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Abstract

Alignment techniques are critical in ensuring that large language models (LLMs)1

output helpful and harmless content by enforcing the LLM-generated content to2

align with preferences. However, the existence of noisy preferences (NPs), where3

the responses are mistakenly labelled as chosen or rejected, could deteriorate the4

alignment, thus making the LLMs generate useless and even malicious content.5

Existing methods mitigate the issue of NPs from the loss perspective by adjusting6

the alignment loss based on a clean validation dataset. Orthogonal to these loss-7

oriented methods, we propose perplexity-aware correction (PerpCorrect) from8

the data perspective for robust alignment which detects and corrects NPs based9

on the differences between the perplexity of the chosen and rejected responses10

(dubbed as PPLDiff). Intuitively, a higher PPLDiff indicates a higher probability11

of the NP because a rejected/chosen response which is mistakenly labelled as12

chosen/rejected is less preferable to be generated by an aligned LLM, thus having13

a higher/lower perplexity. PerpCorrect works in three steps: (1) PerpCorrect aligns14

a surrogate LLM using the clean validation data to make the PPLDiff able to15

distinguish clean preferences (CPs) and NPs. (2) PerpCorrect further aligns the16

surrogate LLM by incorporating the reliably clean training data whose PPLDiff is17

extremely small and reliably noisy training data whose PPLDiff is extremely large18

after correction to boost the discriminatory power. (3) Detecting and correcting19

NPs according to the PPLDiff obtained by the aligned surrogate LLM to obtain20

a denoised training dataset for robust alignment. Comprehensive experiments21

validate that our proposed PerpCorrect can achieve state-of-the-art alignment22

performance under NPs. Notably, PerpCorrect demonstrates practical utility by23

requiring only a modest number of validation data and being compatible with24

various alignment techniques. Our code is available at the Anonymous GitHub.25

1 Introduction26

Alignment enables the safe utilization of the remarkable capabilities acquired by large language27

models (LLMs) through self-supervised learning on vast corpora [4, 17, 2]. It refers to the process of28

ensuring that the contents generated by LLMs are helpful, harmless, and aligned with human values29

and preferences [13]. Reinforcement Learning from Human Feedback (RLHF) [7] emerges as a30

primary technique for achieving alignment. Current technical routes [29, 30, 22] require a reward31

model to simulate human preference and use it to optimize policy model outputs with Proximal32

Policy Optimization (PPO) [20]. Current offline techniques such as Direct Preference Optimisation33

(DPO) [19], Sequence Likelihood Calibration with Human Feedback (SLiC) [28] and Identity-34

Preference Optimisation (IPO) [1], could directly align LLMs without intensely computational35

training a reward model as employed in RLHF.36
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Figure 1: We evaluated various robust alignment methods under different proportions of noisy
preferences using the Llama2-7B model, on the Golden HH dataset. The reward accuracy of both the
vanilla DPO and PPO method significantly decreases as the proportion of noisy preferences increases.
Our method, perplexity-aware correction (PerpCorrect), outperforms both the DPO and PPO series
baselines across different proportions of noisy preferences.

Recent studies [25, 6] have shown there exist noisy preferences (NPs) that may lead to significant37

degradation in alignment performance. The issue of NPs, where the label of the actually cho-38

sen/rejected responses in training datasets is flipped as rejected/chosen, can arise from the biases of39

annotators [25] and the malicious noise injection [3]. As shown in Figure 1, when NPs are randomly40

injected into the training dataset, the conventional alignment method (e.g., DPO [19] and PPO [7])41

will yield significantly degraded alignment performance measured by the reward accuracy. Such42

performance degradation could result in the generation of useless and even malicious content [25].43

Therefore, it necessitates developing robust alignment methods that can utilize datasets with NPs to44

effectively align the LLMs with human preferences.45

Existing robust alignment methods are proposed from the loss perspective, which adjust the alignment46

loss using a clean validation dataset to mitigate the issue of NPs. Particularly, the conservative47

DPO (cDPO) [15] and robust-DPO (rDPO) [6] both estimate the proportion of NPs using the clean48

validation data via cross-validation and then adjust the original DPO loss based on the estimated49

proportion of NPs. However, Mitchell [15] and Chowdhury et al. [6] overlooked the essential50

differences between noisy and clean preferences, which is critical for mitigating the issue of NPs.51

To this end, we propose Perplexity-aware Correction (PerpCorrect) for robust alignment from52

the data perspective by leveraging the differences between noisy and clean preferences for robust53

alignment. PerpCorrect detects and corrects NPs based on the difference between the perplexity of54

the chosen response and that of the rejected counterparts (dubbed as PPLDiff) obtained by an aligned55

surrogate LLM using the clean validation set. If an NP is detected, PerpCorrect will correct it by56

flipping the label of the rejected/chosen responses as chosen/rejected. Intuitively, rejected responses57

which are mistakenly labelled as chosen have a higher perplexity since they are less consistent with58

human preferences and thus have a lower probability of being generated after alignment. Therefore,59

a higher value of PPLDiff indicates a higher probability of the preferences being noisy. In this60

way, PerpCorrect leverages the differences between noisy and clean preferences (CPs) identified by61

PPLDiff to detect NPs.62

To make the PPLDiff able to distinguish CPs and NPs, PerpCorrect requires an aligned surrogate63

LLM for calculating PPLDiff. The density of PPLDiff obtained on the noisy training dataset using64

an unaligned surrogate LLM, which can be fitted as a normal distribution centered around zero65

(evidenced in Figure 2a), cannot discriminate CPs and NPs. Therefore, we align a surrogate LLM66

using the clean validation data. The density of PPLDiff obtained by the aligned surrogate LLM in67

Figure 2b can be fitted into two distinguishable normal distributions, thus being able to differentiate68

CPs and NPs.69
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Figure 2: We visualized the PPLDiff under the entire PerpCorrect process using Llama2-7B on
Golden HH dataset with 20% noisy preferences. We use the green dotted line to represent the normal
distribution formed by clean data, the red dotted line represents the normal distribution formed by
noisy data, and the black dotted line represents the threshold.

However, there still exists a large overlap between two normal distributions after aligning only on70

the clean validation dataset, which could result in an unsatisfactory accuracy of NP detection. To71

this end, we iteratively align the model using more reliably clean training data with extremely low72

PPLDiff (located in the green area in Figure 2c) and reliable noisy training data with extremely large73

PPLDiff (located in the red area in Figure 2c) sampled from noisy training datasets. Finally, the two74

normal distributions are significantly separated as shown in Figure 2d, which indicates that PPLDiff75

has an enhanced discriminatory power.76

Benefiting from the strong discriminatory power of PPLDiff calculated by the aligned surrogate LLM,77

PerpCorrect outputs a denoised training dataset for robust alignment by detecting NPs based on a78

PPLDiff threshold and conducting correction. The data, whose PPLDiff is below a certain threshold79

(i.e., the black dotted line in Figure 2d) selected as the x-coordinate of the two normal distributions’80

intersection, are identified as NPs and thus corrected by flipping the response’s label. Notably, our81

proposed PerpCorrect is compatible with various alignment methods as well as robust alignment82

methods [15, 6] since the metric PPLDiff is agnostic to training algorithms and only requires an83

arguably small number of clean validation data (~50), thus yielding significantly practical usage.84

Comprehensive empirical results, evaluated using the Llama2-7B [24] and phi-2 [14] models on the85

OpenAssistant Conversations (OASST1) [11] and Golden HH [5] datasets, validate the effectiveness86

of our proposed PerpCorrect method in robustifying alignment with NPs. We empirically validate87

that PerpCorrect consistently yields state-of-the-art performance among various proportions of NPs.88

Besides, we empirically demonstrate that PerpCorrect can effectively robustify various alignment89

techniques and robust alignment methods, validating its compatibility.90
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2 Literature Review and Preliminary91

In this section, we introduce the related work regarding LLM alignment and provide preliminaries92

about the noisy preferences, perplexity, as well as various alignment methods.93

2.1 LLM Alignment94

In the domain of aligning LLMs with human preferences, pairwise preference methods are favored95

due to their lower cognitive burden on evaluators. Traditional online alignment approaches [24,96

17, 22] involve training reward models from these preferences to provide signals in reinforcement97

learning. Recent offline alignment methods like Direct Preference Optimization (DPO) [19], Sequence98

Likelihood Calibration (SLiC) [28], and Identify Preference Optimization (IPO) [1] streamlined this99

process by directly using preference pairs to train LLMs, thus enhancing performance and reducing100

computational costs. Additionally, methods like RRHF [27] align LLMs using multiple ranked101

preferences, Kahneman-Tversky Optimization (KTO) [9] align LLMs using a single preference102

labeled as good or bad, and Rejection Sampling Optimization (RSO) [12] address DPO’s limitation103

in sampling preference pairs from the optimal policy through rejection sampling. However, NPs,104

arising from the biased human feedback, can determine the alignment performance [17, 25]. Robust105

alignment methods like conservative DPO (cDPO) [15], robust DPO (rDPO) [6] have been proposed106

to address these issues from the loss perspective. Our approach focuses on the data perspective to107

address these issues of NPs and is orthogonal to these robust alignment methods.108

2.2 Preliminary109

Noisy preferences (NPs). NPs refer to preference data in training datasets, whose label of the110

actually chosen/rejected responses is flipped as rejected/chosen. Let D = {(x(i), y
(i)
w , y

(i)
l )}Ni=1 be111

the preference dataset consisting of N ∈ N preference data points. For each preference data point112

(x, yw, yl) ∈ D, x is the prompt input to LLMs, yw is the chosen response, and yl is the rejected113

response. We let D̃ = {(x(i), ỹ
(i)
w , ỹ

(i)
l )}Ni=1 be the noisy preference dataset (i.e., preference dataset114

consisting noisy preferences) and denote preference data points that are not noisy as clean preferences115

(CPs). Following Chowdhury et al. [6], we obtain the noisy preference dataset D̃ using the standard116

random noise model [16] with the probability ε ∈ (0, 50%) to change the data point into noisy117

preferences, i.e.118

P
(x(i),ỹ

(i)
w ,ỹ

(i)
l )∼D̃

[
(x(i), ỹ(i)w , ỹ

(i)
l ) = (x(i), y

(i)
l , y(i)w )

]
= ε. (1)

Perplexity (PPL). PPL [10] measures the probability that the LLM generates a sentence. A lower119

PPL of a sentence indicates that the LLM generates this sentence in a high probability. PPL is defined120

as the average negative log-likelihood of a sequence, i.e.,121

PPL(s; θ) = exp(−1

t

t∑
i=1

log πθ(si|s<i)), (2)

where s is a sequence composed of t tokens and log πθ(si|s<i) denotes the log-likelihood of the i-th122

token given the preceding tokens s<i calculated by an LLM πθ.123

Technical details of alignment methods. There are usually three phases in RLHF pipeline [25, 19]:124

(1) supervised fine-tuning (SFT); (2) reward modeling; (3) reinforcement learning (RL) optimization.125

In the SFT phase, an LLM is fine-tuned via supervised learning on high-quality task-related data.126

We denote the LLM after the SFT phase as πSFT. In the reward modeling phase, the reward model127

is introduced to simulate human preferences. Given a preference dataset, a reward model rω(x, y)128

parameterized by ω, which takes prompt x and response y as input and outputs a real number129

representing the reward score, can be optimized via minimizing the following loss function:130

LR(rω,D) = −E(x,yw,yl)∼D [log σ(rω(x, yw)− rω(x, yl))] , (3)

where σ is the logistic function. In the RL optimization phase, the objective function is as follows:131

max
θ

Ex∼D,y∼πθ(y|x)[rω(x, y)− β · (log πθ(y|x)− log πref(y|x))], (4)
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where πθ(y|x) represents the probability that the LLM parameterized by θ > 0 generates the response132

y given the prompt x, πref is a reference LLM to maintain the generation ability of the aligned model,133

and β is a hyper-parameter to ensure the similarity between πθ(y | x) and πref(y | x). We take πSFT134

as the reference LLM πref following Ouyang et al. [17].135

Recently, offline alignment methods directly leverages preferences in preference datasets, bypassing136

the need to learn a reward model in RLHF. The LLM parameter is optimized by minimizing the137

following loss function:138

L(πθ;πref) = E(x,yw,yl)∼D [G(x, yw, yl; θ)] , (5)

where the function G changes with the alignment method. To be specific, DPO [19] uses a BCE loss,139

SLiC [28] uses a hinge loss, and IPO [1] uses a square loss:140

GDPO(x, yw, yl; θ) = − log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)
, (6)

GSLiC(x, yw, yl; θ) = max
{
0, 1−

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)}
, (7)

GIPO(x, yw, yl; θ) =

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

− 1

2

)2

. (8)

To mitigate the issue of NPs, cDPO [15] and rDPO [6] adjust the DPO loss based on the estimated141

proportion of NPs ε′ using a clean validation dataset Dval = {(x(i), y
(i)
w , y

(i)
l )}Nval

i=1 consisting of142

Nval ∈ N clean preference data points, i.e.143

GcDPO(x, ỹw, ỹl; θ) = (1− ε′)GDPO(x, ỹw, ỹl; θ) + ε′GDPO(x, ỹl, ỹw; θ), (9)

GrDPO(x, ỹw, ỹl; θ) =
(1− ε′)GDPO(x, ỹw, ỹl; θ)− ε′GDPO(x, ỹl, ỹw; θ)

1− 2ε′
. (10)

3 Perplexity-aware Correction for Robust Alignment144

This section introduces Perplexity-aware Correction (PerpCorrect) for robust alignment with NPs.145

In Section 3.1, we introduce a novel metric called PPLDiff and then illustrates the pipeline of146

PerpCorrect to detect and correct NPs based on PPLDiff. In Section 3.2, we demonstrate how to147

adapt our proposed PerpCorrect with various alignment methods to achieve robust alignment.148

3.1 Perplexity-aware Correction (PerpCorrect)149

In this subsection, we introduce PerpCorrect which leverages a novel metric called PPLDiff as150

the foundation for detecting and correcting NPs. The algorithm of PerpCorrect is demonstrated in151

Algorithm 2.152

PPLDiff. PPLDiff measures the difference between the PPL of chosen response and that of the153

rejected response. Given a preference data point (x, ỹw, ỹl) ∈ D̃ sampled from the noisy training154

dataset D̃ and an LLM πθ, PPLDiff is defined as follows:155

PPLDiff(x, ỹw, ỹl; θ) = log PPL([x; ỹw]; θ)− log PPL([x; ỹl]; θ). (11)

where [x; y] indicates the concatenation of the prompt x and the response y. Intuitively, if a data point156

is a clean preference, the PPL([x; ỹw]; θ) will be lower than PPL([x; ỹl]; θ) because the sequence157

[x; ỹw] is more aligned with human values and thus has a higher probability of being generated by158

aligned LLMs. As a result, it PPLDiff will be lower compared to NPs, which PPL([x; ỹw]; θ) is159

higher than PPL([x; ỹl]; θ). This difference allows us distinguish CPs and NPs based on PPLDiff.160

Aligning a surrogate LLM only using clean validation data. Here, we leverage a clean validation161

dataset Dval to obtain an aligned surrogate LLM to make PPLDiff able to distinguish CPs and NPs.162

We empirically find that the PPLDiff values of CPs and NPs calculated by an unaligned LLM in the163

noisy training dataset were initially indistinguishable as shown in Figure 2a, making it impossible to164
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differentiate the NPs from CPs. This is because an unaligned LLM lacks the necessary preferences to165

distinguish NPs and CPs.166

Therefore, we introduce a surrogate LLM πθ′ parameterized by θ′ to replace the unaligned LLM and167

use it for calculating PPLDiff. We optimize the surrogate LLM πθ′ using the clean validation dataset168

Dval as follows:169

max
θ′

E(x,yw,yl)∼Dval
[GDPO(x, yw, yl; θ)] . (12)

After aligning the surrogate LLM, the PPLDiff values of NPs calculated by the surrogate LLM πθ′ are170

significantly increased and those of CPs are significantly decreased, forming two distinct distributions171

as shown in Figure 2b. This is because the aligned surrogate LLM is trained to generate responses172

that align with human preferences, enhancing its ability to distinguish between NPs and CPs based173

on PPLDiff.174

To separate CPs and NPs in the noisy training dataset without knowing the oracle preferences, we175

leverage the Levenberg-Marquardt (LM) algorithm to find two normal distributions that fit the density176

of PPLDiff calculated by the aligned surrogate LLM. Specifically, the LM algorithm returns the177

constants ε̄, µ̄, σ̄ that satisfies the following condition:178

h(x|ε̄, µ̄, σ̄) = (1− ε̄)fclean(x|µ̄, σ̄2) + εfnoisy(x| − µ̄, σ̄2), (13)

where f(x|µ, σ2) =
1√
2σ2π

exp(− (x− µ)2

2σ2
). (14)

Note that x is the PPLDiff value and h(x|ε̄, µ̄, σ̄) is the superposition of these two normal distribution.179

We denote fclean(x|µ̄, σ̄2) as the normal distribution fitting the PPLDiff of CPs and fnoisy(x|− µ̄, σ̄2)180

as the normal distribution fitting the PPLDiff of NPs since the PPLDiff of NPs is intuitively higher181

than that of CPs. In this way, we can obtain two distinguishable normal distributions to separate182

NPs and CPs as shown in the green and red dotted lines of Figure 2b without knowing the oracle183

preferences.184

Further aligning the surrogate LLM using extra reliable training data from noisy training185

datasets. After aligning only using the clean validation datasets, the discriminatory power of the186

PPLDiff is still far from satisfactory because of the large overlap between the two normal distributions.187

Therefore, we align the surrogate LLM with more reliable training data to make the PPLDiff of CPs188

and that of NPs more separable. We iteratively align the surrogate LLM πθ′ using more reliably clean189

training data whose PPLDiff is extremely small and reliably noisy training data whose PPLDiff is190

extremely large after correction by flipping the label of the response.191

Specifically, at epoch t ∈ N, we select (t − 1) · α · |D̃| of the training data along with the clean192

validation data for further alignment where α ∈ (0, 1) is the selection ratio and |D̃| = N is the193

number of data points in noisy training dataset. As shown in Lines 33–45 of Algorithm 2, the selected194

reliable training dataset D′
t consists of (t− 1) · α · (1− ε̄) · |D̃| reliably clean training data whose195

PPLDiff values are smallest (t− 1) ·α · (1− ε̄) percent and (t− 1) ·α · ε̄ · |D̃| reliably noisy training196

data after correction. Note that the reliably clean training data are the data points whose PPLDiff197

values are smallest (t − 1) · α · (1 − ε̄) percent (located in the green area of Figure 2c), and the198

reliably noisy training data whose PPLDiff values are largest (t− 1) · α · ε̄ percent (located in the red199

area of Figure 2c) among all the training data points.200

Detecting and correcting NPs based on PPLDiff to output a denoised training dataset. Based201

on the PPLDiff calculated by the aligned surrogate LLM, PerpCorrect detects and corrects NPs202

whose PPLDiff value is lower than a certain threshold. We take the x-coordinate of the intersection203

of the two normal distributions as the threshold (the black dotted line in Figure 2d). As shown in204

Lines 23–31, data points whose PPLDiff values are larger than this threshold are identified as CPs205

(the green area in Figure 2d), and other data points are identified as NPs requiring correction (the red206

area in Figure 2d). In this way, we can obtain a denoised training dataset for robust alignment.207

Further, we select an optimal denoised training dataset to further enhance the performance of208

robust alignment according to the intersection area of the two normal distributions. We denote the209

intersection area of two normal distributions as the estimated NP proportion of the denoised training210

dataset, i.e.,211

ε′PC =

∫ + inf

− inf

min{(1− ε̄)fclean(x|µ̄, σ̄2), ε̄fnoisy(x| − µ̄, σ̄2)}dx, (15)
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Algorithm 1 Robust Alignment via Perplexity-aware Correction (PerpCorrect)

1: Input: Noisy training dataset D̃, clean validation dataset Dval, and pre-trained LLM πθ parame-
terized by θ

2: Output: Robust alignment model πθ

3: // Stage I: Supervised fine-tuning (SFT)
4: πθ ← Supervised fine-tuned LLM πθ. (Details in Appendix C.3)
5: // Stage II: Perplexity-aware correction using the surrogate LLM
6: D̃denoised, ε′denoised ← Perplexity-aware Correction (πθ, D̃, Dval) (Details in Algorithm 2)
7: // Stage III: Alignment with denoised dataset
8: πθ ← Aligned LLM πθ using D̃denoised and ε′denoised (Details in Appendix C.3)

where ε′PC calculates the ratio of noisy data points which are not detected by PerpCorrect (i.e.,212

the green area enclosed by the black and red lines in Figure 2d) and the clean data points which213

are mistakenly detected by PerpCorrect (i.e., the red area enclosed by the black and green lines in214

Figure 2d). In this way, ε′PC can efficiently calculate the NP proportion of the denoised training215

dataset. We take the denoised training dataset with the smallest ε′PC among multiple iterations as the216

optimal one for robust alignment to boost alignment performance.217

3.2 Robust Alignment218

Here, we introduce how to adapt PerpCorrect to robustify various alignment methods and demonstrate219

the algorithm of robust alignment via PerpCorrect in Algorithm 1. In general, the pipeline of the220

robust alignment based on PerpCorrect contains three stages: SFT, PerpCorrect, and alignment. We221

will first conduct SFT, following Christiano et al. [7], to boost the performance of a pre-trained LLM222

by boosting its skills for specific tasks. Next, we will conduct PerpCorrect to detect and correct NPs223

and output an optimal denoised training dataset D̃denoised the smallest ε′PC in Eq. 15. Finally, we224

can obtain an aligned LLM from the SFT model using the denoised training dataset D̃denoised via225

alignment (i.e., Line 8 in Algorithm 1).226

Due to that our proposed PerpCorrect is agnostic to alignment methods and model structures,227

PerpCorrect is applicable to robustify both online alignment methods such as RLHF (PPO) [7] and228

offline alignment methods including DPO [19], SLiC [28], and IPO [1]. Besides, our proposed229

PerpCorrect is compatible with existing loss-oriented robust alignment methods, such as cDPO [15]230

and rDPO [6], based on the estimated proportion of NPs. Note that cDPO and rDPO require231

conducting computationally expensive cross-validation to tune the estimated proportion of NPs. We232

can efficiently estimate the proportion of NPs by utilizing the fitted normal distributions during233

PerpCorrect, i.e., ε′PC in Eq. 15. Therefore, we can combine PerpCorrect with a wide range of234

existing alignment methods to achieve robust alignment with NPs.235

4 Experiments236

In this section, we demonstrate that our proposed PerpCorrect achieves state-of-the-art alignment237

performance under different proportion of NPs and have good compatibility with other alignment238

methods. In Section 4.1, PerpCorrect combined with DPO [19] achieves state-of-the-art alignment239

performance than existing baselines (Section 4.1), including DPO [19], cDPO [15], and rDPO [6].240

In Section 4.2, we further analyze the impact of the number of validation data and verified the241

compatibility of PerpCorrect with online and offline alignment methods and robust alignment methods.242

The training details and compute resources are reported in Appendix C.1.243

Datasets. We utilize two preference datasets, namely OpenAssistant Conversations (OASST1) [11]244

and Golden HH [5]. The processed OASST1 dataset comprises 17,939 training samples and 951245

testing samples and the processed Golden HH dataset consists of 12,066 training samples and 654246

testing samples. The description and processing details of these datasets are provided in Appendix C.2.247

Models. Our evaluation leverages two distinct series of open-sourced LLMs with different parameter248

sizes: Llama2-7B [24] and phi-2 [14]. We acquire the checkpoints from their official repositories on249

Hugging Face. The LLMs used for PerpCorrect and those for robust alignment share the same model250

structure and initialization.251

Baselines. We adopt vanilla DPO [19] and two robust alignment methods, cDPO [15] and rDPO [6],252

as baselines. For their detailed implementation, we utilize and adapt the transformers and TRL253

libraries provided by the Hugging Face community.254
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Table 1: Average reward accuracy of DPO se-
ries alignment methods using Llama2-7B on the
Golden HH dataset. The standard deviation of
reward accuracy is reported in Table 7

.
Method Proportion of noisy preferences (%)

10 20 30 40
vanilla DPO 92.53% 82.62% 68.50% 53.15%

cDPO 96.04% 90.85% 83.23% 65.60%
rDPO 96.65% 95.22% 93.90% 90.45%

PerpCorrect-DPO 97.51% 96.24% 95.53% 94.92%

Table 2: Average reward accuracy of PPO se-
ries alignment methods using Llama2-7B on the
Golden HH dataset. The standard deviation of
reward accuracy is reported in Table 8

.
Method Proportion of noisy preferences (%)

10 20 30 40
vanilla PPO 96.64% 92.71% 90.21% 86.29%

cPPO 96.18% 93.63% 90.62% 88.02%
rPPO 95.92% 93.73% 92.05% 90.62%

PerpCorrect-PPO 96.38% 94.04% 93.99% 93.17%

Table 3: Performance of DPO series alignment
methods using phi-2 on the Golden HH dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla DPO 94.97% 82.01% 70.12% 55.79%
cDPO 98.32% 90.40% 81.10% 60.52%
rDPO 95.88% 94.51% 95.12% 88.57%

PerpCorrect-DPO 98.78% 97.10% 98.32% 98.02%

Table 4: Performance of DPO series alignment
methods using phi-2 on the OASST1 dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla DPO 67.68% 63.31% 59.45% 51.82%
cDPO 67.51% 62.36% 54.66% 48.81%
rDPO 63.48% 58.82% 57.35% 51.05%

PerpCorrect-DPO 71.15% 67.61% 67.58% 67.26%

Table 5: Impact of the number of clean validation data evaluated on the Golden HH dataset using
Llama2-7B with a proportion of NPs ε = 40%.

Number 10 20 30 40 50 100 200
Reward accuracy 81.40% 88.26% 94.21% 94.21% 95.43% 95.43% 96.04%

Metrics. In accordance with Chowdhury et al. [6], we employ the winning rate of policy generations255

against the selected preferences on the test dataset as our primary metric. This metric applies to vanilla256

DPO [19], cDPO [15], rDPO [6], as well as other offline alignment methods including SLiC [28]257

and IPO [1]. Additionally, we utilize the winning rate of the reward model score for the chosen258

preferences on the test dataset as our metric for vanilla PPO [17], cPPO [15, 25], and rPPO [6]. These259

two metrics are collectively called reward accuracy.260

4.1 PerpCorrect Achieves the State-of-the-Art Robust Alignment Performance261

The empirical results demonstrate that our method, PerpCorrect, achieves state-of-the-art robust262

alignment performance, surpassing existing baselines such as vanilla DPO [19], cDPO [15], and263

rDPO [6]. This is evident across various proportions of noisy preferences ε using different datasets264

and LLMs.265

Comparison using different LLMs. Tables 1 and 3 show alignment performance of DPO series266

alignment methods on the Golden HH [5] dataset using Llama2-7B [24] and phi-2 [14]. At a267

proportion of the NPs ε = 40%, PerpCorrect increases the reward accuracy by 41.77% (from 53.15%268

to 94.92%) using Llama2-7B and by 42.23% (from 55.79% to 98.02%) using phi-2. The empirical269

result validates that our proposed PerpCorrect can be used on different sizes of LLMs and achieve270

better alignment performance than baselines.271

Comparison on different datasets. Tables 3 and 4 present the alignment performance of various272

DPO series alignment methods on the Golden HH [5] and OASST1 [11] datasets, utilizing phi-2 [14].273

The empirical results reveal a significant discrepancy in average reward accuracy between the more274

complex OASST1 dataset and the Golden HH dataset. The performance of other robust alignment275

methods is found to be unsatisfactory on the OASST1 dataset, often not surpassing the vanilla DPO.276

In contrast, our method PerpCorrect consistently maintains strong alignment performance across277

varying proportions of noisy preferences. In general, our method PerpCorrect can achieve better278

alignment performance than baselines across different datasets.279

4.2 Ablation Study280

Impact of the number of clean validation data. Table 5 illustrates the impact of the number of281

clean validation data points. We conducted experiments on the Golden HH dataset using Llama2-282

7B with a proportion of NPs ε = 40%. The empirical results indicate that as the number of clean283

validation data points increases, the performance of our method, PerpCorrect, also improves. However,284

when the number is too large, the improvement in performance is not obvious, and the cost of manual285

annotation significantly increases.286
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Table 6: Reward accuracy and improvements of the offline and robust alignment methods, as well as
those combined with PerpCorrect, using Llama2-7B on the Golden HH dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

DPO 92.53% 82.62% 68.50% 53.15%
PerpCorrect-DPO 97.51% 96.24% 95.53% 94.92%

∆ +4.98% +13.62% +27.03% +41.77%
SLiC 97.56% 88.87% 83.84% 67.84%

PerpCorrect-SLiC 98.32% 96.49% 96.65% 96.34%
∆ +0.76% +7.62% +12.80% +28.51%

IPO 98.02% 92.23% 81.25% 61.74%
PerpCorrect-IPO 99.09% 99.39% 98.02% 98.93%

∆ +1.07% +7.16% +16.77% +37.20%
cDPO 96.04% 90.85% 83.23% 65.60%

PerpCorrect-cDPO 98.78% 98.17% 96.80% 89.18%
∆ +2.74% +7.32% +13.57% +23.58%

rDPO 96.65% 95.22% 93.90% 90.45%
PerpCorrect-rDPO 96.19% 95.27% 95.73% 95.58%

∆ -0.46% +0.05% +1.83% +5.13%

Compatibility with online alignment method RLHF (PPO). We adopt vanilla PPO [17],287

cPPO [15, 25], and rPPO [6] as baselines. Table 2 shows the alignment performance of PPO288

series alignment methods on the Golden HH [5] dataset using Llama2-7B. Although vanilla PPO289

has good performance when the proportion of NPs is low, it still declines significantly when the290

proportion is high. PerpCorrect maintains desirable alignment performances when the proportion291

of NPs is high. Our empirical results show that PerpCorrect has desirable compatibility with online292

alignment method RLHF (PPO).293

Compatibility with various offline alignment methods. Table 6 presents the alignment perfor-294

mance and improvements of original offline alignment methods compared to those combined with295

PerpCorrect. Our experiments, conducted on the Golden HH dataset using Llama2-7B, reveal that296

the reward accuracy of SLiC [28] and IPO [1] both significantly decrease as the proportion of NPs297

increases, similar to vanilla DPO [19]. However, our method PerpCorrect enhances their alignment298

performance across different proportions of NPs. Notably, IPO combined with PerpCorrect achieves299

the best alignment performance. These empirical results demonstrate that our method has good300

compatibility with various offline alignment methods.301

Compatibility with robust alignment methods. Table 6 shows the alignment performance and302

improvements of robust alignment methods compared to those combined with PerpCorrect. Our303

method, PerpCorrect, can significantly enhance the performance of cDPO [15], and provide a modest304

improvement for rDPO [6] under almost all proportion of NPs. The empirical results show that our305

method has good compatibility with robust alignment methods.306

5 Conclusions307

This paper proposes a method called perplexity-aware correction (PerpCorrect), as an effective308

approach for robust alignment with noisy preferences (NPs). PerpCorrect utilizes a surrogate LLM309

to calculate a novel metric, PPLDiff, and further detects and corrects NPs from clean preferences310

(CPs) based on it. PerpCorrect consists of three steps: (1) First, PerpCorrect aligns a surrogate LLM311

using the clean validation dataset, enabling PPLDiff to distinguish between CPs and NPs. (2) Next,312

PerpCorrect enhances the discrimination power of PPLDiff by aligning the surrogate LLM with313

more reliable training data. (3) Finally, PerpCorrect detects and corrects NPs from CPs based on a314

calculated threshold and obtains a denoised training dataset. The paper further proposes a robust315

alignment pipeline, consisting of three stages SFT, PerpCorrect, and alignment, to achieve robust316

alignment with NPs. The experimental results validate that PerpCorrect achieves state-of-the-art317

alignment performance and has good compatibility with other online, offline, and robust alignment318

methods. Therefore, PerpCorrect can be an effective method to mitigate the impact of NPs and can319

be used for robust alignment. Future research directions include: (1) Improving the time efficiency320

of PerpCorrect and (2) Reducing the amount of clean validation data required to achieve the same321

alignment performance.322
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A Limitations424

We discuss some limitations of this work to stimulate further research in this direction. Our limitations425

mainly stem from two aspects: time efficiency issues caused by multiple calculations of PPLDiff and426

repeated training of a surrogate LLM, and the need for a validation dataset.427

Time efficiency. Iteratively calculating the PPLDiff value for each data point and aligning a428

surrogate LLM is time-consuming. Selecting reliably training data and denoising the training dataset429

requires that the PPLDiff value be calculated for each data point during each epoch, which may cause430

unnecessary calculations for CPs and NPs that can already be clearly distinguished. Besides, aligning431

a surrogate LLM with same size as the LLM for alignment multiple times is time-consuming.432

Validation dataset. PerpCorrect requires a validation dataset for aligning a surrogate LLM. How-433

ever, manually annotating a validation dataset is complex and labor-intensive in practice. As shown in434

Table 5, there is a significant disparity in alignment performance when comparing the use of 10 clean435

samples to 50 clean samples. Exploring how to use fewer clean samples or even no clean samples to436

achieve the same or better performance is a problem worth further investigation.437

B Broader Impacts438

Our proposed PerpCorrect and robust alignment pipeline offers a solution for achieving state-of-the-439

art performance in robust alignment under noisy preferences. PerpCorrect is designed to effectively440

reduce malicious noise in the dataset and mitigate biases introduced by human annotators, ensuring441

that the trained language model (LLM) is accurately aligned with true human preferences.442

Moreover, we recognize a potential risk: if malicious users exploit our method for reverse training,443

they might compromise the security mechanisms of existing open-source LLMs. Existing research444

has demonstrated the possibility of reverse training [26].445

C Implementation details446

C.1 Training details and compute resources.447

We utilized the Qlora method [8] for fine-tuning the LLMs, executed on RTX 4090 GPUs with448

24 GB of memory. Hyperparameters were set as follows: lora_rank = 32, lora_dropout = 0.1,449

and lora_alpha = 16. For SFT, we use the alpaca dataset [23] and set learning_rate = 2e − 4450

and batch_size = 20. For our PerpCorrect stage II, we set β = 0.1, learning_rate = 1e − 3,451

batch_size = 4, T = 5, and α = 0.02. For our PerpCorrect stage III and all other alignment methods,452

we set β = 0.1, learning_rate = 3e−4, and batch_size = 20. Other details not mentioned, we follow453

the default setting in TRL library. Each experiment, involving a specific method and proportion of454

NPs, could be completed using a single RTX 4090 GPU within 24 hours on the Golden HH dataset455

and within 72 hours on the OASST1 dataset.456

C.2 Description and Processing Details of the Datasets457

OpenAssistant Conversations Dataset (OASST1). The original OASST1 dataset [11] is an458

assistant-style conversation corpus generated and annotated by humans. It consists of over 10,000459

fully annotated conversations in 35 different languages. Sileo [21] converted these conversations460

into a preference dataset comprising 17,966 training samples and 952 testing samples. After filtering461

out conversations with one or fewer letters, we obtained a preference dataset with 17,939 training462

samples and 951 testing samples.463
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Table 7: The standard deviation of reward ac-
curacy of DPO series alignment methods using
Llama2-7B on the HHGolden dataset. The aver-
age reward accuracy is reported in Table 1

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla DPO 0.81% 0.40% 2.52% 2.60%
cDPO 1.15% 0.81% 1.76% 1.64%
rDPO 0.26% 1.53% 0.95% 1.92%

PerpCorrect-DPO 0.63% 0.87% 1.73% 0.63%

Table 8: The standard deviation of reward ac-
curacy of PPO series alignment methods using
Llama2-7B on the HHGolden dataset. The aver-
age reward accuracy is reported in Table 2

Method Proportion of noisy preferences (%)
10 20 30 40

vanilla PPO 0.15% 1.30% 4.05% 0.77%
cPPO 0.15% 1.53% 4.61% 5.89%
rPPO 0.62% 1.38% 1.55% 5.29%

PerpCorrect-PPO 0.35% 1.15% 1.34% 1.57%

Golden HH. The original Golden HH dataset [5] is a preference dataset consisting of 42,537464

training samples and 2,312 testing samples. Each sample has two keys: one representing the prompt465

x and the chosen response yw, and the other representing the prompt x and the rejected response yl.466

We first converted the dataset into a triple form: prompt x, chosen response yw, and rejected response467

yl, retaining only one-turn conversation data. After filtering out samples with one or fewer letters, we468

obtained a preference dataset with 12,066 training samples and 654 testing samples.469

C.3 Detailed Robust Alignment via Perplexity-aware Correction470

Supervised Fine-Tuning (SFT). The objective of Supervised Fine-Tuning (SFT) is to enhance471

the performance of a pre-trained large language model (LLM) by refining its abilities for specific472

tasks. As demonstrated by prior work [7, 18, 17], this can be achieved by utilizing supervised473

fine-tuning with a specialized dataset tailored to the target task. The SFT dataset is annotated with474

labels, providing examples that are directly relevant to the task. Specifically, for each data point (x, y)475

in the SFT dataset, x represents the prompt given to the LLM, and y represents the expected response476

that the model should generate based on the prompt x. The process involves fine-tuning the LLM by477

maximizing the log-likelihood of the correct responses y given the prompts x. Through this method,478

the model learns to produce more accurate and task-specific outputs, thereby significantly improving479

its performance on the given task.480

Perplexity-aware Correction (PerpCorrect). We demonstrate the entire PerpCorrect algorithm in481

Algorithm 2.482

Alignment. We can achieve alignment using the denoised training dataset D̃denoised with an483

estimated proportion of NPs ε′denoised. For offline alignment methods such as DPO, SLiC, and IPO,484

we can directly optimize the LLM using the denoised training dataset D̃denoised based on the loss485

functions defined in Eqs. 6–8. For loss-based robust alignment methods, including cDPO and rDPO,486

we set ε′ = ε′denoised and then optimize the LLM using the denoised training dataset D̃denoised487

according to the loss functions mentioned in Eqs. 9 and 10. For the online alignment method RLHF488

(PPO), we first train a reward model using the denoised training dataset D̃denoised based on the loss489

function described in Eq. 3. Subsequently, we further optimize the LLM using PPO according to the490

objective function detailed in Eq. 4.491

D Extended Experimental Results492

For all the results presented in Table 1 and Table 2, we conducted three replicate experiments using493

different seeds. We reported the average reward accuracy and the standard deviation.494
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Algorithm 2 Perplexity-aware Correction (PerpCorrect)

1: Input: Noisy training dataset D̃, clean validation dataset Dval, LLM πθ parameterized by θ

2: Output: Denoised training dataset D̃denoised and estimated proportion of NPs ε′denoised
3: πθ′ ← πθ, D′

0 ← ∅, ε′denoised ← 1, D̃denoised ← D̃,
4: for epoch t = 0, . . ., T do
5: // Aligning the surrogate LLM
6: πθ′ ← Alignment (πθ′ , D′

t ∪ Dval)
7: // Calculating the PPLDiff values for each data point
8: Ω← ∅
9: for (x̃, ỹw, ỹl) ∈ D̃ do

10: z ← log PPL(x+ ỹw; θ
′)− log PPL(x+ ỹl; θ

′)

11: Ω← Ω ∪ {(x̃, ỹw, ỹl, z)}
12: end for
13: // Fitting PPLDiff density of noisy training dataset
14: ε̄, µ̄, σ̄ ← Fitted parameters using Levenberg-Marquard algorithm with Ω

15: // Estimating NPs proportion of the denoised training dataset
16: ε′PC ← Estimated proportion of NPs using the Eq.15 based on ε̄, µ̄, σ̄
17: // Keeping denoised training dataset with the smallest ε′denoised
18: if ε′PC < ε′denoised then
19: ε′denoised ← ε′PC

20: // Calculating the Threshold τ

21: τ ← x-coordinate of the intersection of the two normal distributions(ε̄, µ̄, σ̄)
22: // Distinguishing CPs and NPs based on the threshold τ and correcting NPs
23: D̃CPs ← ∅, D̃NPs ← ∅
24: for (x̃, ỹw, ỹl, z) ∈ Ω do
25: if z > τ then
26: D̃CPs ← D̃CPs ∪ {(x̃, ỹw, ỹl)}
27: else
28: D̃NPs ← D̃NPs ∪ {(x̃, ỹl, ỹw)}
29: end if
30: end for
31: D̃Donised ← D̃CPs ∪ D̃NPs

32: end if
33: DClean ← ∅, DNoisy ← ∅
34: // Calculating the left bound τl and the right bound τr
35: τl ← (t− 1) · α · (1− ε̄) · |D̃|-th smallest PPLDiff value in Ω

36: τr ← (t− 1) · α · ε̄ · |D̃|-th largest PPLDiff value in Ω

37: // Finding extra reliable training data
38: for (x̃, ỹw, ỹl, z) ∈ Ω do
39: if z < τl then
40: DClean ← DClean ∪ {(x̃, ỹw, ỹl)}
41: end if
42: if z > τr then
43: DNoisy ← DNoisy ∪ {(x̃, ỹl, ỹw)}
44: end if
45: end for
46: D′

t+1 ← DClean ∪ DNoisy

47: end for
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NeurIPS Paper Checklist495

The checklist is designed to encourage best practices for responsible machine learning research,496

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove497

the checklist: The papers not including the checklist will be desk rejected. The checklist should498

follow the references and follow the (optional) supplemental material. The checklist does NOT count499

towards the page limit.500

Please read the checklist guidelines carefully for information on how to answer these questions. For501

each question in the checklist:502

• You should answer [Yes] , [No] , or [NA] .503

• [NA] means either that the question is Not Applicable for that particular paper or the504

relevant information is Not Available.505

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).506

The checklist answers are an integral part of your paper submission. They are visible to the507

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it508

(after eventual revisions) with the final version of your paper, and its final version will be published509

with the paper.510

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.511

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a512

proper justification is given (e.g., "error bars are not reported because it would be too computationally513

expensive" or "we were unable to find the license for the dataset we used"). In general, answering514

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we515

acknowledge that the true answer is often more nuanced, so please just use your best judgment and516

write a justification to elaborate. All supporting evidence can appear either in the main paper or the517

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification518

please point to the section(s) where related material for the question can be found.519

IMPORTANT, please:520

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",521

• Keep the checklist subsection headings, questions/answers and guidelines below.522

• Do not modify the questions and only use the provided macros for your answers.523

1. Claims524

Question: Do the main claims made in the abstract and introduction accurately reflect the525

paper’s contributions and scope?526

Answer: [Yes]527

Justification: Our introduction covers our contributions, main methods and experimental528

results.529

Guidelines:530

• The answer NA means that the abstract and introduction do not include the claims531

made in the paper.532

• The abstract and/or introduction should clearly state the claims made, including the533

contributions made in the paper and important assumptions and limitations. A No or534

NA answer to this question will not be perceived well by the reviewers.535

• The claims made should match theoretical and experimental results, and reflect how536

much the results can be expected to generalize to other settings.537

• It is fine to include aspirational goals as motivation as long as it is clear that these goals538

are not attained by the paper.539

2. Limitations540

Question: Does the paper discuss the limitations of the work performed by the authors?541

Answer: [Yes]542
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Justification: We discussed the efficiency issues and data volume requirements of our method543

PerpCorrect in the Conclusions section.544

Guidelines:545

• The answer NA means that the paper has no limitation while the answer No means that546

the paper has limitations, but those are not discussed in the paper.547

• The authors are encouraged to create a separate "Limitations" section in their paper.548

• The paper should point out any strong assumptions and how robust the results are to549

violations of these assumptions (e.g., independence assumptions, noiseless settings,550

model well-specification, asymptotic approximations only holding locally). The authors551

should reflect on how these assumptions might be violated in practice and what the552

implications would be.553

• The authors should reflect on the scope of the claims made, e.g., if the approach was554

only tested on a few datasets or with a few runs. In general, empirical results often555

depend on implicit assumptions, which should be articulated.556

• The authors should reflect on the factors that influence the performance of the approach.557

For example, a facial recognition algorithm may perform poorly when image resolution558

is low or images are taken in low lighting. Or a speech-to-text system might not be559

used reliably to provide closed captions for online lectures because it fails to handle560

technical jargon.561

• The authors should discuss the computational efficiency of the proposed algorithms562

and how they scale with dataset size.563

• If applicable, the authors should discuss possible limitations of their approach to564

address problems of privacy and fairness.565

• While the authors might fear that complete honesty about limitations might be used by566

reviewers as grounds for rejection, a worse outcome might be that reviewers discover567

limitations that aren’t acknowledged in the paper. The authors should use their best568

judgment and recognize that individual actions in favor of transparency play an impor-569

tant role in developing norms that preserve the integrity of the community. Reviewers570

will be specifically instructed to not penalize honesty concerning limitations.571

3. Theory Assumptions and Proofs572

Question: For each theoretical result, does the paper provide the full set of assumptions and573

a complete (and correct) proof?574

Answer: [NA]575

Justification: The paper does not include theoretical results.576

Guidelines:577

• The answer NA means that the paper does not include theoretical results.578

• All the theorems, formulas, and proofs in the paper should be numbered and cross-579

referenced.580

• All assumptions should be clearly stated or referenced in the statement of any theorems.581

• The proofs can either appear in the main paper or the supplemental material, but if582

they appear in the supplemental material, the authors are encouraged to provide a short583

proof sketch to provide intuition.584

• Inversely, any informal proof provided in the core of the paper should be complemented585

by formal proofs provided in appendix or supplemental material.586

• Theorems and Lemmas that the proof relies upon should be properly referenced.587

4. Experimental Result Reproducibility588

Question: Does the paper fully disclose all the information needed to reproduce the main ex-589

perimental results of the paper to the extent that it affects the main claims and/or conclusions590

of the paper (regardless of whether the code and data are provided or not)?591

Answer: [Yes]592

Justification: We show all the experiment detail in the Experiments section and Appendix.593

Guidelines:594
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• The answer NA means that the paper does not include experiments.595

• If the paper includes experiments, a No answer to this question will not be perceived596

well by the reviewers: Making the paper reproducible is important, regardless of597

whether the code and data are provided or not.598

• If the contribution is a dataset and/or model, the authors should describe the steps taken599

to make their results reproducible or verifiable.600

• Depending on the contribution, reproducibility can be accomplished in various ways.601

For example, if the contribution is a novel architecture, describing the architecture fully602

might suffice, or if the contribution is a specific model and empirical evaluation, it may603

be necessary to either make it possible for others to replicate the model with the same604

dataset, or provide access to the model. In general. releasing code and data is often605

one good way to accomplish this, but reproducibility can also be provided via detailed606

instructions for how to replicate the results, access to a hosted model (e.g., in the case607

of a large language model), releasing of a model checkpoint, or other means that are608

appropriate to the research performed.609

• While NeurIPS does not require releasing code, the conference does require all submis-610

sions to provide some reasonable avenue for reproducibility, which may depend on the611

nature of the contribution. For example612

(a) If the contribution is primarily a new algorithm, the paper should make it clear how613

to reproduce that algorithm.614

(b) If the contribution is primarily a new model architecture, the paper should describe615

the architecture clearly and fully.616

(c) If the contribution is a new model (e.g., a large language model), then there should617

either be a way to access this model for reproducing the results or a way to reproduce618

the model (e.g., with an open-source dataset or instructions for how to construct619

the dataset).620

(d) We recognize that reproducibility may be tricky in some cases, in which case621

authors are welcome to describe the particular way they provide for reproducibility.622

In the case of closed-source models, it may be that access to the model is limited in623

some way (e.g., to registered users), but it should be possible for other researchers624

to have some path to reproducing or verifying the results.625

5. Open access to data and code626

Question: Does the paper provide open access to the data and code, with sufficient instruc-627

tions to faithfully reproduce the main experimental results, as described in supplemental628

material?629

Answer: [Yes]630

Justification: We provide open access to our code using Anonymous Github.631

Guidelines:632

• The answer NA means that paper does not include experiments requiring code.633

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/634

public/guides/CodeSubmissionPolicy) for more details.635

• While we encourage the release of code and data, we understand that this might not be636

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not637

including code, unless this is central to the contribution (e.g., for a new open-source638

benchmark).639

• The instructions should contain the exact command and environment needed to run to640

reproduce the results. See the NeurIPS code and data submission guidelines (https:641

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.642

• The authors should provide instructions on data access and preparation, including how643

to access the raw data, preprocessed data, intermediate data, and generated data, etc.644

• The authors should provide scripts to reproduce all experimental results for the new645

proposed method and baselines. If only a subset of experiments are reproducible, they646

should state which ones are omitted from the script and why.647

• At submission time, to preserve anonymity, the authors should release anonymized648

versions (if applicable).649
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• Providing as much information as possible in supplemental material (appended to the650

paper) is recommended, but including URLs to data and code is permitted.651

6. Experimental Setting/Details652

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-653

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the654

results?655

Answer: [Yes]656

Justification: We show the entire experimental details in the Experiments section and657

Appendix and provide open access to the code using Anonymous Github.658

Guidelines:659

• The answer NA means that the paper does not include experiments.660

• The experimental setting should be presented in the core of the paper to a level of detail661

that is necessary to appreciate the results and make sense of them.662

• The full details can be provided either with the code, in appendix, or as supplemental663

material.664

7. Experiment Statistical Significance665

Question: Does the paper report error bars suitably and correctly defined or other appropriate666

information about the statistical significance of the experiments?667

Answer: [Yes]668

Justification: We report the standard deviation in the Appendix.669

Guidelines:670

• The answer NA means that the paper does not include experiments.671

• The authors should answer "Yes" if the results are accompanied by error bars, confi-672

dence intervals, or statistical significance tests, at least for the experiments that support673

the main claims of the paper.674

• The factors of variability that the error bars are capturing should be clearly stated (for675

example, train/test split, initialization, random drawing of some parameter, or overall676

run with given experimental conditions).677

• The method for calculating the error bars should be explained (closed form formula,678

call to a library function, bootstrap, etc.)679

• The assumptions made should be given (e.g., Normally distributed errors).680

• It should be clear whether the error bar is the standard deviation or the standard error681

of the mean.682

• It is OK to report 1-sigma error bars, but one should state it. The authors should683

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis684

of Normality of errors is not verified.685

• For asymmetric distributions, the authors should be careful not to show in tables or686

figures symmetric error bars that would yield results that are out of range (e.g. negative687

error rates).688

• If error bars are reported in tables or plots, The authors should explain in the text how689

they were calculated and reference the corresponding figures or tables in the text.690

8. Experiments Compute Resources691

Question: For each experiment, does the paper provide sufficient information on the com-692

puter resources (type of compute workers, memory, time of execution) needed to reproduce693

the experiments?694

Answer: [Yes]695

Justification: We provide detailed sufficient information on the computer resources in the696

Appendix.697

Guidelines:698

• The answer NA means that the paper does not include experiments.699
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,700

or cloud provider, including relevant memory and storage.701

• The paper should provide the amount of compute required for each of the individual702

experimental runs as well as estimate the total compute.703

• The paper should disclose whether the full research project required more compute704

than the experiments reported in the paper (e.g., preliminary or failed experiments that705

didn’t make it into the paper).706

9. Code Of Ethics707

Question: Does the research conducted in the paper conform, in every respect, with the708

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?709

Answer: [Yes]710

Justification: We follow the Code of Ethics.711

Guidelines:712

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.713

• If the authors answer No, they should explain the special circumstances that require a714

deviation from the Code of Ethics.715

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-716

eration due to laws or regulations in their jurisdiction).717

10. Broader Impacts718

Question: Does the paper discuss both potential positive societal impacts and negative719

societal impacts of the work performed?720

Answer: [Yes]721

Justification: We discuss the potential impacts in Appendix.722

Guidelines:723

• The answer NA means that there is no societal impact of the work performed.724

• If the authors answer NA or No, they should explain why their work has no societal725

impact or why the paper does not address societal impact.726

• Examples of negative societal impacts include potential malicious or unintended uses727

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations728

(e.g., deployment of technologies that could make decisions that unfairly impact specific729

groups), privacy considerations, and security considerations.730

• The conference expects that many papers will be foundational research and not tied731

to particular applications, let alone deployments. However, if there is a direct path to732

any negative applications, the authors should point it out. For example, it is legitimate733

to point out that an improvement in the quality of generative models could be used to734

generate deepfakes for disinformation. On the other hand, it is not needed to point out735

that a generic algorithm for optimizing neural networks could enable people to train736

models that generate Deepfakes faster.737

• The authors should consider possible harms that could arise when the technology is738

being used as intended and functioning correctly, harms that could arise when the739

technology is being used as intended but gives incorrect results, and harms following740

from (intentional or unintentional) misuse of the technology.741

• If there are negative societal impacts, the authors could also discuss possible mitigation742

strategies (e.g., gated release of models, providing defenses in addition to attacks,743

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from744

feedback over time, improving the efficiency and accessibility of ML).745

11. Safeguards746

Question: Does the paper describe safeguards that have been put in place for responsible747

release of data or models that have a high risk for misuse (e.g., pretrained language models,748

image generators, or scraped datasets)?749

Answer: [NA]750

Justification: Our robust alignment method does not have a high risk for misuse.751
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Guidelines:752

• The answer NA means that the paper poses no such risks.753

• Released models that have a high risk for misuse or dual-use should be released with754

necessary safeguards to allow for controlled use of the model, for example by requiring755

that users adhere to usage guidelines or restrictions to access the model or implementing756

safety filters.757

• Datasets that have been scraped from the Internet could pose safety risks. The authors758

should describe how they avoided releasing unsafe images.759

• We recognize that providing effective safeguards is challenging, and many papers do760

not require this, but we encourage authors to take this into account and make a best761

faith effort.762

12. Licenses for existing assets763

Question: Are the creators or original owners of assets (e.g., code, data, models), used in764

the paper, properly credited and are the license and terms of use explicitly mentioned and765

properly respected?766

Answer: [Yes]767

Justification: The models and datasets the we used are open-sourced, and we follow their768

license and terms of use.769

Guidelines:770

• The answer NA means that the paper does not use existing assets.771

• The authors should cite the original paper that produced the code package or dataset.772

• The authors should state which version of the asset is used and, if possible, include a773

URL.774

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.775

• For scraped data from a particular source (e.g., website), the copyright and terms of776

service of that source should be provided.777

• If assets are released, the license, copyright information, and terms of use in the778

package should be provided. For popular datasets, paperswithcode.com/datasets779

has curated licenses for some datasets. Their licensing guide can help determine the780

license of a dataset.781

• For existing datasets that are re-packaged, both the original license and the license of782

the derived asset (if it has changed) should be provided.783

• If this information is not available online, the authors are encouraged to reach out to784

the asset’s creators.785

13. New Assets786

Question: Are new assets introduced in the paper well documented and is the documentation787

provided alongside the assets?788

Answer: [Yes]789

Justification: Our training code are open-source on Anonymous GitHub.790

Guidelines:791

• The answer NA means that the paper does not release new assets.792

• Researchers should communicate the details of the dataset/code/model as part of their793

submissions via structured templates. This includes details about training, license,794

limitations, etc.795

• The paper should discuss whether and how consent was obtained from people whose796

asset is used.797

• At submission time, remember to anonymize your assets (if applicable). You can either798

create an anonymized URL or include an anonymized zip file.799

14. Crowdsourcing and Research with Human Subjects800

Question: For crowdsourcing experiments and research with human subjects, does the paper801

include the full text of instructions given to participants and screenshots, if applicable, as802

well as details about compensation (if any)?803
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Answer: [NA]804

Justification: The paper does not involve crowdsourcing nor research with human subjects.805

Guidelines:806

• The answer NA means that the paper does not involve crowdsourcing nor research with807

human subjects.808

• Including this information in the supplemental material is fine, but if the main contribu-809

tion of the paper involves human subjects, then as much detail as possible should be810

included in the main paper.811

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,812

or other labor should be paid at least the minimum wage in the country of the data813

collector.814

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human815

Subjects816

Question: Does the paper describe potential risks incurred by study participants, whether817

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)818

approvals (or an equivalent approval/review based on the requirements of your country or819

institution) were obtained?820

Answer: [NA]821

Justification: The paper does not involve crowdsourcing nor research with human subjects.822

Guidelines:823

• The answer NA means that the paper does not involve crowdsourcing nor research with824

human subjects.825

• Depending on the country in which research is conducted, IRB approval (or equivalent)826

may be required for any human subjects research. If you obtained IRB approval, you827

should clearly state this in the paper.828

• We recognize that the procedures for this may vary significantly between institutions829

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the830

guidelines for their institution.831

• For initial submissions, do not include any information that would break anonymity (if832

applicable), such as the institution conducting the review.833
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