian noise used
for each transition by τ , and second by dividing ϵθ(xt) by τ . The latter implementation makes sense
when thinking about ϵ as a re-scaled score function (see Appendix D.3), and scaling up the score
function is similar to scaling up classifier gradients.

To measure how temperature scaling affects samples, we experimented with our ImageNet 128×128
model, evaluating FID, Precision, and Recall across different temperatures (Figure 11). We find
that two techniques behave similarly, and neither technique provides any substantial improvement in
our evaluation metrics. We also find that low temperatures have both low precision and low recall,
indicating that the model is not focusing on modes of the real data distribution. Figure 12 highlights
this effect, indicating that reducing temperature produces blurry, smooth images.

10− 3 10− 2

1 - temperature

0

5

10

15

20

F
ID

noise temperature

epsilon temperature

10− 3 10− 2

1 - temperature

0.4

0.5

0.6

0.7

P
re

c
is

io
n

noise temperature

epsilon temperature

10− 3 10− 2

1 - temperature

0.45

0.50

0.55

0.60

0.65

R
e
c
a
ll

noise temperature

epsilon temperature

Figure 11: The effect of changing temperature for an ImageNet 128×128 model.

Figure 12: Samples at temperature 0.98 with epsilon scaling (left) and noise scaling (right).

27

J Sample Quality Metrics

Inception Score (IS) was proposed by Salimans et al. [61], and it measures how well a model captures
the full ImageNet class distribution while still producing individual samples that are convincing
examples of a single class. One drawback of this metric is that it does not reward covering the
whole distribution or capturing diversity within a class, and models which memorize a small subset
of the full dataset will still have high IS [6]. To better capture diversity than IS, Fréchet Inception
Distance (FID) was proposed by Heusel et al. [29], who argued that it is more consistent with human
judgement than Inception Score. FID provides a symmetric measure of the distance between two
image distributions in the Inception-V3 [68] latent space. Recently, sFID was proposed by Nash
et al. [48] as a version of FID that uses spatial features rather than the standard pooled features.
They find that this metric better captures spatial relationships, rewarding image distributions with
coherent high-level structure. Finally, Kynkäänniemi et al. [38] proposed Improved Precision and
Recall metrics to separately measure sample fidelity as the fraction of model samples which fall into
the data manifold (precision), and diversity as the fraction of data samples which fall into the sample
manifold (recall).

We compute precision and recall with K=3, using 50K model samples and 10K reference samples
from the training set. We compute all FIDs against the entire training set, using 50K samples from
the model. For StyleGAN and StyleGAN2, we use the first 50K samples from the official release
repositories. For BigGAN-deep, we sample from the officially released models [15] at truncation level
1.0 (or lower truncations when applicable). We report DCTransformer and VQ-VAE-2 evaluations
from Nash et al. [48].

When computing FID, we follow the original FID implementation [29] and do not resize images prior
to feeding them into the Inception graph. This may differ from unofficial FID implementations, and
can cause a slight difference in FID values [51]. This should not affect relative comparisons against
GANs, since we use our FID implementation to evaluate samples from all GAN models.

K Hyperparameters

When choosing optimal classifier scales for our sampler, we swept over [0.5, 1, 2] for ImageNet
128×128 and ImageNet 256×256, and [1, 2, 3, 3.5, 4, 4.5, 5] for ImageNet 512×512. For DDIM,
we swept over values [0.5, 0.75, 1.0, 1.25, 2] for ImageNet 128×128, [0.5, 1, 1.5, 2, 2.5, 3, 3.5] for
ImageNet 256×256, and [3, 4, 5, 6, 7, 9, 11] for ImageNet 512×512.

Hyperparameters for training the diffusion and classification models are in Table 11 and Table 12
respectively. Hyperparameters for guided sampling are in Table 14. Hyperparameters used to train
upsampling models are in Table 13. We train all of our models using Adam [35] or AdamW [41]
with β1 = 0.9 and β2 = 0.999. We train in 16-bit precision using loss-scaling [44], but maintain
32-bit weights, EMA, and optimizer state. We use an EMA rate of 0.9999 for all experiments. We
use PyTorch [52], and train on NVIDIA Tesla V100s.

For all architecture ablations, we train with batch size 256, and sample using 250 sampling steps.
For our attention heads ablations, we use 128 base channels, 2 residual blocks per resolution, multi-
resolution attention, and BigGAN up/downsampling, and we train the models for 700K iterations. By
default, all of our experiments use adaptive group normalization, except when explicitly ablating for
it.

When sampling with 1000 timesteps, we use the same noise schedule as for training. On ImageNet,
we use the uniform stride from Nichol and Dhariwal [49] for 250 step samples and the slightly
different uniform stride from Song et al. [64] for 25 step DDIM.

28

Table 11: Hyperparameters for diffusion models. *We used 200K iterations for LSUN cat, 250K for
LSUN horse, and 500K for LSUN bedroom.

LSUN ImageNet 64 ImageNet 128 ImageNet 256 ImageNet 512

Diffusion steps 1000 1000 1000 1000 1000
Noise Schedule linear cosine linear linear linear
Model size 552M 296M 422M 554M 559M
Channels 256 192 256 256 256
Depth 2 3 2 2 2
Channels multiple 1,1,2,2,4,4 1,2,3,4 1,1,2,3,4 1,1,2,2,4,4 0.5,1,1,2,2,4,4
Heads 4
Heads Channels 64 64 64 64
Attention resolution 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
BigGAN up/downsample ✓ ✓ ✓ ✓ ✓
Dropout 0.1 0.1 0.0 0.0 0.0
Batch size 256 2048 256 256 256
Iterations varies* 540K 4360K 1980K 1940K
Learning Rate 1e-4 3e-4 1e-4 1e-4 1e-4

Table 12: Hyperparameters for classification models. *For our ImageNet 128→ 512 upsamples, we
use a different classifier, trained with batch size 1024 and learning rate 6e-5.

ImageNet 64 ImageNet 128 ImageNet 256 ImageNet 512

Diffusion steps 1000 1000 1000 1000
Noise Schedule cosine linear linear linear
Model size 65M 43M 54M 54M
Channels 128 128 128 128
Depth 4 2 2 2
Channels multiple 1,2,3,4 1,1,2,3,4 1,1,2,2,4,4 0.5,1,1,2,2,4,4
Heads Channels 64 64 64 64
Attention resolution 32,16,8 32,16,8 32,16,8 32,16,8
BigGAN up/downsample ✓ ✓ ✓ ✓
Attention pooling ✓ ✓ ✓ ✓
Weight decay 0.2 0.05 0.05 0.05
Batch size 1024 256* 256 256
Iterations 300K 300K 500K 500K
Learning rate 6e-4 3e-4* 3e-4 3e-4

Table 13: Hyperparameters for upsampling diffusion models. *We chose this as an optimization, with
the intuition that a lower-resolution path should be unnecessary for upsampling 128x128 images.

ImageNet 64 → 256 ImageNet 128 → 512

Diffusion steps 1000 1000
Noise Schedule linear linear
Model size 312M 309M
Channels 192 192
Depth 2 2
Channels multiple 1,1,2,2,4,4 1,1,2,2,4,4*
Heads 4
Heads Channels 64
Attention resolution 32,16,8 32,16,8
BigGAN up/downsample ✓ ✓
Dropout 0.0 0.0
Batch size 256 256
Iterations 500K 1050K
Learning Rate 1e-4 1e-4

Table 14: Hyperparameters for classifier-guided sampling.

ImageNet 64 ImageNet 128 ImageNet 256 ImageNet 512

Gradient Scale (250 steps) 1.0 0.5 1.0 4.0
Gradient Scale (DDIM, 25 steps) - 1.25 2.5 9.0

29

L Using Fewer Sampling Steps on LSUN

We initially found that our LSUN models achieved much better results when sampling with 1000
steps rather than 250 steps, contrary to previous results from Nichol and Dhariwal [49]. To address
this, we conducted a sweep over sampling-time noise schedules, finding that an improved schedule
can largely close the gap. We swept over schedules on LSUN bedrooms, and selected the schedule
with the best FID for use on the other two datasets. Table 15 details the findings of this sweep, and
Table 16 applies this schedule to three LSUN datasets.

While sweeping over sampling schedules is not as expensive as re-training models from scratch, it
does require a significant amount of sampling compute. As a result, we did not conduct an exhaustive
sweep, and superior schedules are likely to exist.

Table 15: Results of sweeping over 250 step sampling schedules on LSUN bedrooms. The schedule
is expressed as a sequence of five integers, where each integer is the number of steps allocated to
one fifth of the diffusion process. The first integer corresponding to t ∈ [0, 199] and the last to
t ∈ [T − 200, T − 1]. Thus, 50, 50, 50, 50, 50 is a uniform schedule, and 250, 0, 0, 0, 0 is a schedule
where all timesteps are spent near t = 0.

Schedule FID

50, 50, 50, 50, 50 2.31
70, 60, 50, 40, 30 2.17
90, 50, 40, 40, 30 2.10
90, 60, 50, 30, 20 2.09
80, 60, 50, 30, 30 2.09
90, 50, 50, 30, 30 2.07
100, 50, 40, 30, 30 2.03
90, 60, 60, 20, 20 2.02

Table 16: Evaluations on LSUN bedrooms, horses, and cats using different sampling schedules. We
find that the sweep schedule produces better results than the uniform 250 step schedule on all three
datasets, and mostly bridges the gap to the 1000 step schedule.

Schedule FID sFID Prec Rec

LSUN Bedrooms 256×256
1000 steps 1.90 5.59 0.66 0.51
250 steps (uniform) 2.31 6.12 0.65 0.50
250 steps (sweep) 2.02 6.12 0.67 0.50

LSUN Horses 256×256
1000 steps 2.57 6.81 0.71 0.55
250 steps (uniform) 3.45 7.55 0.68 0.56
250 steps (sweep) 2.83 7.08 0.69 0.56

LSUN Cat 256×256
1000 steps 5.57 6.69 0.63 0.52
250 steps (uniform) 7.03 8.24 0.60 0.53
250 steps (sweep) 5.94 7.43 0.62 0.52

30

M Samples from ImageNet 512×512

Figure 13: Samples from our best 512×512 model (FID: 3.85). Classes are 1: goldfish, 279: arctic
fox, 323: monarch butterfly, 386: african elephant, 130: flamingo, 852: tennis ball.

31

Figure 14: Samples from our best 512×512 model (FID: 3.85). Classes are 933: cheeseburger, 562:
fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992: agaric.

32

Figure 15: Difficult class samples from our best 512×512 model (FID: 3.85). Classes are 432:
bassoon, 468: cab, 424: barbershop, 444: bicycle-built-for-two, 981: ballplayer, 550: espresso maker.

33

Figure 16: Samples from our guided 512×512 model using 250 steps with classifier scale 4.0 (FID
7.72). Classes are 1: goldfish, 279: arctic fox, 323: monarch butterfly, 386: african elephant, 130:
flamingo, 852: tennis ball.

34

Figure 17: Samples from our guided 512×512 model using 250 steps with classifier scale 4.0 (FID
7.72). Classes are 933: cheeseburger, 562: fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992:
agaric.

35

Figure 18: Random samples from our best ImageNet 512×512 model (FID 3.85).

36

Figure 19: Random samples from our guided 512×512 model using 250 steps with classifier scale
4.0 (FID 7.72).

37

N Samples from ImageNet 256×256

Figure 20: Samples using our best 256×256 model (FID 3.94). Classes are 1: goldfish, 279: arctic
fox, 323: monarch butterfly, 386: african elephant, 130: flamingo, 852: tennis ball, 933: cheeseburger,
562: fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992: agaric

38

Figure 21: Samples from our guided 256×256 model using 250 steps with classifier scale 1.0 (FID
4.59). Classes are 1: goldfish, 279: arctic fox, 323: monarch butterfly, 386: african elephant, 130:
flamingo, 852: tennis ball, 933: cheeseburger, 562: fountain, 417: balloon, 281: tabby cat, 90:
lorikeet, 992: agaric

39

Figure 22: Samples from our guided 256×256 model using 25 DDIM steps with classifier scale 2.5
(FID 5.44). Classes are 1: goldfish, 279: arctic fox, 323: monarch butterfly, 386: african elephant,
130: flamingo, 852: tennis ball, 933: cheeseburger, 562: fountain, 417: balloon, 281: tabby cat, 90:
lorikeet, 992: agaric

40

Figure 23: Random samples from our best 256×256 model (FID 3.94).

41

Figure 24: Random samples from our guided 256×256 model using 250 steps with classifier scale
1.0 (FID 4.59).

42

O Samples from LSUN

Figure 25: Random samples from our LSUN bedroom model using 1000 sampling steps. (FID 1.90)

43

Figure 26: Random samples from our LSUN horse model using 1000 sampling steps. (FID 2.57)

44

Figure 27: Random samples from our LSUN cat model using 1000 sampling steps. (FID 5.57)

45

