—Supplementary Material— A Dataset for Analyzing Streaming Media Performance over HTTP/3 Browsers

Sapna Chaudhary IIIT Delhi sapnac@iiitd.ac.in Naval Kumar Shukla IIIT Delhi naval19065@iiitd.ac.in Sandip Chakraborty IIT Kharagpur sandipc@cse.iitkgp.ac.in

Mukulika Maity IIIT Delhi mukulika@iiitd.ac.in

1 1 Methods to generate mahimahi packet delivery trace file:

- ² In this paper, we have generated the mahimahi packet delivery trace file for two cases:
- ³ 1. For emulating certain bandwidth patterns.
- 4 2. For emulating a pcaps collected in real-time.
- 5

6 1.1 Generation of mahimahi packet delivery trace file for different bandwidth patterns:

We have emulated Dynamic High (DH), Dynamic Low (DL), and Dynamic Very Low (DVL)
bandwidth patterns. Each line in the trace file represents the time at which the packet of size MTU
(Maximum Transmission Unit) can be delivered. This transmission time is decided based on the
bandwidth during that time instant. For example, to create a 64-256-64-inc (DVL) bandwidth pattern
trace file, where the starting bandwidth is 64kbps, the last bandwidth is 256kbps, and the jump
required is 64kbps after every 60 seconds. We follow the steps as given below:

- The first packet goes at time t=0.
- For the second packet, say the bandwidth is 64000bps, then the next packet of size MTU(1500 bytes) transmission time will be (0+(1500*8)/64000) = 0.18 second.
- Say after 60 seconds the bandwidth is 128kbps, and the last packet was send at time t_i then next packet transmission time will be $(t_i+(1500*8)/128000)$.

This pattern from start to last bandwidth and then back from last to start bandwidth repeats in a cyclicfashion and based on that the trace file is created.

20 1.2 Generation of mahimahi packet delivery trace file from packet capture files:

²¹ To emulate packet captures (pcap) collected in a network, we have converted them into packet

- delivery trace files (supported by Mahimahi). For conversion, we have used a mechanism used in [1].
- ²³ The steps are as follows:
- 24

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks. Do not distribute.

- We convert pcaps into CSV files and extract relevant fields such as real-tile and length of a packet.
 The length field is used to estimate the throughput, which will be further used to estimate
- the transmission time of a packet of size MTU.

29 • Th 30 dis

• Then, based on the estimated throughput, the packets per millisecond are computed as discussed in the above subsection.

2 Extraction of QoE parameters from the application logs:

³² Following Penseive [1], we compute the QoE as follows.

 $QoE = Average Bitrate - Average Bitrate Variation - 4.3 \times Average Stall$

34 Where,

35

33

 $\begin{aligned} \text{Average}_\text{Bitrate} &= \frac{\sum_{i=1}^{n} duration_{i} * bitrate_{i}}{\sum_{i=1}^{n} duration_{i}}, \\ \text{Average}_\text{Bitrate}_\text{Variation} &= \frac{\sum_{i=1} | bitrate_{i} - bitrate_{i-1}}{\sum_{i=1}^{n} duration_{i}}, \\ \text{Average}_\text{Stall} &= \frac{real_time - playback_time - \sum_{i=1} duration_{i}}{\sum_{i=1}^{n} duration_{i}} \end{aligned}$

```
36
```

duration = the total duration for which the average bitrate, average bitrate variation, and average stall are to be computed

- ³⁹ We compute these parameters from the "steamingstats" field parameter named 'cmt' of the application
- log. The cmt parameter tells the data in the form 'real_time:playback_time'. For computation, the
 raw application logs are converted into a JSON file format. Hence, we compute multiple QoE values
- 41 Taw application logs are converted into a sport me format. Hence, we 42 (from multiple instances of streaming stat) for each streaming session.

43 2.1 Structure of QoE and Network CSV file:

We collected the application logs for HTTP/3-enabled and HTTP/2-enabled browsers. To compare
the performance for each collected log, we have created a QoE CSV file using the above-mentioned
formula. The structure of the HTTP/3 QoE CSV and network CSV is shown with one sample file
shown in table 1 and 2, respectively. In network.csv, protocol number 6 refers to TCP protocol, and
number 17 refers to QUIC protocol.

50 3 Dataset Structure Description:

- 51 The structure of the data is shown in figure 1
- 52 The GitHub link: https://github.com/NKShukla/H3B
- 53 Also, the raw dataset can be **downloaded** using this link: https://drive.google.com/drive/
- 54 folders/1MsywvxEPOHagHO6JAQ9FPTGLHV17t638?usp=sharing
- 55

56 4 Authors Statement

- 57 We bear the responsibility for any violation of rights, and we also take the responsibility to maintain
- the GitHub link, and we will address all the issues that will be raised in our GitHub repository. Our
- ⁵⁹ dataset is licensed under *GNU-GPL* license.
- 60

real_time	qoe	bitrate	avg_bitrate	avg_bitrate_variation	avg_stall
0.679	14.40442308	104630	104630	0	20.98269231
7.238	20.8531	104630	104630	0	19.483
16.939	26.43679333	104630	104630	0	18.18446667
16.939	31.24485625	104630	104630	0	17.0663125
17.04	34.52558235	104630	104630	0	16.30335294
17.702	38.39901111	104630	104630	0	15.40255556
22.755	41.88507895	104630	104630	0	14.59184211
26.201	39.547135	104630	104630	0	15.13555
26.201	42.4235381	104630	104630	0	14.46661905
26.201	44.55763182	104630	104630	0	13.97031818
26.201	47.1685625	104630	104630	0	13.363125
26.995	53.02320323	104630	104630	0	12.00158065
27.954	54.63631875	104630	104630	0	11.6264375
35.543	56.15114848	104630	104630	0	11.27415152
35.543	57.27220294	104630	104630	0	11.01344118
35.638	57.75901714	104630	104630	0	10.90022857
36.295	59.04988056	104630	104630	0	10.60002778
38.399	60.28177568	104630	104630	0	10.31354054
44.66	61.44872105	104630	104630	0	10.04215789
44.66	54.9796	104630	104630	0	11.54660465
44.66	52.45643182	104630	104630	2788.068182	11.485
44.66	52.92048667	227305	104630	2726.111111	11.39148889
44.66	54.03619348	227305	104630	2666.847826	11.14580435
44.66	51.4243383	227305	104630	6184.978723	10.93504255

Table 1: HTTP/3_QoE.csv

Table 2: network.csv

protocol	tcp_bytes	quic_bytes	real_time
6	1430		0.1728
6	104		0.1733
6	1430		1.1739
6	1430		1.1861
6	0		1.1892
6	1430		1.1981
6	1430		1.2117
17		1354	1.2159
17		257	1.216
17		43	1.2161
17		42	1.2176
17		41	1.2177
17		283	1.2178
6	1430		1.2221

61 **References**

[1] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with pensieve. In *ACM SIGCOMM*, pages 197–210, 2017.

Figure 1: Dataset Structure