
A Numerical Experiments

In this section, we examine three algorithms via four numerical examples. The first algorithm is the
Sliding Window-UCB (SW-UCB) algorithm presented in our paper. The second algorithm is the naive
UCB algorithm without any sliding windows (Agrawal and Devanur, 2014). The third algorithm is
LagrangeBwK presented in (Immorlica et al., 2019), which is originally proposed for the adversarial
BwK problem. Note that the LagrangeBwK requires an approximation of the static best distribution
benchmark. For simplicity, we put the exact value of the benchmark into the algorithm. All the regret
performances are reported based on the average over 100 simulation trials.

A.1 Cumulative Rewards

We first conduct two experiments and plot the cumulative reward of the three algorithms over time.

1. Example 1: One-dimensional d = 1. A two-armed instance with one resource constraint. T =

10000. B = 5000. The reward is set to be a constant µt,1 = µt,2 = 0.5. For the first half time steps
t ≤ T/2, Ct,1,1 = 0.5, Ct,1,2 = 1.0, while for the second half t > T/2, Ct,1,1 = 1.0, Ct,1,2 = 0.5.
The dynamic optimal benchmark is to play the first arm for the first half and the second arm for
the second half. Accordingly, OPT(T ) = 5000.

2. Example 2: Two-dimensional d = 2. A two-armed instance with two resource constraints. T =

10000. B = 5000. For the first half t ≤ T/2, we set the reward to be µt,1 = µt,2 = 0.5. We set
Ct,1,1 = Ct,2,2 = 1.0 and Ct,1,2 = Ct,2,1 = 0. For the second half t > T/2, we force the first arm
to be sub-optimal with no reward µt,1 = 0 and maximum consumption Ct,1,1 = Ct,2,1 = 1.0, while
changing the second arm to be optimal with µt,2 = 0.5 and Ct,1,2 = Ct,2,2 = 0.5. The dynamic
optimal benchmark is to play both arms with equal chances for the first half and only the second
arm for the second half, yielding OPT(T ) = 5000.

For those two examples, the cumulative rewards versus time steps are shown in Figure 1.
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(b) Example 2: Two dimensional case

Figure 1: Cumulative rewards versus time steps.

The performance of the naive UCB algorithm in one-dimensional case (see Figure 1a) is somewhat
counter-intuitive: the naive UCB algorithm originally designed for the stochastic setting performs com-
parable as the SW-UCB and both are better than LagrangeBwK. The reason is that the naive UCB
algorithm observes the poor performance of the second arm and ends up with playing the second arm
only several hundred times until the second half. So it would not take too long for the naive UCB to
rectify its wrong estimate after entering the second half.
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But for the two-dimensional case (see Figure 1b), the naive UCB algorithm behaves poorly: it suffers
from the abrupt change of the environment and could not adjust its approximation in time. The key
difference between this and the one-dimensional setting is that here the optimal distribution for the first
half requires playing both arms for sufficiently amount of time rather than simply focusing on one single
best arm for one-dimensional cases. As a result, the naive UCB algorithm accumulates linearly many
observations for both arms during the first half, which significantly affects its performance during the
second half. This corresponds to the slope change for the blue curve during the half way.

The algorithm designed specifically for the adversarial BwK, LagrangeBwK, performs slightly worse
than our SW-UCB algorithm in both examples. This may be due to the fact that LagrangeBwK acts
too conservatively for the cases that are not so adversarial.

A.2 Both V and W Matter

In our upper bound analysis, terms that depend on V and that on W both appear. One may wonder:
are both V and W necessary in the analysis? Would it be possible to reduce the terms on V to W or
vice versa, reduce W to V ? In this subsection, we designed two examples to show that both V and W

can make an impact on the performance of BwK algorithms.
The non-stationary BwK problem can be factorized into two sub-problems: identifying the optimal

arm distribution with respect to current environment, and finding a resource allocation rule. Larger
V makes the first task harder, while larger W creates an obstacle for the second. The following two
examples illustrate this intuition.

1. Example 3: Fixed V , different W ’s. A two-armed instance with two resource constraints. T =

10000. B = 2500. The environment has only one abrupt change point at time αT . The local
non-stationarity measure V is invariant regardless of the value of α, while W depends on α. At
the first part t ≤ αT , both arms have a fixed reward µt,1 = µt,2 = 0.5. As for the consumption,
Ct,1,1 = Ct,2,2 = 0.7, Ct,1,2 = Ct,2,1 = 0.3. At the second part t > αT , Ct,1,1 = Ct,1,2 = Ct,2,1 =

Ct,2,2 = 1.0, while the reward µt,1 = 0, µt,2 = 0.7. The dynamic optimal policy is to allocate all the
resources to the first part and play both arms with equal chances, which leads to OPT(T ) = 2500.

2. Example 4: Fixed W , different V ’s. A two-armed instance with two resource constraints. T =

10000. B = 3125. The time horizon is still divided into halves. The first half is stationary, while
the second half is periodic but with different frequencies. At the first half t ≤ T/2, both arms are of
fixed reward µt,1 = µt,2 = 0.5. The resource consumption Ct,1,1 = Ct,2,2 = 1.0, Ct,1,2 = Ct,2,1 = 0.
As for the second half, the first arm now generates no reward µt,1 = 0 but consumes Ct,1,1 = Ct,2,1 =

1.0. The second arm’s reward remains unchanged µt,2 = 0.5, while its consumption Ct,1,2 = Ct,2,2

changes across the time horizon according to a piece-wise linear and periodic function ranging from
0 to 1. Here the global non-stationarity measure W is fixed while V varies with respect to the
frequency. The dynamic optimal policy is to play both arms with equal chances at the first half but
at the second half only the second arm if Ct,1,2 = Ct,2,2 ≤ 0.5. The dynamic optimal benchmark is
OPT(T ) = 3750.

For above two examples, the algorithm regrets under different W or V are shown in Figure 2.
Both SW-UCB and naive UCB divide the resource evenly and assign each part to each time step,

which makes their performance depend on the regret induced by this rule (characterized by W in our
analysis) to a very large extent (as is shown in Figure 2a). In comparison, LagrangeBwK is not so
sensitive to changing W only, partly due to its Hedge way (see Freund and Schapire (1997)) to allocate
resources. For a relatively small W (which means that the problem is not so adversarial), one can expect
SW-UCB to outperform LagrangeBwK, while for a very large W the adversarial algorithm could be
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(b) Example 4: Fixed W , different V ’s

Figure 2: Regret versus different W ’s or V ’s.

better. Note that the performance of naive UCB suffers from the abrupt change of the environment (as
is shown in Figure 1b and corresponding analysis).

When W is fixed, the regret varies according to the difficulty in identifying the optimal arm distri-
bution, as is shown in Figure 2b. For those environments that do not vary rapidly, SW-UCB achieves a
better regret result, while LagrangeBwK is still insensitive to V due to its adversarial nature. When the
environment changes rapidly, SW-UCB fails from precisely learning the environment, while still achieving
a better result than LagrangeBwK. We note that naive UCB still performs badly in this two-dimensional
case.

B Proofs of Section 2 and Section 3

B.1 Proof of Lemma 1

Proof. We first inspect the null arm (say, the m-th arm) where µt,m = 0 and Ct,j,m = 0. The global
DLP must satisfy that

µt,m −
d∑

j=1

Ct,j,m − (α)t ≤ 0,

i.e.
(α)t ≥ 0.

The same argument applies to the one-step LP such that αt ≥ 0 for all t = 1, ..., T .
Note that the reward is upper bounded by 1. Hence,

LP({µt}, {Ct}, T ) ≤ T,

LP(µt,Ct) ≤ 1, ∀t = 1, . . . , T.

Therefore,

T∥q∗∥∞b ≤ Tb⊤q∗ ≤ Tb⊤q∗ +

T∑
t=1

(α∗)t

= DLP({µt}, {Ct})

= LP({µt}, {Ct}, T ) ≤ T,
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and

∥q∗
t ∥∞b ≤ b⊤q∗

t ≤ b⊤q∗
t + α∗

t

= DLP(µt,Ct)

= LP(µt,Ct) ≤ 1.

Combining above two inequalities together, we have

q̄b ≤ 1.

B.2 Proof of Proposition 1

Proof. The first inequality is straightforward from the fact that the feasible solutions of single-step
LP(µt,Ct)’s yield a feasible solution for the global LP({µt}, {Ct}, T ).

For the second inequality, we study the dual problems. By the strong duality of LP, we have

DLP({µt}, {Ct}) = LP({µt}, {Ct}, T ),

DLP(µ̄, C̄) = LP(µ̄, C̄).

Denote the dual optimal solution w.r.t. (µ̄, C̄) by (q̄∗, ᾱ∗). Then

µ̄ ≤ C̄⊤q̄∗ + ᾱ∗ · 1m

implies that
µt ≤ C⊤

t q̄∗ + ᾱ∗ · 1m + (C̄ −Ct)
⊤q̄∗ + (µt − µ̄), ∀t,

which induces a feasible solution to the dual program DLP({µt}, {Ct}), i.e. (q̄∗,α′), where

α′
t := ᾱ∗ + ∥(C̄ −Ct)

⊤q̄∗ + (µt − µ̄)∥∞.

Hence,

DLP({µt}, {Ct})− T ·DLP(µ̄, C̄) ≤
T∑

t=1

∥(C̄ −Ct)
⊤∥∞∥q̄∗∥∞ +

T∑
t=1

∥µt − µ̄∥∞

=

T∑
t=1

∥C̄ −Ct∥1∥q̄∗∥∞ +

T∑
t=1

∥µt − µ̄∥∞

≤ q̄W2 +W1.

For the last inequality, similar duality arguments can be made with respect to T = 1. Taking a
summation, we yield the final inequality as desired.

B.3 Proofs of Lemma 2 and Lemma 3

Lemma 4 (Azuma-Hoeffding’s inequality). Consider a random variable with distribution supported on
[0, 1]. Denote its expectation as z. Let Z̄ be the average of N independent samples from this distribution.
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Then, ∀δ > 0, the following inequality holds with probability at least 1− δ,

|Z̄ − z| ≤

√
1

2N
log

(
2

δ

)
.

More generally, this result holds if Z1, . . . , ZN ∈ [0, 1] are random variables, Z̄ = 1
N

∑N
n=1 Zt, and

z = 1
N

∑N
n=1 E[Zn|Z1, . . . , Zn−1].

Next, we present a general bound for the normalized empirical mean of the sliding-window estimator:

Lemma 5. For any window size w, define the normalized empirical average within window size w of
some Zt,i ∈ [0, 1] with mean zt,i for each arm i at time step t as

Ẑ
(w)
t,i :=

∑t−1
s=1∨(t−w) Zt · 1{is = i}

n
(w)
t,i + 1

,

where n
(w)
t,i :=

∑t−1
s=1∨(t−w) 1{is = i} is the number of plays of arm i before time step t within w steps.

Then for small δ such that log
(
2
δ

)
> 2, the following inequality holds with probability at least 1− δ,

|Ẑ(w)
t,i − zt,i| ≤

√
2

n
(w)
t,i + 1

log

(
2

δ

)
+

t−1∑
s=1∨(t−w)

|zs,i − zs+1,i|.

Proof. The result follows from applying Lemma 4 to the empirical mean. For the case when n
(w)
t,i = 0,

the result automatically holds. When n
(w)
t,i ≥ 1,

|Ẑ(w)
t,i − zt,i| ≤

n
(w)
t,i

n
(w)
t,i + 1

∣∣∣∣∣Ẑ(w)
t,i −

∑t−1
s=1∨(t−w) zs,i · 1{is = i}

n
(w)
t,i

∣∣∣∣∣+
t−1∑

s=1∨(t−w)

|zs,i − zt,i| · 1{is = i}
n
(w)
t,i + 1

+
zt,i

n
(w)
t,i + 1

≤
n
(w)
t,i

n
(w)
t,i + 1

√
1

2n
(w)
t,i

log

(
2

δ

)
+

t−1∑
s=1∨(t−w)

t−1∑
p=s

|zp,i − zp+1,i| · 1{is = i}
n
(w)
t,i + 1

+

√
1

2(n
(w)
t,i + 1)

log

(
2

δ

)

≤
√

2

n
(w)
t,i + 1

log

(
2

δ

)
+

t−1∑
p=1∨(t−w)

∑p
s=1∨(t−w) 1{is = i}

n
(w)
t,i + 1

|zp,i − zp+1,i|

≤
√

2

n
(w)
t,i + 1

log

(
2

δ

)
+

t−1∑
p=1∨(t−w)

|zp,i − zp+1,i|,

where the first inequality comes from definition of Ẑ(w)
t,i and triangular inequality, the second inequality

comes from Lemma 4, triangular inequality, and the fact that zt,i ≤ 1 ≤
√

log(2/δ)

2(n
(w)
t,i +1)

, the third inequality

comes from the fact that n
(w)
t,i ≤ n

(w)
t,i + 1 and rearranging the sum of p and s, and the last inequality

comes from the fact that
∑p

s=1∨(t−w) 1{is = i} ≤
∑t

s=1∨(t−w) 1{is = i} = n
(w)
t,i ≤ n

(w)
t,i + 1.

Using Lemma 5, we can easily derive the proof of Lemma 2:

Proof. Replacing zt,i by µt,i and Ct,j,i, Ẑ
(w)
t,i by µ̂

(w1)
t,i and Ĉ

(w2)
t,j,i accordingly in Lemma 5 yields the final

result.
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We now start the main proof of Lemma 3.

Proof. We will prove the result for reward first. By Lemma 5, with probability at least 1 − 1
6T , ∀t ≤

min{τ, T}, ∣∣∣∣∣
t∑

s=1

(µs,is −UCBs,is(µs))

∣∣∣∣∣
≤ 2

t∑
s=1

√
2

n
(w1)
s,is

+ 1
log(12mT 3) +

t∑
s=1

s−1∑
p=1∨(t−w1)

∥µp − µp+1∥∞

≤ 2

t∑
s=1

√
2 log(12mT 3)∑s−1

p=1∨(t−w1)
1{ip = is}+ 1

+ w1V1

≤ 2

⌈t/w1⌉−1∑
k=0

(k+1)w1∑
s=kw1+1

√
2 log(12mT 3)√∑s−1

p=kw1+1 1{ip = is}+ 1
+ w1V1

= 2

⌈t/w1⌉−1∑
k=0

m∑
i=1

N
(w1)

k,i∑
n=1

√
2 log(12mT 3)√

n
+ w1V1,

where N
(w1)
k,i :=

∑(k+1)w1

p=kw1+1 1{ip = i},
∑m

i=1 N
(w1)
k,i = w1. Here the first inequality comes from Lemma

5, the second inequality comes from the fact that
∑t

s=1

∑s−1
p=1∨(t−w1)

∥µp − µp+1∥∞ ≤ w1V1, the third
comes from cutting time steps into ⌈t/w1⌉ periods, and the last comes from rearranging the sum with
respect to i. Then we have ∣∣∣∣∣

t∑
s=1

(µs,is −UCBs,is(µs))

∣∣∣∣∣
≤ 2

⌈t/w1⌉−1∑
k=0

m∑
i=1

2
√

2 log(12mT 3)

√
N

(w1)
k,i + w1V1

≤ 2

⌈t/w1⌉−1∑
k=0

2
√
2 log(12mT 3)mw1 + w1V1

≤ 8
√
2 log(12mT 3)m · T

√
w1

+ w1V1, (1)

where the first inequality comes from the fact that
∑N

n=1
1√
n
≤ 2
√
N , the second inequality comes from

Cauchy-Schwarz inequality, and the last comes from the fact that ⌈ t
w1
⌉ ≤ 2T

w .
Furthermore, applying Lemma 4 to rs and µs,is , we have that with probability at least 1 − 1

6mT 2 ,
∀t ≤ min{τ, T}, ∣∣∣∣∣

t∑
s=1

(rs − µs,is)

∣∣∣∣∣ ≤√2T log(12mT 3). (2)

Then we apply Lemma 4 to UCBs(µs)
⊤x∗

s and UCBs,is(µs) and note that UCBs,i(µs) ∈ [0, 1 +√
2 log(12mT 3)]. It yields that with probability at least 1− 1

6mT 2 , ∀t ≤ min{τ, T},∣∣∣∣∣
t∑

s=1

(UCBs(µs)
⊤x∗

s −UCBs,is(µs))

∣∣∣∣∣ ≤ (1 +
√
2 log(12mT 3))

√
2T log(12mT 3).

Combining all these inequalities (1), (2), (3) together, we have with probability at least 1 − 1
2T , ∀t ≤
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min{τ, T}, ∣∣∣∣∣
t∑

s=1

(rs −UCBs(µs)
⊤x∗

s)

∣∣∣∣∣
≤ (2 +

√
2 log(12mT 3))

√
2T log(12mT 3) + 8

√
2 log(12mT 3)m · T

√
w1

+ w1V1

≤ 2
√
2 log(12mT 3) ·

√
2T log(12mT 3) + 8

√
2 log(12mT 3)m · T

√
w1

+ w1V1

= 4
√
T log(12mT 3) + 8

√
2 log(12mT 3)m · T

√
w1

+ w1V1, (3)

where the first inequality comes from inequalities (1), (2), (3), and the second inequality comes from the
fact that log(12mT 3) ≥ 2.

As for the resource consumption, by Lemma 5, with probability at least 1− 1
6T , ∀t ≤ min{τ, T}∣∣∣∣∣

t∑
s=1

(Cs,j,is − LCBs,is(Cs,j))

∣∣∣∣∣
≤ 2

t∑
s=1

√
2

n
(w2)
s,is

+ 1
log(12mdT 3) +

t∑
s=1

s−1∑
p=1∨(t−w2)

∥Cp,j −Cp+1,j∥∞

≤ 2

t∑
s=1

√
2 log(12mdT 3)∑s−1

p=1∨(t−w2)
1{ip = is}+ 1

+ w2V2

≤ 2

⌈t/w2⌉−1∑
k=0

(k+1)w2∑
s=kw2+1

√
2 log(12mdT 3)√∑s−1

p=kw2+1 1{ip = is}+ 1
+ w2V2

= 2

⌈t/w2⌉−1∑
k=0

m∑
i=1

N
(w2)

k,i∑
n=1

√
2 log(12mdT 3)√

n
+ w2V2,

where N
(w2)
k,i :=

∑(k+1)w2

p=kw2+1 1{ip = i},
∑m

i=1 N
(w2)
k,i = w2. Here the first inequality comes from Lemma

5, the second inequality comes from the fact that
∑t

s=1

∑s−1
p=1∨(t−w1)

∥Cp,j−Cp+1,j∥∞ ≤ w2V2, the third
comes from cutting time steps into ⌈t/w1⌉ periods, and the last comes from rearranging the sum with
respect to i. Then we have ∣∣∣∣∣

t∑
s=1

(Cs,j,is − LCBs,is(Cs,j))

∣∣∣∣∣
≤ 2

⌈t/w2⌉−1∑
k=0

m∑
i=1

2
√
2 log(12mdT 3)

√
N

(w2)
k,i + w2V2

≤ 2

⌈t/w2⌉−1∑
k=0

2
√
2 log(12mdT 3)mw2 + w2V2

≤ 8
√
2 log(12mdT 3)m · T

√
w2

+ w2V2, (4)

where the first inequality comes from the fact that
∑N

n=1
1√
n
≤ 2
√
N , the second inequality comes from

Cauchy-Schwarz inequality, and the last comes from the fact that ⌈ t
w1
⌉ ≤ 2T

w .
Similarly, we apply Lemma 4 to LCBs(Cs,j)

⊤x∗
s and LCBs,is(Cs,j) and note that LCBs,i(Cs,j) ∈
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[−
√
2 log(12mdT 3), 1]. It yields that with probability at least 1− 1

6mdT 2 , ∀t ≤ min{τ, T},∣∣∣∣∣
t∑

s=1

(LCBs(Cs,j)
⊤x∗

s − LCBs,is(Cs,j))

∣∣∣∣∣ ≤ (1 +
√
2 log(12mdT 3))

√
2T log(12mdT 3). (5)

Furthermore, applying Lemma 4 to cs,j and Cs,j,is induces that with probability at least 1 − 1
6mdT 2 ,

∀t ≤ min{τ, T}, ∣∣∣∣∣
t∑

s=1

(cs,j − Cs,j,is)

∣∣∣∣∣ ≤√2T log(6mdT 3). (6)

Combining all these inequalities (4), (5), (6) together, we have with probability at least 1 − 1
2T , ∀t ≤

min{τ, T}, ∣∣∣∣∣
t∑

s=1

(cs,j − LCBs(Cs,j)
⊤x∗

s)

∣∣∣∣∣
≤ (2 +

√
2 log(6mdT 3))

√
2T log(6mdT 3) + 8

√
2 log(12mdT 3)m · T

√
w2

+ w2V2

≤ 4
√
T log(6mdT 3) + 8

√
2 log(12mdT 3)m · T

√
w2

+ w2V2.

B.4 Proof of Corollary 1

Proof. Without loss of generality, we only analyze the case that τ ≤ T , i.e. the resource constraint is
violated before time step T . At termination time τ , we have

τ∑
t=1

ct,j > bT

for some j ≤ d.
From the fact that x∗

t is a feasible solution to LP(UCBt(µt),LCBt(Ct)), we have

τ∑
t=1

LCBt(Ct)x
∗
t ≤ bτ.

Combining that inequality with Lemma 3, we have with probability at least 1− 1
2T

τ∑
t=1

ct,j ≤ bτ + 4
√
T log(12mdT 3) + 14m

1
3V

1
3
2 T

2
3 log

1
3 (12mdT 3) + 8

√
2mT

√
log(mdT 3).

Therefore we have

bτ + 4
√
T log(12mdT 3) + 14m

1
3V

1
3
2 T

2
3 log

1
3 (12mdT 3) + 8

√
2mT

√
log(mdT 3) > bT,

which yields the final result.
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B.5 Proof of Theorem 1

Proof. From Lemma 2, we know that with probability at least 1− 1
3T ,

τ−1∑
t=1

UCBt(µt)
⊤xt =

τ−1∑
t=1

LP(UCBt(µt),LCBt(Ct))

≥
τ−1∑
t=1

LP

µt − 1 ·
t−1∑

s=1∨(t−w1)

∥µs − µs+1∥∞, Ct +

d∑
j=1

Ej ·
t−1∑

s=1∨(t−w2,j)

∥Cs,j −Cs+1,j∥∞


≥

τ−1∑
t=1

LP(µt,Ct)−
τ−1∑
t=1

t−1∑
s=1∨(t−w1)

∥µs − µs+1∥∞ − q̄

τ−1∑
t=1

d∑
j=1

t−1∑
s=1∨(t−w2,j)

∥Cs,j −Cs+1,j∥∞

≥ (τ − 1)LP(µ̄, C̄)− (W1 + q̄W2)− (w1V1 + q̄dw2V2),

where Ej is the matrix that is 1⊤ at the j-th row while other components all zeros. Here the first
inequality comes from Lemma 2, the second inequality comes from the proof of Proposition 1, and the
last inequality comes from applying Proposition 1 to

∑τ−1
t=1 LP(µt,Ct).

For Lemma 3, if we select w1 = min
{
⌈m 1

3V
− 2

3
1 T

2
3 log

1
3 (12mT 3)⌉, T

}
, we have ∀t ≤ min{τ, T}

∣∣∣∣∣
t∑

s=1

(rs −UCBs(µs)
⊤x∗

s)

∣∣∣∣∣ ≤ 4
√
T log(12mT 3) + 14m
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3V

1
3
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2
3 log

1
3 (12mT 3) + 8

√
2mT

√
log(12mT 3).

Therefore, by Lemma 3 and Corollary 1, with probability at least 1− 1
T ,

LP({µt}, {Ct}, T )−
τ−1∑
t=1

rt

= (LP({µt}, {Ct}, T )−
τ−1∑
t=1

UCBt(µt)
⊤xt) + (

τ−1∑
t=1

UCBt(µt)
⊤xt −

τ−1∑
t=1

rt)

≤ (4
√
T log(12mdT 3) + 14m
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1
3
2 T

2
3 log

1
3 (12mdT 3) + 8

√
2mT

√
log(12mdT 3) + 1) · LP(µ̄, C̄)
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√
T log(12mT 3) + 14m
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3 (12mT 3) + 8

√
2mT

√
log(12mT 3)

+ 2(W1 + q̄W2) + w1V1 + q̄dw2V2

= O

(
1

b

√
mT log(mdT 3) +m

1
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1
3
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2
3 log

1
3 (mT 3) +

1

b
·m 1

3 dV
1
3
2 T

2
3 log

1
3 (mdT 3) +W1 + q̄W2

)
,

where we utilize the fact that q̄d ≤ 1
b · d by Lemma 1 at the last equality.

Note that OPT is of linear T (in fact, OPT ≤ LP({µt}, {Ct}, T ) ≤ T ), which transforms the high
probability bound into the expectation bound.

B.6 Proof of Theorem 2

Proof. The first lower bound follows directly from Besbes et al. (2014). For here, we provide a brief
description for completeness. The time horizon is divided into ⌈ TH ⌉ periods, where each is of length H

except possibly the last one (H to be specified). For each period, the nature selects an arm to be optimal
uniformly randomly and independently, which is of mean reward r∗ = 1

2 + ∆, where the other arms
are all of r = 1

2 . Then from the information-theoretic arguments of the standard multi-armed bandits
problem, if we select ∆ = Θ(

√
m
H ), we must suffer an expected regret of Ω(

√
mH) at each period for any

policy. Here we assume that H is large enough such that ∆ = Θ(
√

m
H ) ≤ 1

2 . Therefore, the total regret
is of Ω(

√
m
HT ), where the local non-stationarity budget V1 = Θ(∆ T

H ) = Θ(m
1
2H− 3

2T ). Note that the
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example yields a regret of Ω(m
1
3V

1
3
1 T

2
3 ) by selecting H = Θ(m

1
3V

− 2
3

1 T
2
3 ).

For the second lower bound, we can establish based on some modification of the first example. We
now assume that each arm is of deterministic reward r = 1 and there is only one type of resource. The
only difference among the arms is on the resource consumption. To avoid the complication of stopping
time, we split the time horizon T into two halves in a way such that the extra consumption of resource
at the first half can be deterministically transformed into the reward loss due to limited resource at the
second half. Specifically, for the second half, every arm generates a deterministic reward of r and a
deterministic consumption b. For the first half, the nature divides it in a similar way as the first lower
bound example and the goal here is to generate an inevitably excessive resource consumption compared
to dynamic optimal policy. There are ⌈ T

2H ⌉ periods which are of length H. Among these periods, the
nature uniformly and independently chooses an arm to be optimal. We assume that the optimal arm
is of mean consumption c∗ = b while the others are of mean consumption c = b + ∆ = b + Θ(

√
m
H ).

We can without loss of generality consider only those cases where the resource is not all consumed at
the first half (otherwise, the rewards collected will be at least 1

2OPT smaller than OPT, where the
conclusion is automatically fulfilled). By similar information-theoretical arguments, any policy must
suffer an expected additional consumption of Ω(

√
m
HT ) compared to the dynamic optimal policy at the

first half, which in turn yields an expected regret of Ω( 1b
√

m
HT ). By selecting H = Θ(m

1
3V

− 2
3

2 T
2
3 ), we

construct an example of regret Ω(m
1
3V

1
3
2 T

2
3 · 1b ).

The third lower bound example is constructed based on the motivating example in Section 2.1. We
can consider a one-armed bandit problem and divide the time horizon into two halves. There is only one
resource type and the total available resource is B = bT with b < 1

2 . At the first half, the arm generates
a deterministic reward r and consumes resource 2b. At the second half, the nature randomly chooses
between the following two cases: the situation either becomes better with reward r+∆1 and consumption
2b − ∆2 or worse with reward r − ∆1 and consumption 2b + ∆2. For the first situation, the optimal
policy is to reserve the resource as much as possible for the second half whilst for the second situation it
is optimal to consume all the resource at the first half. One can choose r, b such that r

b = Θ(q̄). With a
similar argument as in Section 2.1, the algorithm will suffer a regret of

Θ(T (∆1 +
r

b
∆2)) = Θ(W1 + q̄W2)

for at least one of the two situations.

C Discussions on the Benchmarks and Tightening the Measures

C.1 Benchmarks used in BwK literature

In the subsection, we provide a thorough discussion on the four benchmarks for the BwK problem.
Specifically, our dynamic benchmark is the strongest one in comparison with others, and we are the first
one to analyze against this benchmark in a non-stochastic (non-i.i.d.) environment.

OPTDP: It is defined by an optimal algorithm that utilizes the knowledge of the true underly-
ing distributions and maximizes the expected cumulative reward E[

∑T
t=1 rt] subject to the knapsack

constraints. This is called as the dynamic optimal benchmark and it is used in the stochastic BwK lit-
erature, for both problem-independent bounds (Badanidiyuru et al., 2013; Agrawal and Devanur, 2014),
and problem-dependent bounds (Sankararaman and Slivkins, 2021; Li et al., 2021).

OPTFD: It is called as the fixed distribution benchmark considered in the adversarial BwK problem
(Immorlica et al., 2019). It is also defined based on an algorithm that utilizes the knowledge of the true
underlying distributions and maximizes the expected cumulative reward. But importantly, the algorithm
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is required to play the arms following a fixed (static) distribution throughout the horizon. As mentioned
earlier, the dynamic optimal benchmark is more relevant for the practical applications of BwK than this
fixed distribution benchmark.

OPTLP-Dynamic : It is defined by the optimal value of the following linear program (LP):

OPTLP-Dynamic := LP ({µt}, {Ct}, T ) := max
x1,...,xT

T∑
t=1

µ⊤
t xt

s.t.

T∑
t=1

Ctxt ≤ B, xt ∈ ∆m, t = 1, . . . , T,

and this is the benchmark used in our paper. The LP’s inputs µt and Ct are the vector/matrix of the
expected reward and resource consumption at time t. The decision variables xt stay within the standard
simplex ∆m and it can be interpreted as a random arm play distribution for time t. The benchmark is
also known as deterministic, fluid, or prophet benchmark. It is commonly adopted in the literature for
its tractability in analysis than the dynamic benchmark OPTDP.

OPTLP-Static : It is defined by requiring x1 = x2 = ... = xT in the above LP. This is apparently a
weaker benchmark, and it can be viewed as a deterministic upper bound of the OPTDP.

The following inequality holds

OPTFD
(1)

≤ OPTDP
(2)

≤ OPTLP-Dynamic

OPTFD
(3)

≤ OPTLP-Static
(4)

≤ OPTLP-Dynamic.

Here (1) and (4) are evident because of the extra requirement of fixed distribution (for (1)) and extra
constraint of x1 = ... = xT (for (4)). For (2) and (3), they can be proved by a convexity argument with
Jensen’s inequality on the realized sample path and the expectation.

We make the following two remarks:
First, when the underlying environment is stochastic (stationary), the expected reward and resource

consumption, µ1 = ... = µT and C1 = ... = CT . The optimal solution of the LP in defining OPTLP-Dynamic

automatically satisfies x∗
1 = ... = x∗

T . So, for a stochastic environment

OPTLP-Static = OPTLP-Dynamic.

The existing literature on stochastic BwK (such as Badanidiyuru et al. (2013); Agrawal and Devanur
(2014)) uses this equivalent benchmark to analyze the upper bound of the algorithm regret.

Second, any of these benchmark definition will not restrict it to distributions that do not exhaust
budget until T rounds. The LP benchmarks will always upper bound the benchmarks of OPTFD and
OPTDP. The LP benchmarks allow early exhaustion as well, because the presence of the null arm allows
an play that consume zero resource. This is also reflected by the inequality in the LP’s constraints,
otherwise if early exhaustion is not allowed, it should be equality in the LP’s constraints.

Furthermore, we allow Pt to be point-mass distributions and allow it to be chosen adversarially.
So our non-stationary setting does not conflict with the adversarial setting and it indeed recovers the
adversarial BwK as one end of the spectrum. The non-stationarity measures aim to relate the best-
achievable algorithm performance with the intensity of adversity of the underlying environment.
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C.2 Tightening the global measures W1 and W2

In this section, we discuss how to improve the global non-stationarity measures W1 and W2. First, we
revise the definitions of W1 and W2, and write the non-stationarity measures as functions:

W1(µ) :=

T∑
t=1

∥µt − µ∥∞, W2(C) :=

T∑
t=1

∥Ct −C∥1.

Specifically, we note that W1(µ̄) = W1 and W2(C̄) = W2.
We note from the proof of Proposition 1 that the following inequalities hold

T∑
t=1

LP(µt,Ct) ≤ LP({µt}, {Ct}, T ) ≤ T ·LP(µ̃, C̃)+W1(µ̃)+q̄W2(C̃) ≤
T∑

t=1

LP(µt,Ct)+2(W1(µ̃)+q̄W2(C̃))

for any µ̃ and C̃ if the optimal dual solution q̃∗ of LP(µ̃, C̃) satisfies ∥q̃∗∥∞ ≤ q̄.
That is, if ∥q̃∗∥∞ ≤ q̄ is satisfied, the terms of W1 and W2 in Proposition 1 and Theorem 1 can be

replaced by W1(µ̃) and W2(C̃), respectively.
Therefore, a natural idea is to refine the two non-stationarity measures based on a combination of µ

and C that minimize the two functions, i.e., to define,

Wmin
1 := min

µ

T∑
t=1

∥µt − µ∥∞,

where the optimal solution is denoted by µ∗.

Wmin
2 := min

C

T∑
t=1

∥Ct −C∥1,

where the optimal solution is denoted by C∗.

Claim 1. The optimal solutions of the two optimization problems above must lie in the convex hull of
{µt} and {Ct}, i.e.

µ∗ ∈ conv({µ1, . . . ,µT }), C∗ ∈ conv({C1, . . . ,CT }).

Claim 2. Any parameter pair (µ̃, C̃) that lies in the convex hulls of {µt} and {Ct} must satisfy the
dual price upper bound condition, i.e.

∥q̃∗∥∞ ≤ max
t
∥q∗

t ∥∞ ≤ q̄, ∀µ̃ ∈ conv({µ1, . . . ,µT }), C̃ ∈ conv({C1, . . . ,CT })

where q̃∗ is the dual optimal solution of the LP(µ̃, C̃).

Proposition 3. When the above two claims hold, the terms W1 and W2 in the regret bound of Theorem
1 can be replaced by Wmin

1 and Wmin
2 .

The proof of the proposition is based on the arguments above, by replacing W1 and W2 in Proposition
1 with Wmin

1 and Wmin
2 .

Figure 3 provides an illustration of the difference between W1 (or W2) and Wmin
1 (or Wmin

2 ) on a
one-armed problem instance. Specifically, consider µ1 = · · · = µk = 1 and µk+1 = · · · = µT = 0

for some k. The optimal choice of µ∗ is to set µ∗ = 1 for k > T
2 and µ∗ = 0 for k < T

2 , resulting
Wmin

1 = min{k, T −k}. Figure 3 plots the two non-stationarity measure against the change point k. The
result is not contradictory to the lower bound result in that when k = T

2 , two definitions coincide with
the same value.
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Figure 3: Illustration of W1 and Wmin
1 .

D Discussions on the Non-bindingness of the Constraints

As discussed in Section 3, the problem (and the regret bound) of non-stationary BwK can degenerate
into the problem of (and the regret bound) non-stationary MAB when all the resource constraints are
non-binding. In this section, we elaborate on the statement for two cases: (i) the benchmark LP and
all the single-step LPs have all constraints non-binding; (ii) the benchmark LP have all constraints non-
binding but some single-step LPs have some binding constraints. Throughout this section, we focus our
discussion for the case when V1, V2 > 0.

D.1 Non-binding for All LPs

When the benchmark LP and all the single-step LPs have all constraints non-binding, our regret bound
will reduce to the regret bound for non-stationary MAB (Besbes et al., 2014). Specifically, when all the
LPs have only non-binding constraints, we have

q∗
t = q∗ = 0.

Hence q̄ = 0 and as a result, the regret bound in Theorem 1 becomes

Reg(Alg, T ) = O(
1

b
·
√
mT log(mdT 3) +m

1
3V

1
3
1 T

2
3 log

1
3 (mT 3) +

1

b
·m 1

3V
1
3
2 T

2
3 log

1
3 (mdT 3) +W1)

= Õ(m
1
3V

1
3
1 T

2
3 +

1

b
·m 1

3V
1
3
2 T

2
3 +W1), ∀V1, V2 > 0.

Compared to the regret bound for non-stationary MAB, there are still two additional terms (the terms
of V2 and W1). In what follows, we discuss how to remove these two terms in the analysis.

First, it is easy to get rid of the term related to W1. In Proposition 1, we make use of LP(µ̄, C̄) as a
bridge to relates

∑T
t=1 LP(µt,Ct) and LP({µt}, {Ct}, T ), and this causes the term of W1. When all the

constraints are binding for all the LP’s, then the following equality naturally holds

T∑
t=1

LP(µt,Ct) = LP({µt}, {Ct}, T ).

As a result, the analysis no longer needs LP(µ̄, C̄) as a bridge any more, which removes the W1 term.
Second, for the term related to V2, we first point out that this term comes from the bound on
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the stopping time in Corollary 1. When the single-step LPs have only non-binding constraints, and
the non-bindingness remains stable with right-hand-side being b′ < b, we can remove this term V2. By
remaining stable with b′, we mean the single-step LPs have only non-binding constraints if we replace
the right-hand-side of the constraints b with b′. In this case, for a sufficiently large T such that

(b− b′)T ≥ 4
√
T log(12mdT 3) + 9m

1
3V

1
3
2 T

2
3 log

1
3 (12mdT 3),

we can apply the arguments in Lemma 3 to show that the stopping time τ ≥ T with high probability.
And thus we get rid of the V2 term.

D.2 Only Benchmark LP Non-binding

When the benchmark LP is non-binding but the single-step LP has binding constraints, we show that the
regret bound cannot be reduced to the case of non-stationary MAB. Specifically, consider a one-armed
bandit problem instance with an even T . There are two types of resources, where each kind is of 2T

3

budget. For the first half time periods, the arm has reward 1 and consumes 1 unit of resource 1. For
the second half, the arm still has reward 1 but consumes 1 unit of resource 2 instead. The global LP
is of course nonbinding with T

2 < 2T
3 , while the one-step LPs are all binding with 2

3 < 1. The problem
instance is in a similar spirit as the motivating example in Section 2.1. In this case, V1 = W1 = 0 but
q̄ > 0, the terms related to V2 and W2 cannot be removed.

E Matching the Existing Bound of Stochastic (Stationary) BwK

In this section, we will provide an alternative way to define the upper and lower confidence bounds using
a slightly different concentration inequality. As a result, we derive an alternative regret upper bound
for the non-stationary BwK problem, which matches the bound (Agrawal and Devanur, 2014) when the
environment becomes stationary.

We first state the concentration inequality used in the previous works as a replacement of Lemma 4.

Lemma 6. (Kleinberg et al., 2008; Babaioff et al., 2015; Badanidiyuru et al., 2013; Agrawal and Deva-
nur, 2014). Consider some distribution with values in [0, 1]. Denote its expectation by z. Let Z̄ be the
average of N independent samples from this distribution. Then, ∀γ > 0, the following inequality holds
with probability at least 1− eΩ(γ),

|Z̄ − z| ≤ rad(Z̄,N) ≤ 3rad(z,N),

where rad(a, b) :=
√

γa
b + γ

b . More generally, this result holds if Z1, . . . , ZN ∈ [0, 1] are random variables,
NZ̄ =

∑N
t=1 Zt, and Nz =

∑N
t=1 E[Zt|Z1, . . . , Zt−1].

Then we can revise confidence bounds in Algorithm 1 as follows:

UCBt,i(µt) := µ̂
(w1)
t,i + 2 · rad(µ̂(w1)

t,i , n
(w1)
t,i + 1),

LCBt,j,i(Ct) := Ĉ
(w2)
t,j,i − 2 · rad(Ĉ(w2)

t,j,i , n
(w2)
t,i + 1),

where we will choose the window sizes w1, w2 according to V1, V2.
With the new concentration inequality and confidence bounds, Lemma 3 can be replaced by the

following two lemmas.
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Lemma 7. With probability at least 1− 1
T , we have

∣∣∣∣∣
T∑

t=1

(rt −UCBt(µt)
⊤xt)

∣∣∣∣∣ ≤ O


√√√√log(mT 2)

T∑
t=1

rt +
√
log(mT 2)m · T

√
w1

+ w1V1 + log(mT 2)

 .

If V1 > 0 and we set w1 = Θ(m
1
3V
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3

1 T
2
3 log

1
3 (mT 2)), then

∣∣∣∣∣
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t=1

(rt −UCBt(µt)
⊤xt)
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√√√√log(mT 2)

T∑
t=1

rt +O(m
1
3V

1
3
1 T

2
3 log

1
3 (mT 2)

 := β1,

with probability at least 1− 1
T .

Lemma 8. With probability at least 1− 1
T , we have ∀j,∣∣∣∣∣

T∑
t=1

(ct,j − LCBt(Ct,j)
⊤xt)

∣∣∣∣∣ ≤ O(
√
log(mdT 2)Bj +

√
log(mdT 2)m · T

√
w2

+ w2V2 + log(mdT 2).

If V2 > 0 and we set w2 = Θ(m
1
3V

− 2
3

2 T
2
3 log

1
3 (mdT 2)), then∣∣∣∣∣

T∑
t=1

(ct,j − LCBt(Ct,j)
⊤xt)

∣∣∣∣∣ = O(
√

log(mdT 2)B) +O(m
1
3V

1
3
2 T

2
3 log

1
3 (mdT 2)) := β2,

with probability at least 1− 1
T .

Following (Agrawal and Devanur, 2014), one can fulfill the stopping time analysis by shrinking the
resource budget in LP(UCBt(µt),LCBt(Ct)) by ϵ. By choosing an appropriate ϵ ≥ β2

B , we can show that
the stopping criteria will not be met before T with a high probability, since

T∑
t=1

ct,j ≤
T∑

t=1

LCBt(C
⊤
t,jxt) + β2

≤ (1− ϵ)B + β2

≤ B.

In fact, if we take the stationary case into consideration as well, ϵ should be slightly larger. Here we
use the concentration results in (Agrawal and Devanur, 2014) for the stationary cases directly:

Lemma 9 (Lemma B.4 in Agrawal and Devanur (2014)). If V1 = 0 and we set w1 = T , then

∣∣∣∣∣
T∑

t=1

(rt −UCBt(µt)
⊤xt)

∣∣∣∣∣ = O(

√√√√log(mT 2)m

T∑
t=1

rt) +O(m log(mT 2)) := α1,

with probability at least 1− 1
T .

Lemma 10 (Lemma B.5 in Agrawal and Devanur (2014)). If V2 = 0 and we set w2 = T , then∣∣∣∣∣
T∑

t=1

(ct,j − LCBt(Ct,j)
⊤xt)

∣∣∣∣∣ = O(
√
log(mdT 2)mB) +O(m log(mdT 2)) := α2, ∀j

with probability at least 1− 1
T .
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One can choose
ϵ =

α2 + β2

B
,

so that the requirement is met. The shrunken LP will decrease the LP values up to (1− ϵ).
Then the final result goes as follows:

Theorem 4. For the non-stationary bandits with knapsacks (NBwK) problem, if B is not too small, i.e.

m
1
3V

1
3
2 T

2
3 log

1
3 (mdT 2) = O(B), log(mdT 2)m = O(B),

and the dual prices are upper bounded by q̄, then with probability at least 1− 1
T , the regret of the refined

sliding-window confidence bound algorithm with w1, w2, and ϵ selected as suggested (denoted by π3) is
upper bounded as

Reg(π3, T ) = O( (

√
m

B
OPT(T ) +

√
mOPT(T ) +m

√
log(mdT 2) ) ·

√
log(mdT 2)

+m
1
3V

1
3
1 T

2
3

3
√

log(mT 2) + q̄dm
1
3V

1
3
2 T

2
3

3
√
log(mdT 2)·

+W1 + q̄W2).

The result meets the upper bounds in (Agrawal and Devanur, 2014) and (Badanidiyuru et al., 2013)
up to logarithmic factors when the environment becomes stationary, i.e., V1 = V2 = W1 = W2 = 0. In
addition, the regret bound is expressed in terms of OPT(T ). Also note that this upper bound in Theorem
4 does not rely on the linear growth assumption (Assumption 1), but it requires that B = Ω(V

1
3
2 T

2
3 ) at

least for V2 > 0.

F Proofs of Section 4

Algorithm 2 describes the Virtual Queue algorithm by Neely and Yu (2017). We first examine its
performance with respect to deterministically adversarial constraints gt,i’s. We emphasize that in this
case, the nature is allowed to choose gt,i’s after observing the player’s decisions {x1, . . . , xt−1} as long as
the global non-stationarity budget is not violated.

Algorithm 2 Virtual Queue Algorithm for OCOwC Neely and Yu (2017)

Input: Initial decision x0. Time horizon T . Parameters β ← 1/
√
T , α← 1/T .

Output: Decision sequence {xt}.
1: Initialize decision x0 ← x0. Initialize virtual queue Qi(0)← 0, Qi(1)← 0.
2: while 1 ≤ t ≤ T do
3: Update virtual queue length if t ≥ 2:

Qi(t)← max
{
0, Qi(t− 1) + gt−2,i(xt−2) +∇gt−2,i(xt−2)

⊤(xt−1 − xt−2)
}
.

4: Choose xt as the solution of

argmin
x∈X

[
β∇ft−1(xt−1) +

d∑
i=1

Qi(t)∇gt−1,j(xt−1)

]⊤
x+ α∥x− xt−1∥22.

5: Observe ∇ft(xt),∇gt,i(xt), i ∈ [d].
6: end while

We first note that the benchmark taken into consideration in Neely and Yu (2017) is OPT′(T ), which
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is based on a more restricted feasible solution set

A′ := {x ∈ X : ∀t ∈ [T ], i ∈ [d], gt,i(x) ≤ 0}

compared to the feasible solution set considered in our paper:

A := {x ∈ X : ∀i ∈ [d],

T∑
t=1

gt,i(x) ≤ 0}.

Thus our analysis complements the results therein with a more natural benchmark given the global
nature of the constraints.

F.1 Proof of Proposition 2

Proof. It follows directly from the fact that A′ ⊂ A that

OPT′(T ) ≥ OPT(T ).

We first prove the upper bound. Recall that we denote the primal optimal solution of the standard
optimization problem by x∗ and that of the restricted optimization problem by x∗′

. Then x∗ is a primal
feasible solution to the perturbed restricted optimization problem

min
x∈X

T∑
t=1

ft(x)

s.t. gt,i(x) ≤ (gt,i(x
∗))+, ∀t ∈ [T ], i ∈ [d].

Denote the optimal value of the perturbed problem by OPT′′(T ).
Since we have assumed the Slater’s condition in Assumption 2, the strong duality holds, and we have

OPT′(T )−OPT(T ) ≤ OPT′(T )−OPT′′(T )

≤ q̄

T∑
t=1

d∑
i=1

(gt,i(x
∗))+

= q̄

d∑
i=1

T∑
t=1

(gt,i(x
∗))+

≤ q̄

d∑
i=1

(T (ḡi(x
∗))+ +

T∑
t=1

∥gt,i − ḡi∥∞)

= q̄

T∑
t=1

d∑
i=1

∥gt,i − ḡi∥∞

= q̄W.

As for the lower bound, we construct an example based on the idea of the third example given in
Theorem 2. The decision set X is [0, 1]. We set the target functions and constraint functions as

ft(x) = −rx,

gt(x) = (b+∆1{t ≤ T

2
})x− 1

2
b.

Then the example is now an OCOwC instance with global non-stationarity budgets W = Θ(∆T ) and
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q̄ = r
b . The restricted optimal value OPT′(T ) is now

OPT′(T ) = −(T
4
· rb

b+∆
+

T

4
· r),

while the standard optimal value OPT(T ) is now

OPT(T ) = −T

2
· r.

If we assume that ∆ = o(b) (which can always be satisfied if we let b to be sufficiently small), then

OPT′(T )−OPT(T ) =
T

4
· r · ∆

b+∆
= Ω(q̄W ).

F.2 Proof of Theorem 3

The Virtual Queue algorithm (Algorithm 2) proposed by Neely and Yu (2017) incurs at most O(
√
T )

expected regret against the restricted static benchmark OPT′(T ) under Assumption 2. Furthermore,
the expected overall constraints violation is bounded by O(

√
T ) for each i ∈ [d] (see detailed analysis in

Theorem 1, 3, 4 in Neely and Yu (2017)). While their analysis is against the benchmark OPT′(T ), we
here present a result against the stronger benchmark OPT(T ) (Theorem 3).

Proof. As is shown in Theorem 1 in Neely and Yu (2017), the Algorithm 2 achieves

T∑
t=1

ft(Xt) ≤ OPT′(T ) +O(
√
T ).

By Proposition 2,
OPT′ −OPT(T ) ≤ q̄W.

Combining above two inequalities together, we have

Reg1(π3, T ) ≤ O(
√
T ) + q̄W.

As for constraint violation, we shall directly apply Theorem 3 in Neely and Yu (2017) such that

Reg2(π3, T ) =

d∑
i=1

(

T∑
t=1

gt,i(Xt))
+ ≤ dO(

√
T ).

F.3 Extension to the Stochastic Setting

The results in Theorem 3 can be further extended to a stochastic setting where the adversary is obliv-
ious of our decisions. That is, the distributions that govern the random functions gt,i can be chosen
adversarially in advance but cannot be adaptively changed according to the decisions xt’s/

We modify the performance measures accordingly as follows

Reg1(π, T ) := E[
T∑

t=1

ft(Xt)−
T∑

t=1

ft(x
∗′
)],
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Reg2(π, T ) :=

d∑
i=1

E[(
T∑

t=1

gt,i(Xt))
+],

where x∗′
is the minimizer of

∑T
t=1 ft(x) on stochastic feasible set{

x ∈ X : E[
T∑

t=1

gt,i(x)] ≤ 0

}
.

We define the certainty equivalent convex programs by

OPT(T ) := min
x∈X

T∑
t=1

ft(x)

s.t.
T∑

t=1

E[gt,i(x)] ≤ 0, for i ∈ [d],

and

OPT′(T ) := min
x∈X

T∑
t=1

ft(x)

s.t. E[gt,i(x)] ≤ 0, for t ∈ [T ], i ∈ [d].

Note that Slater’s condition in deterministic case can be relaxed to stochastic Slater’s condition according
to Yu et al. (2017), i.e.

∃x, s.t. E[gt,i(x)] < 0, ∀t, i.

There are some algorithms that are of the same type as the Virtual Queue Algorithm in Neely and
Yu (2017) specifically designed for the case with i.i.d. gt’s (see Yu et al. (2017) and Wei et al. (2020)).
To obtain similar O(

√
T ) regret bound for the stochastic setting, aforementioned papers utilized some

similar lemmas (Lemma 6 in Neely and Yu (2017), Lemma 6 in Yu et al. (2017), and Lemma 8 in Wei
et al. (2020)) which guarantee that

E

[
d∑

i=1

Qi(t)gt−1,i(x
∗′
)

]
≤ 0.

For deterministic cases, the above conclusion is reduced to

d∑
i=1

Qi(t)gt−1,i(x
∗′
) ≤ 0,

which automatically holds by the fact that Qi(t) ≥ 0 and gt,i(x
∗′
) ≤ 0. But for stochastic cases, the

proof becomes trickier, since we relax the condition gt,i(x
∗′
) ≤ 0 to E[gt,i(x∗′

)] ≤ 0.
In the aforementioned papers, the lemma is proved via factorization of the expectations. Since Qi(t) is

determined by the previous 1 ≤ s ≤ t−2 steps’ fs’s and gs,i’s (note that Xt−1 is determined by previous
t−2 steps’ functions) while gt−1 is independent of previous t−2 steps, one can factorize the expectations
so that the lemma holds. Specifically, we define two random processes {ξt}∞t=1 and {γt}∞t=1 such that
ft(x) = f(x, ξt) and gt(x) = g(x, γt). We define a filtration {Ft : t ≥ 0} with Ft := {ξτ , γτ}t−1

τ=1. Then
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taking conditional expectations of
∑d

i=1 Qi(t)gt−1,i(x
∗′
) yields that

E[
d∑

i=1

Qi(t)gt−1,i(x
∗′
)|Ft−1] =

d∑
i=1

Qi(t)E[gt−1,i(x
∗′
)|Ft−1]

=

d∑
i=1

Qi(t)E[gt−1,i(x
∗′
)] ≤ 0

where the last equality holds since gt’s are assumed to be i.i.d. in aforementioned papers.
From the above discussions, we can see that the result still holds without the i.i.d. assumption as

long as
E[gt|Ft] = E[gt].

Such a requirement is automatically fulfilled when all gt’s are assumed to be distributed independent of
previous {fτ , gτ}t−1

τ=1’s. Then one can easily derive that the Virtual Queue Algorithm 2 (denoted by π2)
induces a result of

Reg1(π2, T ) ≤ O(
√
T ) + q̄W,

Reg2(π2, T ) ≤ O(d
√
T ),

where

W :=

T∑
t=1

d∑
i=1

∥E[gt,i]− E[ḡj ]∥∞,

and q̄ is the upper bound for the optimal dual solutions of the certainty equivalent convex programs.
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