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Abstract

Many proteins useful in modern medicine or bio-
engineering are challenging to make in the lab,
fuse with other proteins in cells, or deliver to tis-
sues in the body because their sequences are too
long. Shortening these sequences typically in-
volves costly, time-consuming experimental cam-
paigns. Ideally, we could instead use modern
models of massive databases of sequences from
nature to learn how to propose shrunken proteins
that resemble sequences found in nature. Un-
fortunately, these models struggle to efficiently
search the combinatorial space of all deletions,
and are not trained with inductive biases to learn
how to delete. To address this gap, we propose
SCISOR, a novel discrete diffusion model that
deletes letters from sequences to generate protein
samples that resemble those found in nature. To
do so, SCISOR trains a “de-noiser” to reverse a
“forward noising process” that adds random inser-
tions to natural sequences. As a generative model,
SCISOR fits evolutionary sequence data competi-
tively with previous large models. In evaluation,
SCISOR achieves state-of-the-art predictions of
the functional effects of deletions on ProteinGym.
Finally, we use the SCISOR de-noiser to shrink
long protein sequences, and show that its sug-
gested deletions result in significantly more real-
istic proteins and more often preserve functional
motifs than previous models of evolutionary se-
quences.

1. Introduction

As protein design becomes easier, more protein constructs
are built for bioengineering, more protein medicines are
being packaged for delivery to particular tissues, and, of
course, more protein is being synthesized in the lab. Unfor-
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tunately, many important proteins are challenging to make,
engineer, and deliver, due to their long sequences. Methods
to build shorter versions of these proteins are expensive and
often only narrowly applicable. Typically, experimental-
ists look for shorter homologues, which may not exist, and
put them through costly optimization campaigns (Huang
et al., 2022). Or, for proteins which function by well-
characterized, simple biophysical interactions, experimen-
talists shrink sequences by running extensive physical simu-
lations (Zhao et al., 2023).

Ideally we could instead learn how to shrink proteins us-
ing models trained on databases of protein sequences in
nature — these models learn the constraints evolution has
put on sequences across life and could shrink proteins to
avoid breaking their function. Unfortunately, these large
models (Notin et al., 2022; Nijkamp et al., 2022) struggle
to effectively search through the massive space of all pos-
sible shrunken versions of a protein. They may also lack
the inductive bias to predict the effect of deletions, hav-
ing not been explicitly trained to do so. In principle, the
first issue could be solved by diffusion models of protein
sequences, like EvoDiff, which are effectively trained to
plan series of many mutations and end with sequences that
resemble those found in nature (Alamdari et al., 2023; Luo
et al., 2022). However, current diffusion frameworks can
only train models that perform substitution mutations — they
cannot suggest deletions.

We propose a new diffusion model of evolutionary se-
quences that learns to generate by shorten sequences —
Sequence Contraction with InSertion-Only noising pRocess
(SCISOR). SCISOR *“adds noise” to natural sequences by
inserting random letters until they effectively become long
random sequences; then it train a “de-noiser” to reverse this
process by planning deletions that result in sequences that
resemble those found in nature (Fig. 1(a)). Our contributions
are:

* We introduce a new discrete diffusion framework
that trains a de-noiser to generate sequences by learn-
ing to delete — SCISOR.

e We show that among large-scale diffusion models,
SCISOR achieves competitive model fit for protein
sequences.
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Figure 1. SCISOR is a diffusion model trained to make deletions that arrive at a natural protein sequence. We can use it to shrink
proteins while maintaining their function. (a) We add random insertions to protein sequences from nature and train SCISOR to reverse
these insertions. (b) Applying SCISOR diffusion to natural proteins, we get smaller proteins that are predicted to preserve parts of the
tertiary structures of the original sequence. We show SCISOR samples of Q8NFU3 at 0, 5, 10, 20, and 50% deletion with structures

predicted by OmegaFold (Wu et al., 2022).

¢ We show that the inductive biases of SCISOR allows
it to make state-of-the-art predictions of the effects
of deletions on protein functions in the lab in Pro-
teinGym.

* Finally, we show that SCISOR shortens proteins
while better maintaining their structure and func-
tional motifs than methods using previous models of
protein sequences.

We release our code and model weights for small and

large SCISOR models: https://anonymous.4open.

science/r/shortening_diffusion—-1AA3/.

2. Background

Say we have a protein sequence X made up of L letters
XM x@ ... X belonging to the alphabet of 20 amino
acids B. Our goal is to remove M letters from X to make a
X = XU x02) ... xUr—m) with j; < jo < ..., 50—
that is still functional. Most random sets of deletions de-
grade the function of the protein, so we need to predict
which deletions are unlikely to break the protein. Unfortu-
nately there is very little data of sequence, shrunk-sequence
pairs (X, X) to learn from; we must instead learn to predict

functional shrunk proteins using other available data.

Models of evolutionary sequences One way we can
learn how to shrink proteins is by learning from modern
huge datasets of natural proteins. Indeed we can attempt to
learn what a natural protein looks like in these databases;
then we can pick a shrunken protein X so that it looks nat-
ural and is therefore likely to be functional'. In practice,
we can train huge generative models to generate natural
proteins and use their likelihoods as a measure of natural-
ness (Riesselman et al., 2018; Rives et al., 2021; Notin et al.,
2022; Nijkamp et al., 2022; Lin et al., 2022). Indeed, these
likelihoods have been shown to be accurate predictors of
whether single-letter-deletions will harm the function of a
protein (Notin et al., 2022).

Unfortunately, the models that are typically used to fit this
data, such as BERT-style (Rives et al., 2021; Lin et al., 2022)
and autoregressive models (Notin et al., 2022; Nijkamp et al.,
2022), struggle to search over the combinatoral space of all
(1) possible large deletions to find an ideal X. Ideally, we

"Note this does not guarantee our goal that X have the same
function as X. But if two functional proteins have similar se-
quences then they often have related function (Mistry et al., 2013)
(see further discussion in Sec. 8).
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would have a model that can plan a number of deletions that
arrive at a functional protein sequence. We also speculate
that a model that learns directly how to delete would make
more accurate predictions and designs.

Discrete diffusion To effectively search through a large
mutational space, we could model the data with discrete dif-
fusion models. These models generate samples by starting
with a random sequence and applying mutations to arrive
at a realistic sequence. In particular, a sequence is sam-
pled from a simple distribution X; ~ ¢(X;) and then it is
transformed from time ¢ = 1 to ¢ = 0 using a de-noiser
q0((X1)i_o | X1) so that Xg looks like a sequence from the
data generating distribution (Campbell et al., 2022).

Diffusion models can therefore be used to search for sets of
many mutations to a sequence, X, that result in a realistic
looking sequence. To do so, one sets X; = X for some s
and then “de-noises” using the diffusion model by sampling
apath ¢((X;)j_o|Xs), giving a “realistic” Xy near X. In-
deed, this procedure has been used to suggest mutations to
optimize sequences (Luo et al., 2022; Gruver et al., 2023).

To train a de-noiser gy, we first define a “forward” process
p((X:){_o) which takes samples from our target distribu-
tion Xy ~ p(Xo) and applies random noise to them from
time ¢ = 0 to ¢ = 1, arriving at a distribution that is easy
to approximate p(X7). Then we train the de-noiser to gen-
erate paths that match the paths of the forward process by
optimizing an evidence lower bound (ELBO) as

qe((Xt)%:o)
log go(Xo) > E 1 log ———-="-. (1)
gqo(Xo) P((Xt)i—0lXo0) gp((xt)%:op(o)

Typically, however, the forward noising process is chosen to
be random substitutions. Accordingly, the de-noiser gy only
applies substitutions rather than deletions. To search over
the space of deletions, we therefore need a new diffusion
framework.

3. Related work

In chemistry and language modeling, there have been diffu-
sion models that have attempted to allow for insertions and
deletions. Campbell et al. (2023) propose TDDM, a jump
diffusion model to handle varying dimensionality. Their for-
ward noising process involves randomly deleting elements,
such that the stationary distribution is an empty sequence.
This allows them to train a model which can learn to ex-
pand sequences. Our model, SCISOR, on the other hand
shortens sequences. As well, Johnson et al. (2021) formu-
late a discrete-time noising process for small-scale language
modeling that includes insertions, deletions, and substitu-
tions. Unfortunately it is unclear how to scale their loss
computation or the parameterization of their de-noiser to

larger scales. Furthermore, it is unclear how to extend their
framework out of discrete-time diffusion, which is known to
under-perform continuous-time diffusion (Campbell et al.,
2022). By using a continuous-time insertion-only forward
process, we overcome this challenging inference problem
and obtain an intuitive parameterization of the reverse pro-
cess.

Recently, Raygun (Devkota et al., 2024) also suggested
using a model trained on sequences from nature to shrink
proteins. Raygun trains a stochastic autoencoder to embed
and generate sequences of any length on the UniRef dataset;
their insight is they can shrink a long protein by decoding
its embedding at a shorter length. However, they cannot en-
force similarity between the sequence of their shrunken and
original sequence. Furthermore, like previous generative
models of protein sequences, Raygun was not specifically
trained to shrink. Below we show that our model, SCISOR,
is able to suggest shrunken proteins that more often preserve
structure and function than Raygun.

4. A diffusion model that learns to delete:
SCISOR

To search the space of deletions and train a model with the
right inductive biases, in Sec. 4.1 we build a process which
noises sequences by adding random insertions. Then in
Sec. 4.2 we show how to train a de-noiser gy that reverses
this process (Fig. 1(a)). Finally, in Sec. 4.3, we discuss the
practical choices we made to efficiently train SCISOR. In
the following Sec. 5 we describe how to use the de-noiser
to generate sequences, shrink proteins, and plan deletions in
practice.

4.1. Forward noising with the pure birth process

We propose an insertion-only forward noising process
for discrete diffusion known as the “pure birth” pro-
cess (Kendall, 1948) with rate function 3(¢) and insertion
distribution 7. Let X be a sequence X(()l), ceey X(()L). There
are L + 1 possible locations we can insert letters. In the pure
birth process, at instant ¢, each of these locations gains an
insertion with rate 3(t). The letter that is inserted is drawn
from some distribution Y ~ Cat (7). After Y is inserted
at some position, the process continues and there are now
L + 2 positions in which there could be insertions with rate
B(t) (Fig. 1(a)). To train a diffusion model to reverse this
process, we need to (1) easily sample p(X:|Xo) and (2)
easily approximate p(X1|Xo).

Sampling X; Rather than simulate the pure birth process
up until time ¢, we show in App. D that X; can be sampled
directly from X as in Alg 1.

Note that 0 < «(¢) < 1 controls how many insertions are
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Algorithm 1 Sample X,

Require: Initial sequence X = XD xW) time t
1: Compute the probability of no insertions at a site

a(t) < exp (— fot B(s) ds)

2: Sample total number of insertions up to time ¢, M; ~
NegativeBinomial(L + 1, a(t))

3: Sample the number of insertions in each position by uni-
formly distributing M into L + 1 bins: (¢, ...,¢1) ~
UniformMultinomial (M)

4: for j =0to L do

5 Sample insertion Y} of length £;, with each character

independently from Cat(7)

6: end for

7: Add insertions into X to construct X; <«
YOX(O)YlX(l) XDy

8: return X;

added: by the property of negative binomial distributions,
the expected length of X; is E(M; + L) = % — 1 which
grows as a(t) goes to 0.

Approximating p(X;|Xy) As t grows, X; becomes
longer. To build a diffusion model however, the distribution
p(X¢| Xo) typically must converge to a distribution so that
it can be approximated by a distribution that can easily be
sampled from, ¢(X7). Our critical insight is that p(X;|Xo),
while not converging, can still be very well approximated
by long random sequences as ¢ gets large.

Proposition 4.1. (Proof in App. D) Say Xy is a sequence
with length L. Call q(- | L) a distribution over sequences
of length L which simply samples each letter independently
Sfrom Cat(r). Then, as the number of insertions increases,
My — oo, X1 becomes easier to approximate with q:

KL(p(X1 | Xo, M1)|[q(X1 | L+ My)) = 0. (2)

4.2. Learning to reverse this insertion-only noising
process

Given a forward process of insertions, we now wish to
learn a de-noiser gy that generates sequences that resemble
those found in nature by deleting letters from long ran-
dom sequences. We now (1) describe our reverse process
q0((X¢)Y_,), (2) write the ELBO in Eqn. 1 for our model,
and (3) describe how the denoiser gy is being trained toward
a target that deletes letters that are unlikely to align with the
starting sequence X.

The reverse process For a forward path (X;);_, from a
sequence X of length L, define ¢1, ..., %y, to be the times
of each insertion. We can then sample forward paths by first
deciding how many insertions will occur until time 1 and

when these insertions will occur, and then choosing what
these insertions are. So p((X;){_q|Xo) is

My

p(Ml‘L)p(th' st | MlﬁL) H p(XtJ\I|XtM—1)'
M=1

We follow the discrete diffusion framework in Amin et al.
(2025) in defining the reverse process to match the “noise
schedule” of the forward process. To generate a sequence
of length L, we first decide the number of insertions and
their times from the same distribution as p, and then de-
noise each insertion®. So qo((X;)%_,|L) first generates
p(My, {t, Y21 | L) then generates

My
Q(Xl‘L + Ml) H q9(XtM—1 |Xt1\/I7M)'
M=1

Now we must only train our de-noiser g (X¢,, ,|X¢,,, M)
to take in a sequence X;,, and the number of insertions that
sequence has M, and predict the sequence before the last
insertion X,, . Thatis, go(- | X¢,,, M) can be thought of
as a distribution over the letters of X;.

The loss To train the de-noiser, we modify the calculation
of the ELBO Eqn. 1 in Amin et al. (2025). We will then use
this ELBO as our objective for training the de-noiser.

Proposition 4.2. (Proof in App. D) Define M, as the num-
ber of mutations up to time t, and prev(Xy) is the last
sequence that gained an insertion to become X,;. Then
the negative log likelihood of a sequence of length L,
—log qo(Xo|L), is smaller than

Ear, [KL(p(X1 | Xo, M1) || ¢(X1|L + My))]
% KL (p(prev(X,) | Xo, X;, M)

I go(prev(Xy) | Xy, My))] 3)

+ ]EthtyMt,

The first term is the quantity in Eqn. 2 — how well we can ap-
proximate p(X7); it is small as long as M is typically large,
i.e. a(1) is small, and can be calculated as in App. A. The
second term is the quantity we use to train the de-noiser. gy
takes in X and the number of insertions in X; and must pre-
dict which letter of X; was last inserted — prev(X;). To train
the model, we must calculate p(prev(X:)|Xo, X¢, M).

Target distribution Eqn. 3 trains ¢y to match
p(prev(X:)|Xo, Xt, My), the true distribution over
which letter of X; was last inserted in the forward process.

Conditioned on Xy, Xy, My, we could find prev(X;) by
simulating a pure birth process path from X to X; and

2Note our process is conditioned on generating a sequence of a
particular length L.
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Figure 2. To calculate our target distribution of what letter to delete,
p(prev(Xy) | Xo, X¢, M), we align our starting sequence X to
our “noised” sequence X;. The reverse process assigns a higher
probability to deleting letters that are gaps in more of the align-
ments.

seeing what insertion occurred last. However there are
multiple paths that could lead from X to X;; to calculate
p(prev(X:) | Xo, X:, M), we must marginalize over all of
these paths.

The next proposition shows that we can integrate over all of
these paths by first enumerating every way to align Xj to
X; and noting that letters that align with X less often are
more likely to have been prev(X;) (Fig. 2).

Proposition 4.3. (Proof in App. D) Call ali(X,Y") the num-
ber of ways to align a sequence X to a sequence Y. Call b
the letter that was deleted from Xy to prev(Xy).

ali( Xy, prev(Xy))

p(prev(Xy)|Xo, X¢, My) = M, - ali(Xo, X;)

Naively computing this quantity would require running an
expensive alignment for every deletion. In practice, we
use a dynamic programming algorithm that computes all
ali(Xo, prev(X;)) in parallel (App. E).

4.3. SCISOR in practice

We train the SCISOR de-noiser with mini-batch gradient
descent on the second term of Eqn. 3 with i.i.d. samples of
t ~ Uniform(0, 1), Xo, My, X;. We now discuss how we
choose the rate function 3(¢), the distribution of insertion
letters 7, the architecture for gy, and methods to handle the
wild variation in sequence lengths of X; which we must
pass to qp.

Hyperparameters Our choice of hyperparameters fol-
lows that of standard diffusion methods. As in Austin et al.

(2021); Amin et al. (2025), the rate function 3(¢) was cho-
sen so that the mutual information between X; and X
decreases roughly linearly on the interval ¢t € [0,1]. We
then modulated 3 so that (1) was large enough that the first
term of Eqn. 3 is small, while samples in the second term did
not get to many very long X;. Details are in App. A. The cat-
egorical distribution 7w was chosen to match the prevalence
of amino acids in our training set.

Architecture We chose our architecture of the de-noiser
qo (-] X, M) to leverage the pre-trained weights of a BERT-
style protein language model, while modifying the architec-
ture to also condition on M. The ESM2 architectures (Lin
et al., 2022) are trained on a masked language modeling task,
taking in sequences and outputting logits at every site. We
finetuned these models for gy by replacing their last layer
with a linear and softmax layer. To condition on M, we also
add FiLM layers (Perez et al., 2017) between each attention
block: each coordinate d of the activations in layer /, ag,
was modified with and affine linear transformation with Ay
and By shallow fully connected networks initialized to O:

(1+ Ag,d(M)) x af + Bg,d(M)'

Engineering for long sequences Since X; sequences can
have wildly different lengths, training naively could result
in passing batches with a very high proportion of padding
and passing very long sequences into the model. To avoid
the first problem, we sort the X; sequences within a given
batch by length, and pass them into the model in smaller
sub-batches with accumulated gradients; this allowed us to
reduce the proportion of compute spent on padding while
maintaining an unbiased estimate of the loss. Next, to handle
cases with extremely long X3, if | X;| > 2048, we randomly
selected a window X “""2**®) uniformly at random to
pass to the model. We then re-normalize the model pre-
dictions by 2048/|X;| and use uniform predictions outside
the window such that the deletion probabilities sum to 1.
This choice keeps our ELBO a valid lower bound on the
likelihood. Further details for how this impacts the ELBO
and sampling are in App. A.

5. Using the de-noiser to generate and shorten
sequences

The SCISOR de-noiser gy is trained as a generative model
of natural sequences. In this section, we describe how to
use this de-noiser for downstream tasks: to unconditionally
generate natural sequences, predict the effect of deletions on
a protein’s function, and, ultimately, shrink long sequences
to produce shorter natural sequences.

High-quality unconditional generation As described in
Sec. 4.2, to sample a sequence of length L from SCISOR,
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Figure 3. The SCISOR de-noiser go¢ plans deletions to arrive at sequences that resemble those in nature, and therefore avoids
deleting important structural motifs in natural sequences. (a) SCISOR unconditionally samples proteins by starting with a large
random sequence X and iteratively deleting according to gg (prev(X)| X, M) to arrive at a protein that resembles those in nature. We
predict the structure of each sequence with OmegaFold (Wu et al., 2022). (b) We ask SCISOR to plan the first of M/ mutations for R4ASNK4
and color residue 4 on a structure from Aleku et al. (2016) by the deletion probability gg (X =9 | X, M) (red is higher probability). As M
increases, SCISOR allows insertions in more regions while minimizing deletions in the catalytic structural motif near the bottom (white).

one samples a long random sequence from Ey,q(X1|L +
M) and then iteratively deletes according to the de-noiser
qo (Fig. 3(a)). Campbell et al. (2023) suggests continuous-
time discrete diffusion models can get higher quality sam-
ples, sacrificing some compute, by applying “corrector”
steps which noise and de-noise repeatedly. For SCISOR,
this takes the form of adding and removing insertions as in
Alg. 2. This allows SCISOR to more thoroughly search the
space of deletions, potentially escaping local minima. In
cases where many passes through the model is too expensive,
we can make multiple deletions per de-noiser prediction, as
discussed in App. A.

Algorithm 2 Unconditional sequence generation with cor-
rector steps

Require: Desired sequence length L, corrector steps K.

1: Sample M ~ NegativeBinomial(L + 1, (1))

2: Sample X of length L 4+ M where each X ) ~ Cat(r)
3: while | X| > L do

4: fork=1,...,Kdo > Corrector steps
5: Remove from X by gg(prev(X) | X, M)

6: Insert a letter from 7 into a random position in X
7:  end for

8:  Remove from X by gy (prev(X) | X, M)

99 M+ M-1

10: end while
11: return X

Note in this algorithm, SCISOR is not simply sampling
deletions by how natural prev(X) looks. Rather it also uses
knowledge of M to plan for future mutations. Different
values of M allow the model to change which deletions it
will allow at each step (Fig. 3(b)).

Mutation effect prediction Say we have a sequence X
and we wish to predict the effect of the deletion of every
position to understand the importance of each residue. Typi-
cally, we would take a model trained on protein sequences,
pp and then evaluate the “natural-ness” of the sequence with
each deletion py (X (~%) where X (=% is the deletion of let-
ter ¢ (Riesselman et al., 2018). Unfortunately estimating the
likelihood is challenging for diffusion models as one needs
to estimate the expectation in Eqn. 1.

SCISOR instead simply predicts go(X (=% | X, M = 1)
for every possible deletion X (=%, Then if the de-noiser
suggests that a residue is unlikely to be deleted, that suggests
that X without that residue does not look like a sample from
qo(Xo), i.e. a natural sequence, and thus that deletion may
harm function. For multi-letter deletions, we integrate over
all deletion paths (see App. A).

Protein shrinking The SCISOR de-noiser is trained to
suggest the next deletion in a series of M deletions that
will lead to a realistic sample from p(Xj). Therefore we
can shrink a sequence X to a desired length L — M by
iteratively deleting according to our de-noiser as in Alg. 3.

Algorithm 3 Conditional shrinking of a sequence
Require: Number of deletions M, initial sequence X, tem-
perature 7.
Initialize X < X
while | X| > L — M do
Remove from X by gg(prev(X) | X, M)Y/T
M+ M-1
end while
return X

SANSANE S
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Figure 4. SCISOR fits the distribution of sequences in nature competitively with established sequence modeling approaches. (a)
SCISOR is competitive with other diffusion models (grey) in perplexity. S, M, L” refer to model size. (b, c) Samples from SCISOR
(K = 5) are predicted to be competitive quality to those from diffusion models and competitive with AR models as measured by (b)
matching the distribution of natural sequences as measured by the Fréchet protein distance (FPD) and (c) foldability (higher pLDDT from
OmegaFold (Wu et al., 2022)). We took EvoDiff and AR perplexities from Alamdari et al. (2023).

6. Fitting the distribution of natural
sequences as a diffusion model

We now compare how well SCISOR fits the distribution of
natural sequences compared to established sequence model-
ing methods; we see SCISOR fits sequence data well, com-
petitively with state-of-the-art diffusion and autoregressive
models. All details are in App. B. In Fig. 4, we compare the
quality of SCISOR’s fit to the data against state-of-the-art
protein diffusion models: EvoDiff (Alamdari et al., 2023)
and DPLM (Wang et al., 2024). It is well known that diffu-
sion models regularly under-perform autoregressive models
on fitting the data; we therefore include two autoregressive
models from Alamdari et al. (2023) as references. All mod-
els are trained on the same release of UniRef50 (Suzek et al.,
2007a) — small models have 35-38M parameters, DPLM
M has 150M parameters, and large models have 640-650M
parameters. We evaluate each model’s perplexity on a test
set, and the quality of their samples, as measured by how
well they match the distribution of natural sequences (FPD),
and “foldability” (pLDDT).

We see that, despite its difference from established model-
ing methods, SCISOR is competitive with other diffusion
models in perplexities. As well, SCISOR often generates
higher quality samples than previous diffusion models, even
competitive with the AR reference. As mentioned in Sec. 5
this is likely because SCISOR is a continuous-time model
while the other diffusion models are discrete-time.

7. Shrinking proteins while preserving their
function

We now evaluate the ability of the SCISOR de-noiser gg to
plan deletions that preserve the function of a protein. Since
the diffusion models in Sec. 7 cannot suggest deletions, we
compare to a different set of baselines. We compare to

Single deletions Multiple deletions
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Figure 5. SCISOR accurately predicts the effect of deletions on
protein function measured in the lab. We make predictions for
the effects of deletions and calculate a Spearman correlation be-
tween predictions and measurements for each assay in ProteinGym.
We report the average Spearman correlation coefficient across all
assays for each model, presenting the results from the highest-
performing variant of each model architecture. The table includes
all models from the ProteinGym leaderboard that achieve a cor-
relation coefficient exceeding 0.4. Models that leverage multiple
sequence alignment information are shaded.

shrinking with state-of-the-art autoregressive models Pro-
Gen?2 (Nijkamp et al., 2022) and Tranception (Notin et al.,
2022) and a stochastic autoencoder meant for shrinking pro-
teins, Raygun (Devkota et al., 2024) when applicable. Since
models trained on UniRef90 tend to better predict the effects
of mutations (Rives et al., 2021), all models in this section
are trained on UniRef90. All details are in App. B.

7.1. Deletion effect prediction

First we evaluate the ability of models of evolutionary se-
quences to predict the effect of mutations on the function
of proteins as measured in the lab. We collected more than
7000 measurements of deletions across 62 assays collected
in ProteinGym (Notin et al., 2023) and measured the Spear-
man correlations of the measurements of each assay against
the predicted effects from each model. In Fig. 5 we show the
best average correlation across the assays across each model
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Figure 6. SCISOR Shrinks proteins while maintaining their fold-ability and active site motifs. We take 100 sequences from Uniprot
that have binding or active site annotations and shrink them to various amounts. We measure (a) the foldability (pLDDT from
OmegaFold (Wu et al., 2022)) and (b) conservation of annotated functional regions, measured by the enrichment ratio of unmodified active
or binding sites relative to random expectation. Note Raygun can do worse than random deletions because it can also add substitutions.

family (full table in App. C). SCISOR outperforms previous
large models. Remarkably, SCISOR is even competitive
with PoET (Truong & Bepler, 2023), a large model that has
access to extra information about protein families.

7.2. Shrinking proteins

We now compare the ability of models to take long se-
quences X of length L and return shrunken versions X of
length L — M while preserving their function. We will
measure the fold-ability of shrunken sequences as well as
how often deletions avoid known functional annotations.

Raygun requires 1 model evaluation to make M deletions,
while SCISOR requires M. For ProGen2, ideally we would
take a sample from its likelihood conditioned on looking at
substrings of X that are length L — M; however, that would
require (;;) model evaluations, which is prohibitively ex-
pensive. While there are a number of elaborate methods
one could devise to search this space, we look at the most
computationally efficient baseline — we predict the effect
of all L single deletion assume and assume each has an
independent effect on the probability, then we sample sets
of deletions without replacement (see App. B). Note even
this most efficient algorithm makes L model evaluations.
For situations in which a practitioner is not interested in
generating diverse samples, we also try greedily choosing
deletions with ProGen2 and SCISOR; there’s no obvious
way to do this with Raygun. In Fig. 6 we see SCISOR con-
sistently suggests shrunken proteins that are more likely to
be both foldable and preserve functional sites than Raygun
and ProGen?2 baselines when sampling or greedily choosing
deletions.

8. Conclusion

By proposing a new family of generative models that learn to
build natural sequences by deleting, SCISOR, we have built

models that can effectively shrink proteins. Future work
may seek to address some of the conceptual limitations of
the SCISOR process.

Realistic insertion process One conceptual limitation
about SCISOR is that it shrinks proteins by assuming
X ~ p(X;) for some t, i.e. X resembles a natural se-
quence after time ¢ of random insertions. In reality, the
sequences we typically want to shrink, X, are natural, and
may not resemble typical samples from p(X;) — there may
be a distribution shift between our training procedure and
downstream task. One way to remedy this is to make sam-
ples from p(X;) look more like natural sequences. We made
progress on this by choosing a realistic distribution of in-
sertion letters 7. But future versions of SCISOR could add
more structure to the insertion process.

Guiding based on function In this work, we aimed to
shrink proteins into sequences that may still appear in nature
and are thus likely to be functional. While two functional
proteins with similar sequences are likely to have the same
function, this is not guaranteed, especially in those protein
families with diverse functions (Zhang et al., 2024). Future
work may incorporate other information of function into the
SCISOR shrinking process. For example, one could guide
the SCISOR diffusion process using a classifier trained to
detect functional proteins of interest (Nisonoff et al., 2024).

Including compensatory mutations Currently, SCISOR
only shrinks proteins via deletions. It is possible however
that there are substitutions or insertions that could be added
to a protein to make it more tolerant to more deletions. To
allow SCISOR to introduce these mutations which planning
a series of deletions, we could add substitutions and dele-
tions to the forward process, thereby training the de-noiser
to also include substitutions and insertions in its planning.
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A. Details about SCISOR
A.1. Prior matching KL term

We rewrite the first term of Eqn. 3 so we can estimate it.
Proposition A.1. (Proof in App. D) KL(p(X1 | Xo, M1)||¢(X1|L + My)) is equal to

L

M, + L i .

Ex, | xo.0, |}0g< 1L )—&-Zlogw(X(g))—logah(Xle) . (4)
=1

We can therefore estimate the first term of the loss in Eqn. 3 by sampling X, M;, X, as calculating the quantity in the
expectation of Eqn. 4.
A.2. Efficient sampling

Alg. 2 implements the Gillespie algorithm for a stochastic process. Zhao et al. (2024) and Amin et al. (2025) suggested
k-Gillespie for diffusion models, taking k steps at every step by sampling without replacement. Indeed We can do the same
for SCISOR, sampling many deletions at each step without replacement.

A.3. Multi-deletion prediction

Say X is the sequence X with M deletions at sites {i1, ..., iy }. We wish to calculate go(Xo = X | X, M). We can break
this up into a sum over all deletions using the de-noiser

M
go(Xo =X | X, M) =Y qo(Xo = X | X7 M — 1)gy(prev(X) = X*m) | X, M).

Continuing like this, we can write gg(Xo = X | X, M) as a sum over all permutations of the deletions.

Algorithm 4 Predicting the functional effect of multiple deletions with SCISOR

Require: Initial sequence X, deletions {iy,...,ip}.
1: P <« all permutations of {i1,...,in}
2: SUM «+ 0
3: for ji,...,5m € Pdo
4:  SUM = SUM + H%;lo qo(X I mdnrsa) | X (Sdneins) | M)
5: end for
6: return SUM = ¢y(X, = X | X, M)

A.4. Rate function

For simplicity, we choose a functional form

Consequently, we have:

t
) =exp ( /0 B(s)d )
|
P < tmax A 1- tmaxs ds)
t

2

=exp

tmaxt))

gnd (1) = (1 — tmax)"Y/ tmax  Now we must choose  and t,,,,.. We found empirically on small models that v = 1.1 gave
an ELBO 3 such that the expectation conditional on each ¢ was roughly even. We found empirically on small models that

(1 - m'n(t) /tmdx
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T = 0.9 gave the best best loss controlling for wall time, trading off allowing the model to attempt to fit larger sequences
and spending compute on those large sequences.

A.5. Windowing

One challenge in efficiently training the SCISOR de-noiser is that we must compute gg(prev(X:) | Xi, M), where
X, can potentially be a very long sequence. To handle these long sequences, we introduce a windowing strategy: if
| X:| > 2048, we randomly select a window X, t(w:w+2048) uniformly at random to pass to the model. We then re-normalize
the model predictions by 2048 /| X;| (the probability of a deletion in the window is proportional to its size) and use uniform
predictions outside the window such that the deletion probabilities sum to 1. Calling the predictions made by window w

gy (prev(X,) | Xy, My), we can define our model predictions as an average over all windows

qo(prev(Xy) | Xe, My) = Eyqy (prev(Xe) | Xe, My).

ELBO We modify the second term of our loss Eqn. 3 to obtain another lower bound to bring the expectation outside

KL(p(prev(Xy) | Xo, X, Me)||qo(prev(Xe) | X, My))
>E,KL(p(prev(X:) | Xo, Xt, My)||qg (prev(Xy) | X, My)).

This gives us a new ELBO we can estimate by stochastically sampling the window w whenever we get a large sequence.

Sampling In Alg. 1, we need to sample from gy (prev(X;) | Xy, M) for very long sequences. We do so by sampling a w
and then sampling from g (prev(X;) | X, My).

B. Experimental Details
B.1. Baselines

We used EvoDiff models and code from https://github.com/microsoft/evodiff under the MIT license. We
used DPLM models and code from https://github.com/bytedance/dplm under the Apache-2.0 license. We
used ProGen2 models and code from https://github.com/enijkamp/progen2 under the BSD-3-clause license.
We used Raygun models and code from https://github.com/rohitsinghlab/raygun under the CC BY-NC
4.0 license. We used ProteinGym models and code from https://github.com/OATML-Markslab/ProteinGym
under the MIT license.

B.2. SCISOR architecture

We used the flash attention implementation of ESM from Peng et al. (2024) under the MIT license. We used ESM2
weights (Lin et al., 2022) also under the MIT license. We developed SCISOR using code from https://github.com/
AlanNawzadAmin/SCUD under the MIT license.

B.3. Training SCISOR

We apply our framework to train a protein generative model on UniRef50 (Suzek et al., 2007b). We filter this dataset to
exclude proteins with non-standard amino acids, and crop long protein sequences down to their first 1024 amino acids.

For the results in section 6, we train SCISOR models on teh March 2020 release of Uniref50, using the same train-test
split as EvoDiff (Alamdari et al., 2023) from https://zenodo.org/records/6564798. Our models were trained
about one week each on one NVIDIA A100 GPU with an effective batch size of 256 and learning rate of 0.0001.

For the results in section 7, we train SCISOR models on the latest release of Uniref90. Here, we use an effective batch size
of 512 and learning rate of 0.00005. The SCISOR S and M models were trained for about one week each on two NVIDIA
A100 GPUs. The SCISOR L model was trained for about four days on four NVIDIA H100 GPUs.

For each effective batch, we sampled all ¢, X, M;, X;. We then sorted sequences by the length of X, before breaking
them into batches to pass to the model in batch sizes of 8 or 16; This makes sequences in each batch have similar length,
minimizing padding.

12


https://github.com/microsoft/evodiff
https://github.com/bytedance/dplm
https://github.com/enijkamp/progen2
https://github.com/rohitsinghlab/raygun
https://github.com/OATML-Markslab/ProteinGym
https://github.com/AlanNawzadAmin/SCUD
https://github.com/AlanNawzadAmin/SCUD
https://zenodo.org/records/6564798

Shrinking proteins with SCISOR

B.4. Model fit experiments
B.4.1. PERPLEXITIES

SCISOR We compute the perplexity in Fig. 5 on the test dataset by first sub-sampling the expectation of the ELBO from
Prop. 4.2 — we take 10 samples of £, X; for every sequence. We then by the total number of tokens in the test set and report
the and exponentiating the negative result.

EvoDiff and AR We take perplexity values from Table S1 in Alamdari et al. (2023).

DPLM DPLM was trained as a discrete-time masking diffusion model with 500 steps and a linear rate schedule — that is,
the probability of each token in X; being masked is ¢/500. We therefore evaluated their perplexities as such a model as in
Austin et al. (2021). This ELBO becomes

500 L

1 i i
Z ;EXO,Xt Z IL(Xt( ) = mask) logqe(Xé ) | Xt).
t=1 i=1

B.4.2. SAMPLES
SCISOR We sampled according to Alg. 2.
EvoDiff and AR We sampled from EvoDiff and AR models using functions generate_oaardm and

generate_autoreg from https://github.com/microsoft/evodiff/blob/main/evodiff/
generate.py.

DPLM Wang et al. (2024) suggested a novel sampling method for DPLM. However, we were interested in measuring the
quality of DPLM samples as a diffusion model. We therefore took samples as such a model as in Austin et al. (2021): We
start with X500 and for every ¢ = 500, - - - , 1 we unmask each position ¢ with probability 1/¢, replacing the mask according

to predicted probabilities qe(Xéi) | X%).
B.4.3. SAMPLE EVALUATION

For FPD we took 1000 protein lengths from UniRef50 and sampled sequences of each of those lengths from SCISOR,
EvoDiff, and DPLM; or we sampled 1000 sequences from the AR models. For pLDDT, we sampled 100 sequences of length
100, 200, 400, and 800 from SCISOR, EvoDiff, and DPLM; for AR models where the sample length cannot be controlled,
we sampled sequences until we had a sufficient number of samples with lengths within 10% of each desired length.

Fréchet protein distance (FPD) We calculated the FPD of 1000 generated sequences to 10000 samples from UniRef50
using ProtTS embeddings in https://github.com/hefeda /PGP under the Apache-2.0 license. We then calculated
the Fréchet inception distance between the embeddings of the natural sequences and each set of sampled sequences as

2 1/2
||Nnatura1 - ,UsampleH + tr (Enatural + Esample - 2(EnaturalEsample) / )

where p. and X. are empirical means and covariances of the embeddings.

pLDDT We calculate pLDDT scores using OmegaFold (Wu et al., 2022) as described in https://github.com/
HeliXonProtein/OmegaFold/blob/main/README . md under the Apache-2.0 License. For computational effi-
ciency, we use only 1 cycle per sample. This results in lower overall pLDDT scores than the recommended default settings,
which uses 10 cycles to obtain more accurate predicted structures.

B.5. ProteinGym

B.5.1. MODEL PREDICTIONS

SCISOR To evaluate SCISOR, we set X, to be the target sequence and M to be the number of deletions between the
target and the mutant of interest. We then predict the effect of the deletion using Alg. 4.
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ProGen and other models We evaluated other models using scripts available on ProteinGym.

B.5.2. MODEL EVALUATION

For Fig. 5, we adapt the ProteinGym benchmark from (Notin et al., 2023) by filtering their indels dataset to cases where the
mutant is a strict subsequence of the target sequence. For the single deletions benchmark, we use mutants that are only one
deletion away from the target sequence, while for the multiple deletions benchmark, we use mutants that are two or three
deletions away from the target sequence.

For single mutations, we gathered 61 assays in ProteinGym with 4544 mutations in total.

Three assays in ProteinGym measured double and triple mutations: A4 _HUMAN_Seuma-2022 measured stability and
had 42 double mutations and 40 triple mutations, KCNJ2 _MOUSE Macdonald_2022 measured expression and had 397
double mutations and 387 triple mutations, P53 _HUMAN Kot ler_2018 measured organismal fitness and had 172 double
mutations and no triple mutations.

B.6. Shrinking

For Fig. 6(a) and 6(b) we sample 100 sequences with annotated active sites and 100 sequences with annotated binding sites
from UniProt. We then shrink each sequence by d percent, where d € {1, 3,5, 10, 20, 30, 40, 50}.

B.6.1. MODEL SAMPLES

SCISOR We shrunk sequences using Alg. 2.

ProGen Ideally we could sample from ¢p,oGen ()~( ) over all shrunken versions of X, X, of desired length L — M. However,
for even moderate values of M, this becomes computationally intractable. We therefore approximate this distribution by
assuming each deletion has an independent effect:

log dProGen (X) ~ log dProGen (X) + Z Ai

deletions 4

where A; is the effect of a single mutation,

dProGen (X(z))
A; = log LoreGen =)
s QPrchn(X)

This approximation requires calculating L quantities A;.

Sampling from this approximation is equivalent to sampling M deletions — deletion ¢ is sampled with probability proportional
to exp(A;). Greedy shrinking just involves picking the M mutations with the highest A;.

Raygun we use the Raygun generate command to generate shrunken proteins of desired length, where length was
calculated by first calculating rounded up number of deletions to introduce, and conditioning Raygun to generate sequence
of length L — M. we used a noise ratio of 0.5 with uniform sampling (noise sampled uniformely between 0 and 0.5), in
order to limit the number of substitutions introduced. We use a filter ratio of 0.1 meaning we select the best candidate among
ten generated sequences, and recycle sequences once.

B.6.2. MODEL EVALUATION

We evaluate the foldability of the shrunk sequneces using the average pLDDT per residue for the structure generated using
OmegaFold (Wu et al., 2022) as described in https://github.com/HeliXonProtein/OmegaFold/blob/
main/README .md under the Apache-2.0 License, using 1 cycle per sample. We calculate enrichment as the number
of active or binding sites in the original sequence that were preserved in the shrunk sequence — we call a functional site
“preserved” if no residues were modifiesd or deleted.
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C. Supplementary Results
C.1. Full ProteinGym table

We show the results for ProteinGym for all models and sizes, stratifying the single deletions into functional, taxonomic, and
MSA depth categories.

Table 1. ProteinGym results on single and multiple deletions.

Model MSA Single Deletions Multiple Deletions
Progen2 S 0.457 0.445
Progen2 M 0.513 0.385
Progen2 Base 0.497 0.408
Progen2 L 0.491 0.375
Progen2 XL 0.393 0.392
RITA S 0.409 0.274
RITAM 0.448 0.318
RITAL 0.465 0.323
RITA XL 0.440 0.161
Tranception S 0.439 0.475
Tranception M 0.464 0.424
Tranception L 0.445 0.426
HMM Yes 0.453 0.474
PoET (200M) Yes 0.551 0.488
SCISOR S 0.332 0.241
SCISOR M 0.505 0.478
SCISOR L 0.573 0.458

Table 2. ProteinGym results on single deletions stratified by the measured function of each assay.

Model MSA Activity Expression Organismal Fitness Stability
Progen2 S 0.566 0.294 0.499 0.470
Progen2 M 0.574 0.404 0.558 0.514
Progen2 Base 0.592 0.380 0.496 0.520
Progen2 L 0.550 0.344 0.560 0.508
Progen2 XL 0.418 0.298 0.333 0.521
RITA S 0.507 0.320 0.452 0.356
RITAM 0.514 0.345 0.500 0.432
RITAL 0.530 0.437 0.420 0.474
RITA XL 0.532 0.385 0.360 0.481
Tranception S 0.542 0.351 0.532 0.331
Tranception M 0.594 0.340 0.526 0.395
Tranception L 0.533 0.336 0.445 0.466
HMM Yes 0.496 0.321 0.501 0.493
PoET (200M) Yes 0.664 0.424 0.566 0.551
SCISOR S 0.376 0.289 0.198 0.465
SCISOR M 0.514 0.362 0.576 0.571
SCISOR L 0.604 0.415 0.668 0.606
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Table 3. ProteinGym results on single deletions stratified by the MSA depth of proteins in each assay.

Model MSA Low Medium High
Progen2 S 0.558 0.429 0.497
Progen2 M 0.415 0.483 0.544
Progen2 Base 0.438 0.460 0.568
Progen2 L 0.513 0.473 0.532
Progen2 XL 0.216 0.499 0.530
RITA S 0.300 0.293 0.424
RITAM 0.278 0.376 0.492
RITAL 0.444 0.434 0.504
RITA XL 0.139 0.462 0.508
Tranception S 0.467 0.316 0.360
Tranception M 0.297 0.358 0.447
Tranception L 0.519 0.391 0.518
HMM Yes 0.624 0.506 0.471
PoET (200M) Yes  0.595 0.553  0.548
SCISOR S 0.385 0.381 0.509
SCISOR M 0.641 0.547 0.575
SCISOR L 0.621 0.628 0.584

Table 4. ProteinGym results on single deletions stratified by the taxa of the protein in each assay.

Model MSA Human Eukaryote Prokaryote Virus
Progen2 S 0.506 0.467 0.361 0.567
Progen2 M 0.536 0.539 0.432 0.510
Progen2 Base 0.568 0.541 0.396 0.471
Progen2 L 0.536 0.513 0.442 0.492
Progen2 XL 0.511 0.537 0.420 0.573
RITA S 0.398 0.353 0.272 0.448
RITAM 0.496 0.417 0.310 0.504
RITAL 0.522 0.473 0.327 0.568
RITA XL 0.510 0.466 0.386 0.555
Tranception S 0.332 0.363 0.297 0.449
Tranception M 0.443 0.406 0.295 0.468
Tranception L 0.511 0.462 0.348 0.513
HMM Yes 0.585 0.392 0.437 0.547
PoET (200M) Yes 0.554 0.522 0.523 0.721
SCISOR S 0.486 0.418 0.340 0.652
SCISOR M 0.571 0.539 0.525 0.735
SCISOR L 0.590 0.568 0.621 0.767

D. Proofs
D.1. Proof of correctness for Algorithm 1

The correctness of Alg. 1 follows from Cor. D.2.
Proposition D.1. Call
X, =Yox"vix® ... x$Pvy

where X(()I)Xé2) . ~X(§L) are the letters of Xo and Yy, Y1, . .., Y7, are the insertions. Then |Y;| is a Geom(«(t)) distribution,
where a(t) = exp(— fg B(s)ds).
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Proof. By the Kolmogorov forward equation,

d
PVl = nlt) = B(EO)np([Yi] = n = 1[t) — B(t)(n + 1)p(|Yi] = nlt).
This can be written as

d ¢ :
% (e(n+1) N ,B(s)dsp(|yl‘ _ n|t)> _ ne(n-l—l) N B(S)dsﬁ(t)pﬂyl‘ - 1|t).

For n = 0, this is solved by p(|Y;| = 0]t) = «(t). By induction,
p(IYi| = nlt) = a(t)(1 — a(t))"

as
na(t)""HB6p(|Yi] = n — 1[t) =na(t) " B(H)(L — alt)"
d, . . 5)
=2 (al) (1 - a(t)")
O
Corollary D.2.
(Yol [Yz]) = a(t) X (1 — a(t)> M

so p(|Yol, ..., |Yz|) only depends on | Xo| and M =", |Y;|. In particular we can sample M ~ NegativeBinomial(c(t))
and then distribute it uniformly into L + 1 bins.
Proof. Each Yis generated independently, so we just take the product of probabilities from Prop. D.1. O

D.2. Proof of Proposition 4.1

Proposition D.3. (Proof of Prop. 4.1) Say X is a sequence with length L. Call q(- | L) a distribution over sequences of
length L which simply samples each letter independently from Cat(w) for a distribution 7 such that 7w(b) > 0 for all letters
b. Then, as the number of insertions increases, M1 — oo, X1 becomes easier to approximate with q:

KL(p(X1 | Xo, My)[[q(Xy | L + My)) — 0.

Proof. We suppress the subscript 1. Note by Lem. D.8
(X | Xo, M) ali(Xp, X)

g(X [L+M) — (HMTE 2(x ()

For a set of L indices [ = i1 < iy < -+ < i, call x; = 1(Xo = X@) ... X)) Then ali(Xo, X) = >, x7 and
Eyxr = [T, 7(X{"). Therefore we can write

ot PE X0 M) oy ali(Xo, X)
" q(X | L + M) ' (L-EM> Hf:l ﬂ-(XOl))
ali(Xo, X)
—E,log 20 2)
P8 B ali(Xo, X)
ali(Xo, X)

=7 | Eyali(X,, X)
E, [ali(Xo, X) — E,ali(Xo, X)|
- E,ali(X,, X)
_ By [ali(Xo, X) — Epali(Xo, X)|
= Eali(Xo, X)
| [Bpali(Xo, X) — Egali(Xo, X)|
E,ali(Xo, X)
Sty (ali(Xo, X)) | Bpali(Xo, X)
E,ali(Xo, X) E,ali(Xo, X)

—1f.
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We now show that these two terms each go to 0, starting with the second term.

The second term Say X is generated by picking indices Z = z; < - -- < zp, which are X and then generating all other
letters from 7 Say we have indices I. Then

Epxi <A —-pUINZ=0)+Ep,[xslINZ =10

(M+L7L)

=1-_-_£L 7
("2")

M —L\*
Sl—( i ) +EqXI

<O (L*/M) + Eyx1
=(1+0(1))Egxi-

+ EqXI

A Eyxi (L= p(INZ = 0)) x By [ullnZ =4
M+L—-L
= (1 - ((MEFL))> X Egxr
L
= (1 B (MA—/{—L> ) X Eaxa
>(1-0(L*/M)) E;x1
=(1—o(1))Eqxi-
Then

. M+L
E,ali(Xo, X) _ ( 2_ )EPXI =14 o(1).
Egali(Xo, X) (M) Ex;

The first term We first change the expectation in the standard deviation into an expectation over ¢. Say X is generated by

picking indices Z = z; < --- < zp, which are X, and then generating all other letters from 7 Say we have indices I, J.
Then
Epxixg <1 —pINZ,JNZ=0)+Ep[xixsINZ,JNZ =0]
(M+L—2xL)
L
<1- W + EgX1XJ
L

=O(L*/M) + E,xrx.-
We also have from above that
Epx1Epxs = (1+0(1))Egx1Eqx-
Then

: M+ L\?
Varpali(Xo, X) = Z Covp(xr, X7) = ( I ) o(1) + Z Covg(xr,X1)-
I,J 1,J

The first term is o(1) against E,ali(Xo, X)? = (MZL)Q(EXI)Q, so we can just focus on the second term, Vargali(Xo, X).

Note if I N J = () then Cov,(x1, x.s7) = 0. Then
M+ L M+L-L
< —
% Covi(xrxs) ( I > ( I )

~(("27))

using the same logic as above. Therefore, Var,ali(Xo, X) = o ((MZFL)Q) = o(E,ali(Xo, X)?). This completes the proof.

O
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D.3. Proof of Proposition 4.2

Proposition D.4. (Proof of Prop. 4.2) Define M, as the number of mutations up to time t, and prev(Xy) is the last sequence
that gained an insertion to become X;. Then the negative log likelihood of a sequence of length L, —log qo(Xo|L), is

smaller than

B KL(p(Xy | Xo, M1)[q(X1|L + My))

MyB(t)

—|—IEt,Xt,Mt7KL(p(prev(Xt) | Xo,Xt,Mt)H(IO(pTeV(Xt) | XtaMt))

1—a(t)

Proof. The proof of Prop. 4.4 from Amin et al. (2025) derives an ELBO

B, KL(p(X1 | Xo, My)||q(X1|L + My))
+ E¢ x, v, w(Me, t, Xo)KL(p(prev(Xy) | Xo, X¢, My)||qo(prev(Xy) | X¢, My))

where
w(My, t, Xo) = 6113(1) E[#events in [t — €, t]| My, Xo]/e.
The following lemma shows this result. O
Lemma D.5. ;
w(M,t,Xo) = le(a)(t)
Proof. First we change out time variable to 7 = — log a(t). Noting — log a(t — €) = 7 — €3(7) + O(€?), we have
w(M,t, Xo) = B(1) lim E[#events in [7 — ¢, 7]| M, = M]/e (6)

where E is as if the rate 3 were constant. In SCUD, events occur uniformly in the time interval, so the RHS would be
M/T = M/(—loga(t)). For SCISOR, events are more concentrated later in time since more insertions increases the rate

of insertion.

E[#events in [r — €, 7]| M, = M] =P[M,_. = M — 1|M, = M] 4+ O(¢?)

Note

P[M, =

Finally,

This gives us

CPM,_ =M-1]_ B , @)
=== DM = MIMrc = M~ 1]+ 0(),

M|M, .=M-—1]=P[M, >M|M,_.=M—1]+O(e?)
=P(Exp(M + | Xo|) < €) + O(¢?)
=1 — e <MHXol) 1 O(2)
=e(M + | Xo|) + O(€?).

®)

P[M,; = M —1] NegBin(|Xo|,e™"; M — 1)
P[M,=M]  NegBin(|Xo|,e"; M)
(m*1t|1X0|)(1 _ e_T)M_l

= m ©))

(M = em)M
M
(M + X1 —e7)

At)

w(M,t,Xo) = M=l

which is similar for small alpha to the SCUD weight of w(M,t, Xo) = M 5() byt becomes larger at larger values. [

— log a(t)
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D.4. Proof of Proposition 4.3
Proposition D.6. (Proof of Prop. 4.3) Call ali(X,Y) the number of ways to align a sequence X to a sequence Y .

ali( Xy, prev(Xy))

p(prev(Xy)[Xo, Xy, My) = My - ali(Xo, Xy) -

Proof. Say Y; is X; with a single deletion, the letter b. By Lem. D.8

p(Yy | Xo, My — 1)
p(Xe | Xo, My)
L+M,—1\~1 ..

A
( T t) ali(Xo, X;)m(b)

_ (L + My)ali(Xo, Y2)

Myali(Xo, X7)

_ali(Xo, V)

T Mali(Xo, Xy)

p(}/t ‘ XOaXtaMt) = p(Xt | }/t)

Note finally that we’ve ignored that there may be multiple deletions that take X; to Y; when calculating p(X; | Yz). We can
safely do so as it does not affect the loss Eqn. 3 of any of our other algorithms. [

D.5. Derivation of prior matching KL term

Proposition D.7. (Proof of Prop. A.1) KL(p(X1 | Xo, M1)||q(X1|L 4+ My)) is equal to

Ex, |x0,M; I

L
M+ L ;
log< L ) + g logW(X(gz)) —logali(Xo, X1)
i=1

Proof. From Lem. D.8,

My 4+ L\
x| o0 = (M) e, xy IT w0)
beX1\Xo
Given that (X1 |L + Mi) = [[,c x, m(b), this finishes the proof. O
D.6. Useful lemma
Lemma D.8. Calling the letters in Xy that are not in Xy X; \ Xo,
L+ M\ "
p(X; | Xo, My) = ( I t> ali(Xo, X3) H 7(b)
be X\ Xo
Proof. To generate X; from X, My, we could (1) decide which positions ¢1,...,iz € 1,..., L + M; should come from

Xy and then generate the rest of the letters according to . Then

(X | Xo, My) = Z L0, - % H m(b)
indices 1,...,i1, ( L ) be X\ Xo
L+M\ "
—< . t) ali(Xo, X;) [ =)
be X\ Xo
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E. Alignments algorithm

Both KL terms in the ELBO make use of the primitive ali(X, Y'). In particular, the denoising KL term requires computing
the number of alignments between X and each possible prev(X}), a total of | X;| computations. Naively, computing the
alignments between each pair of sequences takes O(| Xo| - | X¢|) time for a total of O(| Xo| - | X¢|?). However, we devise an
efficient dynamic programming algorithm to compute all of the alignment terms in parallel in O(|Xy| - | X¢|) time, presented
in Algorithm 5.

Algorithm 5 Compute ali( X, (l), X)) for all [ in parallel
Require: Sequences X with |Xo| = L and X; with | X;| = N
1: Set matching[i, j] + I(X\") = X)) foralli € {1,...,L},j € {1,...,N}
2: Initialize prefix_dp <+ Q(N+1)x(L+1)
3: Set prefix_dp[i, 0] < 1 foralli e {1,...,N}
4: for! =1to Ldo
5 prod < prefix_dp[l : N,[ — 1] x matching[l — 1,1 : N]
6.
7
8
9

prefix_dp[l : N + 1,1] < cumsum(prod, axis = 0)

: end for

- Initialize suffix_dp < 1(N+Dx(L+1)

: for{ =L —1downto0Odo
10:  prod < suffix . dp[l : N + 1,1+ 1] x matching[l,1 : N]
11:  suffix_dp[l : N,!I] < cumsum(prod, axis = 0)
12: end for
13: alignments[l] < Zf\il prefix_dp[i, {] x suffix_dp[i + 1,1 + 1] for all [
14: return alignments
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