
Published as a conference paper at ICLR 2024

EVOKE: EVOKING CRITICAL THINKING ABILITIES IN
LLMS VIA REVIEWER-AUTHOR PROMPT EDITING

Xinyu Hu♥∗ Pengfei Tang♥ Simiao Zuo♥ Zihan Wang♦ Bowen Song♣ Qiang Lou♥

Jian Jiao♥ Denis Charles♥

♥ Microsoft ♦ University of Washington ♣ University of Michigan

ABSTRACT

Large language models (LLMs) have made impressive progress in natural lan-
guage processing. These models rely on proper human instructions (or prompts)
to generate suitable responses. However, the potential of LLMs are not fully har-
nessed by commonly-used prompting methods: many human-in-the-loop algo-
rithms employ ad-hoc procedures for prompt selection; while auto prompt gen-
eration approaches are essentially searching all possible prompts randomly and
inefficiently. We propose Evoke, an automatic prompt refinement framework.
In Evoke, there are two instances of a same LLM: one as a reviewer (LLM-
Reviewer), it scores the current prompt; the other as an author (LLM-Author),
it edits the prompt by considering the edit history and the reviewer’s feedback.
Such an author-reviewer feedback loop ensures that the prompt is refined in each
iteration. We further aggregate a data selection approach to Evoke, where only the
hard samples are exposed to the LLM. The hard samples are more important be-
cause the LLM can develop deeper understanding of the tasks out of them, while
the model may already know how to solve the easier cases. Experimental results
show that Evoke significantly outperforms existing methods. For instance, in the
challenging task of logical fallacy detection, Evoke scores above 80, while all
other baseline methods struggle to reach 20.

1 INTRODUCTION

Consider an intriguing trio that at first glance seems unrelated: bumble bees, cell phones, and excit-
ing news. At a superficial level, their commonality might note their plural forms; however, a more
profound analysis reveals a shared essence: they all “create a buzz.” This comparison sheds light
on the depth and intricacy of human cognitive processes. At the heart of such processes is critical
thinking, the ability to conceptualize, analyze, question, and evaluate ideas and beliefs. As we tran-
sition to the domain of artificial intelligence, it is observed that large language models (LLMs) have
remarkably evolved as general problem solvers, urging us to ponder:

Can LLMs think on their own?
In practice, we observe that existing prompting methods are inadequate in evoking the critical think-
ing abilities of LLMs. For example, in Figure 1, we show two prompts for solving a common
concept task. From Figure 1 (left), we see that for the input trio “bumble bees, cell phones, and ex-
citing news”, the LLM outputs a superficial common concept “plural form” using the hand-crafted
prompt. On the other hand, with the prompt generated by the proposed method, the LLM demon-
strates much deeper understanding about the task , i.e., it generates the correct answer “can cause
a buzz” (see Figure 1, right). These results indicate that the quality of prompts are directly related
to the performance of LLMs. In this work, we focus on prompting methods that enables LLMs to
think on their own.

The current prompting methodologies exhibit significant drawbacks. Many prompting methods are
ad hoc because of their human-in-the loop development paradigm. In such a process, given a target
task, we first draft an initial prompt. Then, we refine the prompt using techniques such as chain-
of-thought, few-shot demonstrations, and coding-style problem descriptions (Wei et al., 2022c;a;

∗Corresponding author: xinyuhu@microsoft.com

1



Published as a conference paper at ICLR 2024

Figure 1: Comparison between hand-crafted and
Evoke prompts. Figure 2: Simplified workflow of Evoke.

Gao et al., 2023) based on the model’s performance on the target task. We note that in practice, a
hand-crafted prompt optimized for one task rarely translates to satisfactory performance in another
task (Zhang et al., 2023). Therefore, each task becomes a new expedition, with its own set of
trials, errors, and validations. Such an ad hoc human-in-the-loop development procedure introduces
extensive human labor requirements, which significantly hinder the applicability of LLMs in real-
world applications.

Existing works develop algorithms to automatically generate prompts instead of relying on ad hoc
human optimization (Shin et al., 2020; Honovich et al., 2022; Zhou et al., 2022). However, these
methods often lack feedback loops, such that the refinement procedure essentially performs a ran-
dom search. For example, in each refinement iteration, Zhou et al. (2022) simply rephrases the
prompt into multiple candidates, and then select the candidate that yields the best performance as
the refined prompt. Note that such a procedure fails to learn from past successes and failures, such
that refined prompt does not enrich the original prompt with additional context.

We propose Evoke, which addresses the aforementioned drawbacks by leveraging an author-reviewer
paradigm. In this paradigm, there are two distinct purposes an LLM can serve: one instance as
an author (LLM-Author) tasked with editing prompts, and another instance as a reviewer (LLM-
Reviewer) tasked with evaluating the quality of the prompts generated by the LLM-Author. Each
role is played independently by separate instances of the same LLM.

Critical thinking is not something you do once with an issue and then drop it. It requires that we
update our knowledge as new information comes in. Daniel Levitin

The essence of this quote resonates with the feedback loop in the workflow of Evoke, as depicted in
Figure 2. The workflow comprises three steps: First, the LLM-Author edits prompts from previous
iterations, taking into account the past edits and the feedback from the LLM-Reviewer. Second,
the LLM-Reviewer scores the revised prompts from the LLM-Author, and the top-n candidates with
the highest scores are selected for subsequent procedures. The LLM-Reviewer employs a memory
module that stores history edits, prompts and task accuracy of history prompts. Finally, the task
accuracy for each instruction is computed.

To further enhance the efficacy of Evoke, we propose a data selection strategy. In this strategy, only
the hard samples selected by a selector are exposed to the LLM. The intuition is that the LLM can
develop deeper understanding of the tasks out of the hard samples, while it already knows how to
solve the easier cases. Through extensive experiments (see Figure 10 in the experiments), we see
that retaining the hard samples indeed improves efficacy of Evoke.

We conduct extensive experiments to demonstrate the effectiveness of Evoke. Specifically, on eight
tasks from the Instruction Induction (Honovich et al., 2022) dataset and the Big Bench Instruction
Induction (Zhou et al., 2022) dataset, we show that Evoke significantly outperforms existing auto-
matic prompt engineering approaches. For example, on the challenging logical fallacy detection
task, Evoke achieves a score of over 80, while all the baseline methods struggle to reach 20. We also
show that Evoke can improve LLMs’ robustness against adversarial attacks, and can also handle
fine-grained named entity recognition tasks with exceptional performance. As an example, Evoke

2



Published as a conference paper at ICLR 2024

achieves significant performance gain on an adversarially constructed dataset, indicating that the
proposed method can improve robustness of LLMs. Additionally, we provide detailed analysis on
the effectiveness of each component of Evoke.

2 RELATED WORK

Large Language Models Recently, LLMs have shown emergent abilities—capabilities to perform
tasks they weren’t explicitly trained for (Wei et al., 2022a;b; Bubeck et al., 2023). This includes
common sense question answering, code generation, and cross-domain problem solving, enriching
their utility across unforeseen domains (Chen et al., 2021; Sarsa et al., 2022; Thirunavukarasu et al.,
2023; Huang & Chang, 2022; Du et al., 2023). Subsequently, adapting LLMs to specific problems
has drawn attention, and several methods have been proposed: Reinforcement Learning from Hu-
man Feedback (RLHF Ouyang et al. 2022), efficient fine-tuning (Hu et al., 2022; Dettmers et al.,
2023), and prompt engineering (White et al., 2023), among others. Each method has its pros and
cons. For instance, RLHF can significantly improve performance but may require extensive human
annotations. Efficient fine-tuning, on the other hand, can be less resource-intensive but might fall
short in achieving the desired level of task-specific optimization. Prompt engineering, while inno-
vative, may require a well-crafted prompt to effectively guide the model towards accurate outputs.

In-Context Learning and Prompt Engineering In-Context Learning (ICL) refers to the ability of
LLMs to learn a new task from a small set of examples presented within the context (the prompt)
at inference time, without updating any parameters (Wei et al., 2022a). This paradigm has signif-
icantly improved the capabilities of LLMs across various tasks. Many studies have explored the
reasons behind such improvements, examining aspects like Bayesian optimization and the difficulty
of demonstrations (Xie et al., 2022; Min et al., 2022; Liu et al., 2022; Yoo et al., 2022).

Prompt engineering plays a pivotal role in facilitating ICL. It entails the design of prompts that arm
the LLM with the essential information needed to learn and adeptly perform the new task. Each
prompt essentially sets the stage for the LLM, enclosing the task’s requirements and guiding the
model towards producing the desired output. By carefully crafting prompts, it is possible to leverage
the inherent capability of LLMs, enabling them to tackle a wide range of tasks even with limited
or no prior explicit training on those tasks. Recently, methods such as Chain-of-Thought (CoT),
Zero-CoT, Self-Consistency, Program-Aided, and Few-Shot Prompting have been demonstrated to
be effective (Wei et al., 2022c; Kojima et al., 2022; Wang et al., 2022; Gao et al., 2023; Reynolds &
McDonell, 2021).

Automatic Prompt Engineering The existing methodologies for automating discrete prompt op-
timization have their roots in instruction induction, as discussed by Honovich et al. 2022. It was
discovered that LLMs can generate natural language instructions based on a small number of input-
output pair examples. Building on this, Zhou et al. (2022) proposed a new algorithm for the auto-
matic generation and selection of instructions for LLMs. The algorithm, named Automatic Prompt
Engineer (APE), is capable of generating prompts that achieve human-level performance across a
diverse range of NLP tasks. Work has also been done on automating prompt generation for specific
domains like code generation, as discussed in Shrivastava et al. 2023.

3 ITERATIVE REVIEWER-AUTHOR PROMPT EDITING

3.1 OVERVIEW

In Evoke, the same LLM plays two different roles: an author (LLM-Author) that is in charge of
editing and refine prompts, and a reviewer (LLM-Reviewer) that is in charge of scoring the refined
prompts. We use two different prompts for the author’s and the reviewer’s task.

⋄ LLM-Author edits and generates new prompts based on feedback from LLM-Reviewer. The
prompt for LLM-Author consists of several components:

a Input for editing: Current task instruction to be refined and training data;

b Instruction for editing: “We’ve provided pairs consisting of inputs, the teacher’s correct
answers, and the students’ responses. Please review the incorrect responses from the stu-

3



Published as a conference paper at ICLR 2024

Algorithm 1: Evoke
Require: Training set; Initial prompt for the target task (i.e., the one we want to refine).
// Initialization
LLM-Selector: Initialize data scoring instruction.
LLM-Author: Initialize prompt editing instruction.
LLM-Review: Initialize prompt reviewing instruction.
while t ≤ T do

// LLM-Selector
Assign difficulty scores for each data point in the training set.
Select a training subset based on the difficulty level.
// LLM-Author
LLM-Author generates multiple prompts based on the training data and its own memory.
// LLM-Reviewer
LLM-Reviewer scores the quality of each generated prompt from LLM-Author based on its own

memory.
Select top-n prompts based on the generated scores from LLM-Reviewer.
Get task accuracy for all prompts.
// Memory update
Memory of LLM-Author appends (edits, scores).
Memory of LLM-Reviewer appends (edits, prompts, task accuracy).

Return: The prompt with the highest task accuracy.

dents and summarize key points that could be adjusted in the instruction to enhance student
accuracy. Highlight major edits and present the updated task instruction.”;

c Memory: prior history (edits, scores).

LLM-Author refines the instructions (prompts for the given task) by utilizing the training data and
a memory component. We note that the memory consists of all prior (edit, score) pairs, where
the score comes from LLM-Reviewer. This memory component enables LLM-Author to execute
increasingly effective edits, drawing upon feedback from previous edits.

⋄ LLM-Reviewer scores the quality of prompts generated by LLM-Author. The input prompt
for LLM-Reviewer consists of several components:

a Input for scoring: problem description and current instruction from LLM-Author;

b Instruction for scoring: “Please rate the following instruction on a scale of 1 to 10,
where 10 represents the highest level of clarity in problem description, execution steps, and
a comprehensive explanation of the problem.”;

c Memory: prior (edits, instructions, task accuracy).

The instructions generated by LLM-Author are forwarded to LLM-Reviewer for evaluation. Based
on the scores generated by LLM-Reviewer, only a subset of high-scoring candidates is selected to
move on to the subsequent iteration. Through this iterative editing process between LLM-Author
and LLM-Reviewer, LLM-Author can refine instructions in each iteration. Details of the algorithm
can be found in Algorithm 1.

To illustrate the effectiveness of Evoke, first three edits from the Movie Recommendation task in Big
Bench are presented in Figure 3. To start with, the prompt contains the basic task instruction. Next,
it extracts key factors considered in movie recommendation, such as the genre of each movie, the
distance between the given movies and the movies the user has watched before, and the popularity
of the movies. In the final step, a well-explained example is presented with a detailed explanation
following aforementioned factors. In summary, Evoke successfully concludes the key components
of movie recommendation, and curates a demonstration with detailed explanation.

3.2 DATA SELECTION VIA LLM-SELECTOR

In practice, we find that not all samples are equally important to model performance (see Figure 10).
In particular, we find that even without prompt refinement, the LLM already knows how to solve

4



Published as a conference paper at ICLR 2024

Figure 3: Illustration of Prompt Editing for the first three steps in the Task of Movie Recommenda-
tion within Big Bench.

some “easier” cases. Therefore, we only use “hard” samples in each refinement iteration. Specif-
ically, we assign a third role besides an author a reviewer to the LLM: a data selector. The LLM-
Selector evaluates the difficulty level (on a scale of 1 to 10) of each data point by assessing, based
on the current task instruction, how challenging it is to derive the correct answer from the input. The
input prompt for LLM-Selector consists of several components:

a Input for evaluating difficulty level: current instruction and input-output pair;
b Instruction for evaluating difficulty level: “As an experienced teacher with insight into

the various levels of difficulty of exam questions, please rate the following question on
a scale of 1 to 10, considering factors such as conceptual understanding, application of
knowledge, problem-solving skills, time required, clarity of language, and accessibility,
where 1 denotes extremely easy and 10 denotes extremely difficult.”.

Empirically, we can further improve effectiveness of Evoke by using such a data selection strategy.

4 EXPERIMENTS

We conduct extensive experiments to demonstrate the effectiveness of Evoke. We show that for any
given task, the prompts generated by Evoke include clear definitions and well-structured task execu-
tion steps. Moreover, these prompts feature demonstrations accompanied by detailed explanations.
In all experiments, we utilize the Azure OpenAI API service (GPT-4) for the involved LLMs.

4.1 MAIN RESULTS

Datasets. We perform a comprehensive evaluation on eight tasks from Instruction Induction (Hon-
ovich et al., 2022) and Big Bench Instruction Induction (BBII) (Zhou et al., 2022), including

orthography starts with: Extract the words starting with a given letter from the input sentence.

common concept: Find a common characteristic for the given objects.

rhymes: Write a word that rhymes with the input word.

movie recommendation: Recommend movies similar to the given list of movies.

logical fallacy detection: Detect informal and formal logical fallacies.

presuppositions as nli: Determine whether the first sentence entails or contradicts the second.

winowhy: Evaluate the reasoning in answering Winograd Schema Challenge questions.

epistemic reasoning: Determine whether one sentence entails the next.

These tasks covers a wide range of natural language understanding, reasoning and inference tasks.
For each task, we divide the dataset randomly into two sets, 60% of the data is allocated for training
(prompt refinement) and the remaining 40% is for testing (prompt evaluation).

5



Published as a conference paper at ICLR 2024

Baselines. We compare our methods against two baselines: human curated prompts (Human) from
Honovich et al. (2022); Suzgun et al. (2022) and automatic prompt engineer (APE) proposed in
(Zhou et al., 2022). APE first deduces an initial prompt from input-output pairs, and subsequently
employs LLMs to refine and generate new prompt candidates. However, prompts are simply para-
phrased during the refinement process of APE, which largely resembles random searching in the
space of all possible prompts.

Main Results. Figure 4 demonstrates experimental results. We observe that Evoke outperforms all
the baselines in all eight tasks. For example, on the challenging logical fallacy detection task from
BBII, performance of Evoke is more than 80, while performance of both APE and Human are below
20. This is because Evoke is adept at conceptualizing the core definition of a task, decomposing a
complex task into smaller subtasks, and curating relevant demonstrations accompanied by detailed
explanations. To demonstrate the power of Evoke, we show the generated prompt for logical fallacy
detection in Table 1. We see that the prompt begins with a clear task introduction and objective,
followed by a fine-grained definition of logical fallacy. It then articulates the criteria for evaluation
and the task steps to follow. Lastly, it provides a list of common logical fallacies, each accompanied
by a detailed description. Additionally, a well-structured prompt for epistemic reasoning is presented
in Table 2.

Figure 4: Results on eight tasks from the Instruction Induction and the Big Bench Instruction Induc-
tion datasets. We report the average accuracy over three runs.

4.2 TOWARDS ADVERSARIAL ROBUSTNESS

Figure 5: Results on clean and adver-
sarially attacked SST2 and QQP datasets.
We report the average accuracy over three
runs. We note that RobEnc is only applied
to the attacked data.

Despite their superior performance, LLMs are not ro-
bust to adversarial attacks (Wang et al., 2023). For ex-
ample, when asking GPT-4 whether “pretty” is a pos-
itive word, the model can output the correct answer.
However, if we ask whether “prettye”, a clear typo of
“pretty”, is a positive word, the LLM outputs an oppo-
site answer. We show that Evoke can generate prompts
which alert the LLM in paying attention to potential
typos, and thus can improve model robustness.

Datasets. We adopt two datasets: SST-2 (Socher et al.,
2013) is a sentiment classification task, where we need
to decide whether a movie review is positive or neg-
ative; and QQP (Wang et al., 2019) is a task where
we need to determine whether two sentences are para-
phrases of each other.

To evaluate whether Evoke can improve LLMs’ robust-
ness, we add typos to the datasets. Specifically, we per-
form character-level adversarial attacks for each sam-
ple. In the attack, we change at most one character in each word, and we change at most 4 words
in each sentence (Jones et al., 2020). In this way, the constructed adversarial texts are human-

6



Published as a conference paper at ICLR 2024

Table 1: Prompt generated by Evoke for logical fallacy detection.

Prompt from Evoke Breakdown

In this task, you are required to identify both informal and formal logical falla-
cies in the provided input statements. Your response should be a binary value:
return 1 if the query is logically valid (i.e., free from any logical fallacies),
and return 0 if the query is logically invalid (i.e., contains at least one logical
fallacy).

Introduction and
objective

A logical fallacy refers to an error in reasoning. Informal fallacies are often
content-dependent, such as appealing to irrelevant authority or making hasty
generalizations. Formal fallacies, on the other hand, are structural errors in
reasoning that occur regardless of the content.

Definition of logical
fallacy

It is crucial to consider the structure and the substance of the argument, evalu-
ating whether the conclusions follow logically from the premises, and whether
the premises and assumptions are factual and valid. Be cautious not to let per-
sonal beliefs interfere with your analysis.

Evaluation criteria

For each given pair, compare the input statement against the principles of
logical reasoning, to determine whether it contains a logical fallacy or not.
Ensure your answer reflects the presence or absence of logical fallacies, thus
determining the logical validity or invalidity of the statement.

Task steps

Here are some common examples of logical fallacies:
- Ad Hominem: {details}
- Appeal to Nature: {details}
- Hasty Generalization: {details}
- Post Hoc: {details}
- False Cause: {details}

Common examples of
logical fallacy

Table 2: Prompt generated by Evoke for epistemic reasoning.

Prompt from Evoke Breakdown

In this task, your goal is to determine whether the statement in the “Hypoth-
esis” logically follows from the statement in the “Premise.” This is known
as entailment. If the “Hypothesis” statement is a logical consequence of the
“Premise” statement, then it is an entailment. If it is not, then it is a non-
entailment.

Introduction and
objective

-Make sure to carefully consider the relations and assumptions mentioned in
both the “Premise” and the “Hypothesis” statements.
-The entailment does not depend on the truth of the statements, but rather
whether the logic in the “Hypothesis” follows from the “Premise”.
-Pay close attention to the wording and structure of the sentences to analyze
whether one entails the other.

Guidelines

Examples:
Entailment
Premise: The sun rises in the east.
Hypothesis: The sun rises.
Explanation: The Hypothesis is a simplified version of the Premise and does
not introduce any new information or contradictions, hence it’s an entailment.
Non-entailment
Premise: Sarah believes that all cats are black.
Hypothesis: All cats are black. Explanation: Even though the Hypothesis is
expressed in the Premise, it’s tied to Sarah’s belief and not presented as a fact,
hence it’s a non-entailment.

Examples

Now, review the provided pairs of statements. Determine if the Hypothesis
logically follows from the Premise and respond with either entailment or non-
entailment.

Task Execution

interpretable and simulate real typos. As an example, one sample from SST-2 is “that’s pure pr
hype”, and its corresponding adversarial (corrupted) sample after the attack is “tha’cs pure pr hyp”.
We evaluate performance of different prompting methods on the corrupted samples.

Baselines. Besides APE and Evoke, we evaluate another model: RobEnc (Jones et al., 2020), which
is a widely-used rule-based defense approach. RobEnc works as a clustering denoiser to cluster and

7



Published as a conference paper at ICLR 2024

Figure 6: Prompts from APE and Evoke on adversarial attacked SST-2 task

denoise potentially corrupted inputs into an encoding, and then the denoised encoding is fed to the
subsequent model (e.g., GPT-4) for inference. RobEnc learns rule-based word cluster for denoising:
for example, if the word “hallo” is clustered around the word “hello”, then all the “hallo” in the input
will be converted to “hello”.

Results. Figure 5 summarizes experimental results. We observe that Evoke significantly outper-
forms all the baselines in all the tasks. The performance gain is more significant for adversarially
constructed datasets, e.g., Adversarial-SST2 and Adversarial-QQP. To understand this, we show the
prompts generated by APE and Evoke in Figure 6. We see that although the prompt from APE pro-
vides a clear instruction regarding the given task and acknowledges the existence of typos, it does
not provide clear guidelines on how to address the typo. On the other hand, the prompt from Evoke
provides detailed explanations and actionable suggestions about defending against typos.

4.3 TOWARDS FINE-GRAINED TASKS: NAMED ENTITY RECOGNITION

Tasks in Figure 4 and Figure 5 are all sentence-level classification tasks, e.g., deciding whether
a sentence is of positive or negative sentiment. In this section, we investigate whether Evoke can
handle more fine-grained tasks, such as token-level named entity recognition (Schneider et al., 2020;
Zuo et al., 2023).

Figure 7: Results of APE and Evoke on an in-
house multi-lingual NER dataset.

Figure 8: Prompt from Evoke on the NER task.

We collect multi-lingual in-house query data from a search engine, and for each token in the query,
our goal is to assign the token to a pre-defined class (e.g., brand, location).

We illustrate results of Evoke on the fine-grained NER task in Figure 7. We see that Evoke sig-
nificantly outperforms APE on all the languages. We further show the prompt generated by Evoke
in Figure 8. From the prompt, we see that Evoke is able to automatically generate examples and
explanations about the task.

8



Published as a conference paper at ICLR 2024

Figure 9: Correlation between scores gener-
ated by LLM-Reviewer and task accuracy.

Figure 10: Task accuracy over the number of
iteration steps.

4.4 ANALYSIS

LLM-Reviewer can judge the quality of prompts. Recall that in Evoke, LLM-Reviewer scores all
the prompts generated by LLM-Author. We empirically show that the scores can reflect the quality
of the generated prompts. To examine the effectiveness of these scores, we illustrate the relationship
between the scores and the task accuracy in Figure 9. In the experiments, we consider two tasks:
Adversarial-SST2 and Common-Concept. From the results, we see that the scores can indeed reflect
the final task accuracy. For example, for Common-Concept, we see that the task accuracy is about
5% when the prompt score is 6, and the task accuracy increases to about 17% when the prompt score
increases to 7. A similar trend is also revealed on the Adversarial-SST2 task. We see that when the
score is 7.5, the final task accuracy barely reaches 75%. And when the score increases to 8, the task
accuracy increases to 85%.

LLM-Author iteratively improves prompt generation. In Evoke, because LLM-Author takes the
feedback from LLM-Reviewer into consideration, it can iteratively improve the generated prompt.
We demonstrate this in Figure 10 (the left-most orange bars). From the results, we see that indeed
the final task accuracy continues to increases when we increase the number of iteration steps. For
example, on Adversarial-SST2, with one refinement iteration, the final task accuracy is about 75%.
When we increase the number of refinement iterations to 3, we see that task accuracy significantly
increases to above 90%.

Effectiveness of LLM-Selector. Recall that in Evoke, we only consider the “hard” samples in
each iteration. We demonstrate the effectiveness of such a strategy in Figure 10. We consider
three settings: Hard is the strategy that we adopt in Evoke; Random is when we randomly select
samples instead of selecting based on a score; and Easy is when we select the easy samples instead
of the hard ones. From the results, we see that on both Common-Concept and Adversarial SST-2,
Easy yields the worst performance, indicating that the hard samples are more helpful than the easy
ones. Moreover, we observe that performance of Random is worse than Hard (i.e., Evoke), further
implying the effectiveness of the proposed data selection strategy.

5 CONCLUSION

We propose Evoke, an author-reviewer framework for automatic prompt engineering. In Evoke, the
same LLM serves two roles: as a reviewer it scores the quality of the prompt; and as an author
it refines the prompt, taking the feedback of the reviewer into account. We further propose a data
selection strategy, where we only expose the hard samples to the model. Extensive experiments
show that Evoke outperforms existing automatic prompt engineering approaches.

9



Published as a conference paper at ICLR 2024

REFERENCES

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. ArXiv preprint, abs/2303.12712, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. ArXiv preprint, abs/2305.14314, 2023.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. ArXiv preprint, abs/2205.10782, 2022.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
ArXiv preprint, abs/2212.10403, 2022.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. Robust encodings: A framework for
combating adversarial typos. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 2752–2765, Online, 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.245.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, Dublin, Ireland and Online, 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.deelio-1.10.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
11048–11064, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguis-
tics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

10



Published as a conference paper at ICLR 2024

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. Automatic generation of programming
exercises and code explanations using large language models. In Proceedings of the 2022 ACM
Conference on International Computing Education Research-Volume 1, pp. 27–43, 2022.

Elisa Terumi Rubel Schneider, João Vitor Andrioli de Souza, Julien Knafou, Lucas Emanuel
Silva e Oliveira, Jenny Copara, Yohan Bonescki Gumiel, Lucas Ferro Antunes de Oliveira, Emer-
son Cabrera Paraiso, Douglas Teodoro, and Cláudia Maria Cabral Moro Barra. BioBERTpt - a
Portuguese neural language model for clinical named entity recognition. In Proceedings of the
3rd Clinical Natural Language Processing Workshop, pp. 65–72, Online, 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.clinicalnlp-1.7.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 4222–4235, Online, 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.346.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In International Conference on Machine Learning, pp. 31693–
31715. PMLR, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, 2013. Association for Computational Lin-
guistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. ArXiv preprint, abs/2210.09261, 2022.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
pp. 1–11, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, et al. On the robustness of chatgpt: An adversarial and out-of-
distribution perspective. ArXiv preprint, abs/2302.12095, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
ArXiv preprint, abs/2203.11171, 2022.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022a.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. ArXiv preprint, abs/2206.07682, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022c.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf El-
nashar, Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt. ArXiv preprint, abs/2302.11382, 2023.

11



Published as a conference paper at ICLR 2024

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth International Conference on Learning Rep-
resentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-
goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label demon-
strations. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 2422–2437, Abu Dhabi, United Arab Emirates, 2022. Association for Computa-
tional Linguistics.

Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting large language model for machine
translation: A case study. ArXiv preprint, abs/2301.07069, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. ArXiv preprint,
abs/2211.01910, 2022.

Simiao Zuo, Pengfei Tang, Xinyu Hu, Qiang Lou, Jian Jiao, and Denis Charles. Deeptagger:
Knowledge enhanced named entity recognition for web-based ads queries. ArXiv preprint,
abs/2306.17413, 2023.

12



Published as a conference paper at ICLR 2024

A INSTRUCTION INDUCTION

In Evoke, we use the author-reviewer framework to modify a task-specific prompt. In the experi-
ments, we use an off-the-shelf algorithm to generate the initial task-specific prompt. Table 3 demon-
strates examples of using instruction induction (Honovich et al., 2022) for prompt initialization.

Table 3: Three examples of instruction inferred from input-output pairs

Input Output Inferred Instruction
Departure Arrival Get antonym
I am Mike Ich ben Mike Translate to German
Build Built Get passive voice of the given verb

B PROMPTS OF LLM ROLES IN EVOKE

B.1 LLM-REVIEWER

Prompt for LLM-Reviewer
As an experienced teacher, you are well-versed in discerning effective instruction that guides stu-
dents toward correct answers. Please rate the following instruction on a scale of 1 to 10, where 10
represents the highest level of clarity in problem description, execution steps, and a comprehensive
explanation of the problem.
The task at hand is titled: {description}
History that may help you: {memory}
The instruction to be rated is as follows: {instruction}
Kindly provide your rating below.

B.2 LLM-AUTHOR

Prompt for LLM-Author
Task Instruction: {instruction}
We’ve provided pairs consisting of inputs, the teacher’s correct answers, and the students’ responses.
Please review the incorrect responses from the students and summarize key points that could be
adjusted in the instruction to enhance student accuracy.
Pairs: {pairs}
History that may help you: {memory}
To improve the outcome, please revise the task instruction. Highlight major edits and present the
updated task instruction.

13



Published as a conference paper at ICLR 2024

B.3 LLM-SELECTOR

Prompt for LLM-Selector
As an experienced teacher with insight into the various levels of difficulty of exam questions, please
rate the following question on a scale of 1 to 10, considering factors such as conceptual under-
standing, application of knowledge, problem-solving skills, time required, clarity of language, and
accessibility, where 1 denotes extremely easy and 10 denotes extremely difficult.
Task instruction: {instruction}
Input: {input}
Correct answer: {answer}

14



Published as a conference paper at ICLR 2024

C GENERATED INSTRUCTIONS

We include generated instructions from all tasks below.

C.1 ORTHOGRAPHY STARTS WITH

Prompt from Evoke
Given an input sentence and a specified letter, identify the word or words starting with the given
letter. If there are two or more words in a sequence starting with the specified letter, include all of
them as a single answer. Ensure to present the word or group of words.
Here are the steps to follow:
-Read the provided input sentence carefully.
-Identify the word or words that start with the specified letter.
-If there are consecutive words starting with the specified letter, group them together as one entity.
-For example, if the input is ”I prefer eating apples.” and the specified letter is [e], your answer
should be eating.

C.2 COMMON CONCEPT

Prompt from Evoke
Given a list, find the commonality between the inputs. The commonality should be a meaningful
characteristic, property, or relation that applies to all the inputs, not just a superficial or coincidental
feature.
For example, can be used for repairs is a valid commonality for [’sewing’, ’wrenches’, ’glue’,
’surgery’], but tools or skills for joining is too broad and vague, and contain the letter e is too
trivial and irrelevant.

C.3 RHYMES

Prompt from Evoke
For this task, you are required to find a word that rhymes with the given word. The word you
provide should not be the same as the given word, and should be a real, correctly spelled word
from the English language. A rhyming word is defined as a word that has the last syllable sounding
identical to the last syllable of the given word. For example, if the given word is ”hat”, a word that
rhymes with it is ”cat”.
Here are the steps to complete this task:
1. Read the given word carefully.
2. Think of a word that has the same ending sound as the given word.
3. Ensure that the word you thought of is a real word, is spelled correctly, and is not the same as the
given word.
4. Write down the rhyming word next to the given word.
Now, please proceed with finding a word that rhymes with each of the following words.

15



Published as a conference paper at ICLR 2024

C.4 MOVIE RECOMMENDATION

Prompt from Evoke
Given user’s interest in movies he watched previously: ‘watched‘. Now given four different movies
from A to D, please recommend one that might be the most interest of the user.
To help you make a good recommendation, consider the following factors:
- The genre, theme, and tone of the movies. For example, if the user likes comedy, action, or drama.
- The similarity or difference between the movies and the ones the user watched before. For example,
if the movies are part of a series, a remake, or a spin-off.
- The popularity, ratings, and reviews of the movies. For example, if the movies are critically
acclaimed, award-winning, or have a large fan base.
Use these factors to compare and contrast the movies and explain why you think one of them is the
best choice for the user. Do not just pick a movie based on your personal preference or guesswork.
Example: If the user watched The Godfather, The Godfather Part II, and Goodfellas, and the options
are A) The Departed, B) Scarface, C) The Irishman, and D) Casino, a possible answer is: A
The Departed is a crime thriller that has a similar genre, theme, and tone to the movies the user
watched before. It is also a remake of a Hong Kong film called Infernal Affairs, which adds a
twist to the familiar story of undercover agents and mobsters. The Departed is a highly popular
and acclaimed movie that won four Oscars, including Best Picture and Best Director. It has a star-
studded cast that includes Leonardo DiCaprio, Matt Damon, Jack Nicholson, and Mark Wahlberg.
The user might enjoy the suspense, the plot twists, and the performances of the actors in this movie.
Therefore, I recommend The Departed as the best option for the user.

C.5 LOGICAL FALLACY DETECTION

Prompt from Evoke
In this task, you are required to identify both informal and formal logical fallacies in the provided
input statements. Your response should be a binary value: return 1 if the query is logically valid
(i.e., free from any logical fallacies), and return 0 if the query is logically invalid (i.e., contains
at least one logical fallacy). A logical fallacy refers to an error in reasoning. Informal fallacies
are often content-dependent, such as appealing to irrelevant authority or making hasty generaliza-
tions. Formal fallacies, on the other hand, are structural errors in reasoning that occur regardless
of the content. It is crucial to consider the structure and the substance of the argument, evalu-
ating whether the conclusions follow logically from the premises, and whether the premises and
assumptions are factual and valid. Be cautious not to let personal beliefs interfere with your anal-
ysis. For each given pair, compare the input statement against the principles of logical reasoning,
to determine whether it contains a logical fallacy or not. Ensure your answer reflects the presence
or absence of logical fallacies, thus determining the logical validity or invalidity of the statement.
Here are some common examples of logical fallacies:
- Ad Hominem: Attacking the character of a person making an argument rather than the argument
itself.
- Appeal to Nature: Claiming something is good because it’s natural, or bad because it’s unnatural.
- Hasty Generalization: Making a broad claim based on a small or unrepresentative sample size.
- Post Hoc: Assuming that because one event followed another, the first event caused the second
event.
- False Cause: Assuming a false or misleading cause-and-effect relationship.

16



Published as a conference paper at ICLR 2024

C.6 PRESUPPOSITIONS AS NLI

Prompt from Evoke
Determine whether the first sentence entails, contradicts, or is neutral to the second sentence. The
term ”entailment” means that the information in the first sentence logically supports or leads to the
conclusion presented in the second sentence. The term ”contradiction” means that the information
in the first sentence logically opposes or disproves the information in the second sentence. The
term ”neutral” implies that the information in the first sentence neither supports nor opposes the
information in the second sentence; they are unrelated or the relation between them is ambiguous.
It’s important to focus on the factual information provided rather than assumptions or external
knowledge. Make sure to carefully read both sentences and analyze their logical relation based
only on the given text.
Entailment: The information in the first sentence supports the conclusion in the second sentence.
Contradiction: The information in the first sentence opposes or disproves the information in the
second sentence.
Neutral: The information in the first sentence neither supports nor opposes the information in the
second sentence, or the relation between them is ambiguous.
For each pair, please provide the correct judgment between entailment, contradiction, and neutral,
based only on the provided text. Please avoid assumptions and focus solely on the text provided.

C.7 WINOWHY

Prompt from Evoke
In the given text, you are required to evaluate the reasoning provided concerning the identification of
the antecedent of a pronoun in a sentence. The antecedent is the noun that the pronoun is referring
to. Carefully examine the reasoning to determine if it accurately identifies the antecedent based
solely on the information presented within the sentence itself. Here are the steps you should follow:
Read the sentence and the reasoning provided thoroughly.
-Assess whether the reasoning accurately identifies the antecedent of the pronoun based solely on
the provided text. Avoid making assumptions or using external knowledge.
-If the reasoning correctly identifies the antecedent of the pronoun, based on the information given
in the sentence.
-If the reasoning fails to accurately identify the antecedent of the pronoun or relies on assumptions
or external information.
Remember,
Your evaluation should strictly be based on the information provided in the text.
Your goal is to assess the accuracy of the reasoning in identifying the antecedent of the pronoun.

17



Published as a conference paper at ICLR 2024

C.8 EPISTEMIC REASONING

Prompt from Evoke
In this task, your goal is to determine whether the statement in the ”Hypothesis” logically follows
from the statement in the ”Premise.” This is known as entailment. If the ”Hypothesis” statement is
a logical consequence of the ”Premise” statement, then it is an entailment. If it is not, then it is a
non-entailment.
-Make sure to carefully consider the relations and assumptions mentioned in both the ”Premise” and
the ”Hypothesis” statements.
-The entailment does not depend on the truth of the statements, but rather whether the logic in the
”Hypothesis” follows from the ”Premise”.
-Pay close attention to the wording and structure of the sentences to analyze whether one entails the
other.
Examples:
Entailment
Premise: The sun rises in the east. Hypothesis: The sun rises.
Explanation: The Hypothesis is a simplified version of the Premise and does not introduce any new
information or contradictions, hence it’s an entailment.
Non-entailment
Premise: Sarah believes that all cats are black.
Hypothesis: All cats are black. Explanation: Even though the Hypothesis is expressed in the
Premise, it’s tied to Sarah’s belief and not presented as a fact, hence it’s a non-entailment.
Now, review the provided pairs of statements. Determine if the Hypothesis logically follows from
the Premise and respond with either entailment or non-entailment.

18



Published as a conference paper at ICLR 2024

C.9 ADVERSARIAL SST2

Prompt from Evoke
Now given a user query, please do a sentiment analysis where 0 represents negative sentiment and 1
represents positive sentiment. Please note that the input may contain typos. These are not intentional
and do not reflect the user’s actual sentiment. You should try to correct the typos or infer the intended
meaning from the context before assigning a sentiment score. For example, ‘to merely badv trather
than painfzully awfl‘ could be corrected to ‘to merely bad rather than painfully awful‘ and scored
as 0. Similarly, ‘l comelling mobion‘ could be corrected to ‘a compelling motion‘ and scored as 1.
Sentiment analysis.

C.10 ADVERSARIAL QQP

Prompt from Evoke
You will be given a pair of questions and asked to determine whether they are paraphrases of each
other. Paraphrases are questions that have the same meaning or ask about the same information,
even if they use different words or structures. Please answer with a binary value of 1 if the questions
are paraphrases, or 0 if they are not. Please pay close attention to typos, spelling, grammar, and
punctuation before answering, as they may affect the meaning of the questions. If you are not sure
whether the questions are paraphrases or not, you can use some strategies to help you decide, such
as:
- Compare the keywords and topics of the questions. Do they match or relate to each other? -
Rewrite one question in a different way and see if it still conveys the same message as the other
question. - Think about the context and purpose of the questions. Are they asking for the same type
of information or response?
For example, the questions What is the capital of France? and Which city is the seat of the French
government? are paraphrases, because they both ask about the same fact and can be answered with
the same word (Paris). However, the questions How do you play the guitar? and What are some
guitar chords? are not paraphrases, because they ask for different kinds of information and have
different levels of specificity.

19



Published as a conference paper at ICLR 2024

D ADDITIONAL EXPERIMENTS

D.1 INITIAL PROMPT

The influence of initial prompt quality on the efficacy of Evoke was an important aspect of our in-
vestigation. To thoroughly examine this, we conducted additional experiments using two alternative
initial prompts: a task description and an empty string. As illustrated in Table below, Evoke’s per-
formance showed relative insensitivity to the quality of the initial prompt. These results, further
underscore the robustness of our approach.

Figure 11: Comparison of different prompt initialization methods: The blue bar indicates that, on
average, using a task description as the initialization prompt is more effective, while the orange bar
suggests that an empty string performs on par with instruction induction on average.

20



Published as a conference paper at ICLR 2024

D.2 OPEN SOURCE MODELS

We expanded our experiment scope to include open source models Mistral-7B-Openorca and
Llama2-70B-Instruct. Our findings reveal notable performance enhancements with these models,
affirming the versatility and robustness of our Evoke framework beyond GPT-4.

Figure 12: Comparison of test accuracy on APE and Evoke for Mistral-7B-Openorca and Llama2-
70B-Instruct: the Evoke prompt outperforms the baseline for both open source models.

21


	Introduction
	Related Work
	Iterative Reviewer-Author Prompt Editing
	Overview
	Data Selection via LLM-Selector

	Experiments
	Main Results
	Towards Adversarial Robustness
	Towards Fine-Grained Tasks: Named Entity Recognition
	Analysis

	Conclusion
	Instruction Induction
	Prompts of LLM roles in Evoke
	LLM-Reviewer
	LLM-Author
	LLM-Selector

	Generated Instructions
	Orthography Starts With
	Common Concept
	Rhymes
	Movie Recommendation
	Logical Fallacy Detection
	Presuppositions as NLI
	Winowhy
	Epistemic Reasoning
	Adversarial SST2
	Adversarial QQP

	Additional Experiments
	Initial Prompt
	Open Source Models


