
—Supplementary Material—
A Dataset for Analyzing Streaming Media

Performance over HTTP/3 Browsers

Sapna Chaudhary
IIIT Delhi

sapnac@iiitd.ac.in

Naval Kumar Shukla
IIIT Delhi

naval19065@iiitd.ac.in

Sandip Chakraborty
IIT Kharagpur

sandipc@cse.iitkgp.ac.in

Mukulika Maity
IIIT Delhi

mukulika@iiitd.ac.in

1 Methods to generate mahimahi packet delivery trace file:1

In this paper, we have generated the mahimahi packet delivery trace file for two cases:2

1. For emulating certain bandwidth patterns.3

2. For emulating a pcaps collected in real-time.4

5

1.1 Generation of mahimahi packet delivery trace file for different bandwidth patterns:6

We have emulated Dynamic High (DH), Dynamic Low (DL), and Dynamic Very Low (DVL)7

bandwidth patterns. Each line in the trace file represents the time at which the packet of size MTU8

(Maximum Transmission Unit) can be delivered. This transmission time is decided based on the9

bandwidth during that time instant. For example, to create a 64-256-64-inc (DVL) bandwidth pattern10

trace file, where the starting bandwidth is 64kbps, the last bandwidth is 256kbps, and the jump11

required is 64kbps after every 60 seconds. We follow the steps as given below:12

• The first packet goes at time t=0.13

• For the second packet, say the bandwidth is 64000bps, then the next packet of size14

MTU(1500 bytes) transmission time will be (0+(1500*8)/64000) = 0.18 second.15

• Say after 60 seconds the bandwidth is 128kbps, and the last packet was send at time ti then16

next packet transmission time will be (ti+(1500*8)/128000).17

This pattern from start to last bandwidth and then back from last to start bandwidth repeats in a cyclic18

fashion and based on that the trace file is created.19

1.2 Generation of mahimahi packet delivery trace file from packet capture files:20

To emulate packet captures (pcap) collected in a network, we have converted them into packet21

delivery trace files (supported by Mahimahi). For conversion, we have used a mechanism used in [1].22

The steps are as follows:23

24

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.



• We convert pcaps into CSV files and extract relevant fields such as real-tile and length of a25

packet.26

• The length field is used to estimate the throughput, which will be further used to estimate27

the transmission time of a packet of size MTU.28

• Then, based on the estimated throughput, the packets per millisecond are computed as29

discussed in the above subsection.30

2 Extraction of QoE parameters from the application logs:31

Following Penseive [1], we compute the QoE as follows.32

QoE = Average Bitrate − Average Bitrate Variation − 4.3× Average Stall
33

Where,34

35

Average_Bitrate =
Σn

i=1durationi∗bitratei
Σn

i=1durationi
,

Average_Bitrate_Variation =
Σi=1|bitratei−bitratei-1

Σn
i=1durationi

,

Average_Stall = real_time−playback_time−Σi=1durationi
Σn

i=1durationi

36

duration = the total duration for which the average bitrate, average bitrate variation, and average stall37

are to be computed38

We compute these parameters from the "steamingstats" field parameter named ’cmt’ of the application39

log. The cmt parameter tells the data in the form ’real_time:playback_time’. For computation, the40

raw application logs are converted into a JSON file format. Hence, we compute multiple QoE values41

(from multiple instances of streaming stat) for each streaming session.42

2.1 Structure of QoE and Network CSV file:43

We collected the application logs for HTTP/3-enabled and HTTP/2-enabled browsers. To compare44

the performance for each collected log, we have created a QoE CSV file using the above-mentioned45

formula. The structure of the HTTP/3 QoE CSV and network CSV is shown with one sample file46

shown in table 1 and 2, respectively. In network.csv, protocol number 6 refers to TCP protocol, and47

number 17 refers to QUIC protocol.48

49

3 Dataset Structure Description:50

The structure of the data is shown in figure 151

The GitHub link: https://github.com/NKShukla/H3B52

Also, the raw dataset can be downloaded using this link: https://drive.google.com/drive/53

folders/1MsywvxEPOHagHO6JAQ9FPTGLHV17t638?usp=sharing54

55

4 Authors Statement56

We bear the responsibility for any violation of rights, and we also take the responsibility to maintain57

the GitHub link, and we will address all the issues that will be raised in our GitHub repository. Our58

dataset is licensed under GNU-GPL license.59

60

2

https://github.com/NKShukla/H3B
https://drive.google.com/drive/folders/1MsywvxEPOHagHO6JAQ9FPTGLHV17t638?usp=sharing
https://drive.google.com/drive/folders/1MsywvxEPOHagHO6JAQ9FPTGLHV17t638?usp=sharing
https://drive.google.com/drive/folders/1MsywvxEPOHagHO6JAQ9FPTGLHV17t638?usp=sharing


Table 1: HTTP/3_QoE.csv
real_time qoe bitrate avg_bitrate avg_bitrate_variation avg_stall
0.679 14.40442308 104630 104630 0 20.98269231
7.238 20.8531 104630 104630 0 19.483
16.939 26.43679333 104630 104630 0 18.18446667
16.939 31.24485625 104630 104630 0 17.0663125
17.04 34.52558235 104630 104630 0 16.30335294
17.702 38.39901111 104630 104630 0 15.40255556
22.755 41.88507895 104630 104630 0 14.59184211
26.201 39.547135 104630 104630 0 15.13555
26.201 42.4235381 104630 104630 0 14.46661905
26.201 44.55763182 104630 104630 0 13.97031818
26.201 47.1685625 104630 104630 0 13.363125
26.995 53.02320323 104630 104630 0 12.00158065
27.954 54.63631875 104630 104630 0 11.6264375
35.543 56.15114848 104630 104630 0 11.27415152
35.543 57.27220294 104630 104630 0 11.01344118
35.638 57.75901714 104630 104630 0 10.90022857
36.295 59.04988056 104630 104630 0 10.60002778
38.399 60.28177568 104630 104630 0 10.31354054
44.66 61.44872105 104630 104630 0 10.04215789
44.66 54.9796 104630 104630 0 11.54660465
44.66 52.45643182 104630 104630 2788.068182 11.485
44.66 52.92048667 227305 104630 2726.111111 11.39148889
44.66 54.03619348 227305 104630 2666.847826 11.14580435
44.66 51.4243383 227305 104630 6184.978723 10.93504255

Table 2: network.csv
protocol tcp_bytes quic_bytes real_time
6 1430 0.1728
6 104 0.1733
6 1430 1.1739
6 1430 1.1861
6 0 1.1892
6 1430 1.1981
6 1430 1.2117
17 1354 1.2159
17 257 1.216
17 43 1.2161
17 42 1.2176
17 41 1.2177
17 283 1.2178
6 1430 1.2221

References61

[1] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with pensieve. In ACM62

SIGCOMM, pages 197–210, 2017.63

3



Dataset

Scripts and
Final Dataset Raw Dataset

On Github On google drive

ApplicationLogExtension
Script

Mahimahi Trace file
generation Scrips

Final QoE CSVs and
Network CSVs

From Packet
Captures to Trace
File(.com-) python

script

HTTP/3_QoE.csv
HTTP/2_QoE.csv

network.csv

Collected
application log files

Collected Packet
Captures (Pcap)

files"corr.sh" script

Figure 1: Dataset Structure

4


	Methods to generate mahimahi packet delivery trace file:
	Generation of mahimahi packet delivery trace file for different bandwidth patterns:
	Generation of mahimahi packet delivery trace file from packet capture files:

	Extraction of QoE parameters from the application logs:
	Structure of QoE and Network CSV file:

	Dataset Structure Description:
	Authors Statement

