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Abstract8

Posterior Sampling for Reinforcement Learning (PSRL) is a well-known algorithm that9

augments model-based reinforcement learning (MBRL) algorithms with Thompson sam-10

pling. PSRL maintains posterior distributions of the environment transition dynamics and11

the reward function, which are intractable for tasks with high-dimensional state and ac-12

tion spaces. Recent works show that dropout, used in conjunction with neural networks,13

induces variational distributions that can approximate these posteriors. In this paper, we14

propose Event-based Variational Distributions for Exploration (EVaDE), which are vari-15

ational distributions that are useful for MBRL, especially when the underlying domain is16

object-based. We leverage the general domain knowledge of object-based domains to design17

three types of event-based convolutional layers to direct exploration. These layers rely on18

Gaussian dropouts and are inserted between the layers of the deep neural network model19

to help facilitate variational Thompson sampling. We empirically show the effectiveness20

of EVaDE-equipped Simulated Policy Learning (EVaDE-SimPLe) on the 100K Atari game21

suite.22

Keywords: Exploration; Thompson Sampling; Model-Based Reinforcement Learning23

1. Introduction24

Model-Based Reinforcement Learning (MBRL) has recently gained popularity for tasks that25

allow for a very limited number of interactions with the environment [45]. These algorithms26

use a model of the environment, that is learnt in addition to the policy, to improve sample27

efficiency in several ways; these include generating artificial training examples [45, 35],28

assisting with planning [23, 9, 41, 10] and guiding policy search [22, 8]. Additionally, it29

is easier to incorporate inductive biases derived from the domain knowledge of the task30

for learning the model, as the biases can be directly built into the transition and reward31

functions.32

In this paper, we demonstrate how domain knowledge can be utilised for designing explo-33

ration strategies in MBRL. While model-free agents explore the space of policies and value34

functions, MBRL agents explore the space of transition dynamics and reward functions.35

One method for exploring the space of transition dynamics and reward functions is36

Posterior Sampling for Reinforcement Learning (PSRL) [34, 26], which uses the Thompson37

sampling [36] method of sampling the posterior of the model to explore other plausible38

models. Maintaining the posterior is generally intractable and in practice, variational dis-39

tributions are often used as an approximation to the posterior [3, 40, 44].40
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(a) (b)

Figure 1: Rewards in Breakout, a popular Atari game. (a) shows an interaction between
the ball and a brick which gives the agent a positive reward. (b) shows a state, where the
paddle is unable to prevent the ball from going out of bounds. The lack of this interaction
between the agent and the ball in this situation results in a penalty for the agent.

Traditionally, variational distributions are designed with two considerations in mind:41

inference and/or sampling should be efficient with the variational distribution, and the42

variational distribution should approximate the true posterior as accurately as possible.43

However, as the variational distribution may not fully represent the posterior, different44

approximations may be suitable for different purposes. In this paper, we propose to design45

the variational distribution to generate trajectories through parts of the state space that46

may potentially give high returns, for the purpose of exploration.47

In MBRL, trajectories are generated in the state space by running policies that are48

optimised against the learned model. One way to generate useful exploratory trajectories is49

by perturbing the reward function in the model, so that a different part of the state space50

appears to contain high rewards, leading the policy to direct trajectories towards those51

states. Another method is to perturb the reward function, so that the parts of the state52

space traversed by the current policy appear sub-optimal, causing the policy to seek new53

trajectories.54

We focus on problems where the underlying domain is object-based, meaning that the55

reward functions heavily depend on the locations of individual objects and their interactions,56

which we refer to as events. An example of such an object-based task is the popular Atari57

game Breakout (as shown in Figure 1). In this game, the agent receives rewards when58

the ball hits a brick and avoids losing a life by keeping the ball within bounds using the59

paddle, both of which are interactions between two objects. The rewards in this game are60

determined by the interactions between the ball and the bricks or the paddle.61

For such domains, we introduce Event-based Variational Distributions for Exploration62

(EVaDE), a set of variational distributions that can help generate useful exploratory trajec-63

tories for deep convolutional neural network models. EVaDE comprises of three Gaussian64

dropout-based convolutional layers [33]: the noisy event interaction layer, the noisy event65

weighting layer, and the noisy event translation layer. The noisy event interaction layer66

is designed to provide perturbations to the reward function in states where multiple ob-67

jects appear at the same location, randomly perturbing the value of interactions between68

objects. The noisy event weighting layer perturbs the output of a convolutional layer at a69

single location, assuming that the output of the convolutional filters captures events; this70

would upweight and downweight the reward associated with these events randomly. The71

noisy event translation layer perturbs trajectories that go through ”narrow passages”; small72
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translations can randomly affect the returns from such trajectories, causing the policy to73

explore different trajectories.74

These EVaDE layers can be used as standard convolutional layers and inserted between75

the layers of the environment network models. When included in deep convolutional net-76

works, the noisy event interaction layers, the noisy event weighting layers, and the noisy77

event translation layers generate perturbations on possible object interactions, the impor-78

tance of different events, and the positional importance of objects/events, respectively,79

through the dropout mechanism. This mechanism induces variational distributions over80

the model parameters [33, 12].81

An interesting aspect of designing for exploration is that the variational distributions82

can be useful, even if they do not approximate the posterior well, as long as they assist in83

perturbing the policy out of local optima. After perturbing the policy, incorrect parts of84

the model will either be corrected by data or left unchanged if they are irrelevant to optimal85

behaviour.86

Finally, we approximate PSRL by incorporating EVaDE layers into the reward models87

of Simulated Policy Learning (SimPLe) [45]. We conduct experiments to compare EVaDE-88

equipped SimPLe (EVaDE-SimPLe) with various popular baselines on the 100K Atari test89

suite. In the conducted experiments, all agents operate in the low data regime, where the90

number of interactions with the real environment is limited to 100K. EVaDE-SimPLe agents91

achieve a mean human-normalised score (HNS) of 0.682 in these games, which is 79% higher92

than the mean score of 0.381 achieved by a recent low data regime method, CURL [21], and93

30% higher than the mean score of 0.525 achieved by vanilla SimPLe agents.94

2. Background and Related Work95

Posterior sampling approaches like Thompson Sampling [36] have been one of the more96

popular methods used to balance the exploration exploitation trade-off. Exact implemen-97

tations of these algorithms have been shown to achieve near optimal regret bounds [2, 18].98

These approaches, however, work by maintaining a posterior distribution over all possible99

environment models and/or action-value functions. This is generally intractable in prac-100

tice. Approaches that work by maintaining an approximated posterior distribution [29, 4],101

or approaches that use bootstrap re-sampling to procure samples, [28, 25] have achieved102

success in recent times.103

Variational inference procures samples from distributions that can be represented effi-104

ciently while also being easy to sample. These variational distributions are updated with105

observed data to approximate the true posterior as accurately as possible. Computationally106

cost effective methods such as dropouts have been known to induce variational distribu-107

tions over the model parameters [33, 12]. Consequently, variational inference approaches108

that approximate the posterior distributions required by Thompson sampling have gained109

popularity [3, 40, 37, 42].110

Model-based reinforcement learning improves sample complexity at the computational111

cost of maintaining and performing posterior updates to the learnt environment models.112

Neural networks have been successful in modelling relatively complex and diverse tasks113

such as Atari games [24, 14]. Over the past few years, variational inference has been used114
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to represent environment models, with the intention to capture environment stochasticity115

[15, 5, 13].116

SimPLe [45] is one of the first algorithms to use MBRL to train agents to play video117

games from images. It is also perhaps the closest to EVaDE, as it not only employs an iter-118

ative algorithm to train its agent, but also uses an additional convolutional network assisted119

by an autoregressive LSTM based RNN to approximate the posterior of the hidden vari-120

ables in the stochastic model. Thus, similar to existing methods [15, 5, 13], these variational121

distributions are used for the purpose of handling environment stochasticity rather than im-122

proving exploration. To the contrary, EVaDE-SimPLe is an approximation to PSRL, that123

uses a Gaussian dropout induced variational distribution over deterministic reward func-124

tions solely for the purpose of exploration. Unlike SimPLe, which uses the stochastic model125

to generate trajectories to train its agent, EVaDE-SimPLe agents optimize for a deter-126

ministic reward model sampled from the variational distribution and a learnt transition127

model. Moreover, with EVaDE, these variational distributions are carefully designed so as128

to explore different object interactions, importance of events and positional importance of129

objects/events, that we hypothesize are beneficial for learning good policies in object-based130

tasks.131

The current state of the art scores in the Atari 100K benchmark is achieved by Effi-132

cientZero [43], which was developed concurrently with our work. Its success is a consequence133

of combining several improvements proposed previously in addition to integrating tree search134

with learning to improve the policy executed by the agent. We believe that the benefits135

of using the variational designs induced by the EVaDE layers proposed in this paper are136

complementary to such search based methods, as these layers could be used in their reward137

models to guide the policy search by generating useful exploratory trajectories, especially138

in object-based domains.139

3. Event Based Variational Distributions140

Event-based Variational Distributions for Exploration (EVaDE) consist of a set of varia-141

tional distribution designs, each induced by a noisy convolutional layer. These convolutional142

layers can be inserted after any intermediate hidden layer in deep convolutional neural net-143

works to help us construct approximate posteriors over the model parameters to produce144

samples from relevant parts of the model space. EVaDE convolutional layers use Gaussian145

multiplicative dropout to draw samples from the variational approximation of the posterior.146

Posterior sampling is done by multiplying each parameter, θienv, of these EVaDE layers by147

a perturbation drawn from a Gaussian distribution, N (1, (σi
env)

2). These perturbations148

are sampled by leveraging the reparameterization trick [20, 31, 30, 11] using a noise sam-149

ple from the standard Normal distribution, N (0, 1), as shown in Equation 1. The variance150

corresponding to each parameter, (σi
env)

2, is trained jointly with the model parameters θenv.151

θ̃ienv ← θienv(1 + σi
envϵ

i); ϵi ∼ N (0, 1) (1)

When the number of agent-environment interactions is limited, the exploration strategy152

employed by the agent is critical. In object-based domains, rewards and penalties are often153

sparse and occur when objects interact. Hence, the agent needs to experience most of the154

events in order to learn a good environment model. Generating trajectories that contain155
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(a) (b) (c)

Figure 2: (a) This image shows one noisy event interaction filter acting on an input with c
channels. Here f is anm×m noisy convolutional filter, which acts upon input patches at the
same location across different channels, noisily altering the value of events captured at those
locations. (b) This image shows how the filters of the noisy event weighting layer weight the
input channels. The filters f1, f2, f3 and fc randomly upweight and downweight the events
captured by the channels c1, c2, c3 and cc respectively. The white entries of the filter are
entries that are set to zero, while the rest are trainable noisy model parameters. (c) The
noisy event translation filter. The filters f1, f2, f3 and fc noisily translate events/objects
captured by the channels c1, c2, c3 and cc respectively. The white entries of the filter are
entries that are set to zero, while the rest are trainable noisy model parameters. Gaussian
multiplicative dropout is applied to all the non-zero parameters of all EVaDE filters.

events is hence a reasonable exploration strategy. Additionally, a very common issue with156

training using a very few number of interactions is that the agent may often get stuck in157

a local optimum, prioritising an event, which is relatively important, but may not lead to158

an optimal solution. Generating potentially high return alternate trajectories that do not159

include that event is another reasonable exploration strategy.160

With these exploration strategies in mind, we introduce three EVaDE layers, namely the161

noisy event interaction layer, the noisy event weighting layer and the noisy event translation162

layer. All the three layers are constructed with the hypothesis that the channels of the163

outputs of intermediate layers of deep convolutional neural networks either capture object164

positions, or events (interaction of multiple objects detected by multi-layer composition of165

the network).166

3.1. Noisy Event Interaction Layer167

The noisy event interaction layer is designed with the motivation of increasing the variety168

of events experienced by the agent. This layer consists of noisy convolutional filters, each169

having a dimension of m×m×c, where c is the number of input channels to the layer. Every170

filter parameter is multiplied by a Gaussian perturbation as shown in Equation 1. The filter171

dimension, m, is a hyperparameter that can be set so as to capture objects within a small172

m×m patch of an input channel. Assuming that the input channels capture the positions173

of different objects, a filter that combines the c input channels locally captures the local174

object interaction within the m×m patch. By perturbing the filter, different combinations175

of interactions can be captured; if the filter is used as part of the reward function, it will176

correspondingly reward different interactions depending on the perturbation. The policy177

optimized for different perturbed reward functions is likely to generate trajectories that178
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contain different events. Note that convolutional filters are equivariant, so the same filter179

will detect the event anywhere in the image and can result in trajectories that include the180

event at different positions in the image.181

We describe the filter in more detail. Every output pixel of the filter, yki,j , representing182

(i, j)th pixel of the kth output channel, can be computed as shown in Equation 2. Here x183

is the input to the layer with c input channels, Pxl
i,j

is the m ×m patch (represented as a184

matrix) centred around xli,j , the (i, j)th pixel of the lth input channel, θ̃lk is the lth channel185

of the kth noisy convolutional filter, ⊙ the Hadamard product operator, and 1m is an m186

dimensional column vector whose every entry is 1.187

yki,j =
c∑

l=0

1
T
m

(
θ̃lk ⊙ Pxl

i,j

)
1m (2)

Figure 2a shows how this filter is applied over the input channels.188

3.2. Noisy Event Weighting Layer189

Overemphasis on certain events is possibly one of the main causes due to which agents190

converge to sub-optimal policies in object based tasks. Hence, it would be useful to easily191

be able to increase as well as decrease the importance of an event. For this layer, we assume192

that each input channel is already detecting an event and design a variational distribution193

over model parameters that directly up-weights or down-weights the events captured by194

different input channels.195

This layer can be implemented with the help of c 1× 1 noisy convolutional filters (each196

having a dimension of 1 × 1 × c as shown in Figure 2b), where c is the number of input197

channels. We denote the lth element of the kth filter in the layer as θlk. To implement198

per channel noisy weighting, we set every θkk as a trainable model parameter, which has199

a Gaussian dropout variance parameter associated with it to facilitate noisy weighting as200

shown in Equation 1. All other weights, i.e., θlk when l ̸= k are set to 0. Thus each noisy201

event weighting layer has c trainable model parameters and c trainable Gaussian dropout202

parameters. A pictorial representation of how this layer acts on its input is presented in203

Figure 2b.204

Every output yki,j , corresponding to the (i, j)th pixel of the kth output channel, can be205

computed using Equation 3, where θ̃kk is the noisy scaling factor for the kth input channel.206

yki,j = θ̃kkx
k
i,j (3)

We expect that inducing such a variational distribution that up-weights or downweights207

events randomly helps the agents learn from different events that are randomly emphasised208

by different model samples drawn from the distribution. This may eventually help them in209

escaping local optima caused by overemphasis of certain events.210

3.3. Noisy Event Translation Layer211

In object based domains, an agent often has to perform a specific sequence of actions212

to successfully gain some rewards and may be penalized heavily for deviation from the213
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sequence. We refer to the specific sequence of actions as a ”narrow passage”. A small214

translation of the positions of the environment or other objects will often cause the agent to215

be unsuccessful. When random translations of obstacles, events or boundaries are performed216

within the reward function, the optimized policy may select a different trajectory, possibly217

allowing it to escape from a locally optimal trajectory. We thus design the noisy event218

translation layer to induce a variational distribution over such model posteriors that can219

sample a variety of translations of relevant objects.220

The noisy soft-translation on an input with c channels, is performed with the help of221

c convolutional filters, each having a dimension of m × m × c. These filters compute a222

noisy weighted sum of the corresponding input pixel and the pixels near it to effect a noisy223

translation of the channel. Similar to the noisy event weighting layer, each filter of the noisy224

event translation layer acts on one input channel. To achieve this, every parameter except225

the parameters of the kth channel of the kth filter, θkk (which has a dimension of m ×m),226

and their corresponding dropout variances, is set to 0, for all k. Moreover in the channel θkk ,227

only the middle column and row contain trainable parameters. Figure 2c shows a detailed228

pictorial representation of this structure of the filters. A random translation of up to n229

pixels of the input can be achieved by using a (2n + 1) × (2n + 1) noisy event translation230

layer.231

Equation 4 shows how yki,j , the (i, j)th output pixel of the kth channel, is computed.232

Here, Pxk
i,j

is a m×m patch centred at (i, j)th pixel of the kth input channel, θ̃kk is the kth233

channel of the kth noisy convolutional filter, ⊙ the Hadamard product operator, and 1m is234

an m dimensional column vector where all the entries are 1.235

yki,j = 1
T
m

(
θ̃kk ⊙ Pxk

i,j

)
1m (4)

3.4. Representational Capabilities of EVaDE networks236

Ideally, adding EVaDE layers for exploration should not hinder the network to be unable to237

represent the true model, even if they don’t accurately approximate the posterior. Theorem238

1 below states that this is indeed the case.239

Theorem 1 Let n be any neural network. For any convolutional layer l, let mi(l)×ni(l)×240

ci(l) and mo(l) × no(l) × co(l) denote the dimensions of its input and output respectively.241

Then, any function that can be represented by n can also be represented by any network242

ñ ∈ Ñ , where Ñ is the set of all neural networks that can be constructed by adding any243

combination of EVaDE layers to n, provided that, for every EVaDE layer l̃ added, l̃ uses a244

stride of 1, mi(l̃) ≤ mo(l̃), ni(l̃) ≤ no(l̃) and ci(l̃) ≤ co(l̃).245

Proof The proof follows from the fact that every EVaDE layer l̃i that is added is capable246

of representing the identity function. A detailed proof is presented in the supplementary247

material.248

249

If the added EVaDE layers induce distributions that poorly approximate the posterior,250

performance can indeed be poorer. But with enough data, the correct model should still251

be learnable since it is representable, as long as the optimization does not get trapped in a252

poor local optimum.253
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Figure 3: The network architecture of the environment model used to train EVaDE-SimPLe.

3.5. Approximate PSRL with EVaDE equipped Simulated Policy Learning254

Simulated Policy Learning (SimPLe) [45] is an iterative model based reinforcement learning255

algorithm, wherein the environment model learnt is used to generate artificial episodes to256

train the agent policy. In every iteration, the SimPLe agent first interacts with the real envi-257

ronment using its current policy. After being trained on the set of all collected interactions,258

the models of the transition and reward functions are then used as a substitute to the real259

environment to train the policy of the agent to be followed by it in its next interactions with260

the real environment. PSRL [34, 26], which augments MBRL with Thompson sampling,261

has a very similar iterative structure as that of SimPLe. However, instead of maintaining a262

single environment model, PSRL maintains a posterior distribution over all possible envi-263

ronment models given the interactions experienced by the agent with the real environment.264

The agent then optimizes a policy for an environment model sampled from this posterior265

distribution. This policy is used in its real environment interactions of the next iteration.266

EVaDE equipped SimPLE approximates PSRL, by maintaining an approximate posterior267

distribution of the reward function with the help of the variational distributions induced by268

the three EVaDE layers.269

Being an approximation of PSRL, an EVaDE-SimPLe agent has the same iterative train-270

ing structure where it acts in the real environment using its latest policy to collect training271

interactions, learns a transition model and an approximate posterior over the reward model272

by jointly optimizing the environment model parameters, θenv, and the Gaussian dropout273

parameters of the reward model, σrew, with the help of supervised learning. It then op-274

timizes its policy with respect to an environment characterized by the learnt transition275

function and a reward model sample that is procured from the posterior with the help of276

Gaussian dropout as shown in Equation 1. This policy is then used by the agent to procure277

more training interactions in the next iteration.278

4. Experiments279

We conduct our experiments on the 100K Atari game test suite first introduced by [45]. This280

test suite consists of 26 Atari games where the number of agent-environment interactions281
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is limited to 100K. Due to its diverse range of easy and hard exploration games [6], this282

test-suite has become a popular test-bed for evaluating reinforcement algorithms.283

4.1. Network Architecture284

In our experiments we use the network architecture of the deterministic world model intro-285

duced by [45] to train the environment models of the SimPLe agents, but do not augment286

it with the convolutional inference network and the autoregressive LSTM unit. Readers are287

referred to [45] for more details.288

The architecture of the environment model used by EVaDE-SimPLe agents is shown in289

Figure 3. This model is very similar to the one used by SimPLe agents, except that it has290

a combination of a 3× 3 noisy event translation layer, a noisy event weighting layer and a291

1×1 noisy event interaction layer inserted before the fifth and sixth de-convolutional layers.292

The final de-convolutional layer acts as a noisy event interaction filter when computing the293

reward, while it acts as a normal de-convolutional layer while predicting the next observa-294

tion. Sharing weights between layers allows us to achieve this. We insert EVaDE layers in295

a way that it perturbs only the reward function and not the transition dynamics.296

We reuse the network architecture of [45] to train the policies in both the SimPLe and297

EVaDE-SimPLe agents using Proximal Policy Optimization (PPO) [32]. All the hyperpa-298

rameters used for training the policy network and environment are the same as the ones299

used in [45].300

4.2. Experimental Details301

The training regimen that we use to train all the agents is the same and is structured302

similarly to the setup used by [45]. The agents, initialized with a random policy and303

collect 6400 real environment interactions before starting the first training iteration. In304

every subsequent iteration, every agent trains its environment model with its collection of305

real world interactions, refines its policy by interacting with the environment model, if it306

is a vanilla-SimPLe agent, or a transition model and a reward model sampled from the307

approximate posterior, if it is an EVaDE-SimPLe agent, and then collects more interactions308

with this refined policy.309

PSRL regret bounds scale linearly with the length of an episode experienced by the310

agent in every iteration [27]. Shorter horizons, however, run the risk of the agent not311

experiencing anything relevant before episode termination. To balance these factors, we312

set the total number of iterations to 30, instead of 15. We allocate an equal number of313

environment interactions to each iteration, resulting in 3200 agent-environment interactions314

per iteration. The total number of interactions that each SimPLe and EVaDE-SimPLe agent315

procures (about 102K) is similar to SimPLe agents trained in [45], which allocates double316

the number of interactions per iteration, but trains for only 15 iterations. To disambiguate317

between the different SimPLe agents referred to in this paper, we refer to the SimPLe agents318

trained in our paper and [45] as SimPLe(30) and SimPLe respectively from here on.319

We try to keep the training schedule of EVaDE-SimPLe and SimPLe(30) similar to320

the training schedule of the deterministic model in [45] so as to keep the comparisons fair.321

We train the environment model for 45K steps in the first iteration and 15K steps in all322

subsequent iterations. In every iteration of simulated policy training, 16 parallel PPO agents323
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Table 1: Comparison of the performances achieved by popular baselines and five indepen-
dent training runs of EVaDE-SimPLe and SimPLe(30) agents with 100K agent-environment
interactions in the 26 game Atari 100K test suite.

Game SimPLe SimPLe(30) CURL OTRainbow Eff. Rainbow EVaDE-SimPLe

Mean HNS 0.443 0.525 0.381 0.264 0.285 0.682
Median HNS 0.144 0.151 0.175 0.204 0.161 0.267

Vs EVaDE (W/L) 7W,19L 3W,23L 9W,17L 6W,20L 9W,17L -
Best Performing 5 2 4 1 3 11

collect z ∗ 1000 batches of 50 environment interactions each, where z = 1 in all iterations324

except iterations 8, 12, 23 and 27 where z = 2 and in iteration 30, where z = 3. The policy325

is also trained when the agent interacts with the real environment. However, the effect326

of these interactions (numbering 102K) on the policy is minuscule when compared to the327

28.8M transitions experienced by the agent when interacting with the learnt environment328

model. Additional experimental details as well as the anonymized code for our agents are329

provided in the supplementary, which is available at https://tinyurl.com/3zb8nywx.330

4.3. Results331

We report the mean and median Human Normalized Scores (HNS) achieved by SimPLe(30),332

EVaDE-SimPLe and popular baselines SimPLe [45], CURL [21], OverTrained Rainbow [19]333

and Data-Efficient Rainbow [38] in Table 1. For each baseline, we report the number of334

games in which it is the best performing, among all compared methods, as well as the335

number of games in which it scores more (or less) than EVaDE-SimPLe, which are counted336

as its wins (or losses).337

EVaDE-SimPLe agents achieve the highest score in 11 of the 26 games in the test suite,338

outperforming every other method on at least 17 games. Moreover, the effectiveness of the339

noisy layers to improve exploration can be empirically verified as EVaDE-SimPLe manages340

to attain higher mean scores than SimPLe(30) in 23 of the 26 games, even though both341

methods follow the same training routine. EVaDE-SimPLe also scores a mean HNS of 0.682,342

which is 79% higher than the score of 0.381 achieved by a popular baseline, CURL, and343

30% more than the mean HNS of 0.525 achieved by SimPLe(30). Additionally, EVaDE-344

SimPLe agents also surpass the human performances [7] in 5 games, namely Asterix, Boxing,345

CrazyClimber, Freeway and Krull.346

We also compute the Inter-Quartile Means (IQM), 1 a metric resilient to outlier games347

and runs, of SimPLe(30) and EVaDE-SimPLe agents. EVaDE-SimPLe agents achieve an348

IQM of 0.339, which is 68% higher than the IQM of 0.202 achieved by Simple(30) agents.349

This affirms that the improvements obtained due to the addition of the EVaDE layers are350

robust to outlier games and runs. In the supplementary material, we provide the scores351

achieved by all five independent runs of SimPLe(30) and EVaDE-SimPLe agents, which352

were used to compute the IQM.353

Furthermore, a paired t-test on the mean HNS achieved by EVaDE-SimPLe and Sim-354

PLe(30) agents on each of the 26 games yields a single-tailed p-value of 3×10−3 confirming355

1. IQM is well regarded in the reinforcement learning community, advocated by [1], which won the Out-
standing Paper Award at NeurIPS 2021

https://tinyurl.com/3zb8nywx
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Table 2: Scores (mean ± 1 standard error) achieved by SimPLe agents when equipped with
all three EVaDE filters individually and when equipped with all filters simultaneously. All
scores are averaged over five independent training runs.

Game SimPle (30) Inter. Layer Weight. Layer Trans. Layer EVaDE-SimPLe

BankHeist 78.6±31.7 107.5±29.2 168.4±19.9 180.7 ± 16.7 224.2 ± 35.4
BattleZone 4544±803 6688 ± 1617 7525±2164 7750 ± 1355 11094 ± 572
Breakout 18.9±1.7 19.8 ± 3.6 22.4 ± 5.5 19.5 ±1.5 24 ± 3.4

CrazyClimber 43458±7709 59546±3164 64191±5196 59006±3282 60716±4082
DemonAttack 120.7±18.2 136.3 ±24.4 132 ± 14.7 133.7 ± 26 141.8 ± 12.5

Frostbite 260.3±2.5 254.6±5.5 254.4±3.6 263.2± 2.1 274.2 ± 11
JamesBond 245.6±11.2 202.2±65.2 182.5 ± 56.2 160.3 ± 68.4 235.6 ± 50.2
Kangaroo 576±330 2201±993 837.5 ± 345 1297± 321 1186.5±168

Krull 4532±883 3117±781 4818 ±440 5185 ± 991 5335±455
Qbert 2583±746 1953± 674 932 ±148 3333 ± 575 2764 ± 783

RoadRunner 2385±888 7178±1227 4853 ± 1322 6070±1834 7799 ± 1296
Seaquest 321.6±52 644.4 ± 91.6 608.5 ± 144.9 644.2 ±56.9 617.5 ± 118.1

HNS 0.52 0.56 0.65 0.69 0.77
IQM 0.22 0.29 0.26 0.29 0.4

Vs SimPLe(30) (W/L) - 8W,4L 9W,3L 11W,1L 11W,1L

that the performance improvements over SimPLe(30) of EVaDE-SimPLe agents are statis-356

tically significant as an algorithm when applied to multiple games.357

4.4. Ablation Studies358

We also conduct ablation studies by equipping SimPLe(30) with just one of the three EVaDE359

layers to ascertain whether all of them aid in exploration. We do this by just removing the360

other two layers from the EVaDE environment network model (see Figure 3). Note that361

reward models that do not equip the noisy event interaction filter, also do not apply the362

Gaussian multiplicative dropout to the sixth de-convolutional layer.363

We use a randomly selected suite of 12 Atari games in our ablation study. The games364

were chosen by arranging the 26 games of the suite in the alphabetical order, and then using365

the numpy [16] random function to sample 12 numbers from 0 to 25 without replacement.366

The corresponding games were then picked. Coincidentally, the chosen test suite contains367

easy exploration games such as Kangaroo, RoadRunner and Seaquest as well as BankHeist,368

Frostbite and Qbert, which are hard exploration games [6].369

The mean scores, HNS and IQM achieved when SimPLe(30) is equipped with only370

one type of noisy convolutional layer and those of SimPLe(30) and EVaDE-SimPLe are371

presented in Table 2.372

We present the learning curves of the trained EVaDE and SimPLe(30) agents in Figure373

4. We omit the error bars here for clarity. Looking at the learning curves presented, it can374

possibly be said that an increase in scores of SimPLe(30) equipped with one of the EVaDE375

layers at a particular iteration would mean an increase in scores of EVaDE-SimPLe, albeit376

in later iterations. This pattern can clearly be seen in the games of BankHeist, Frostbite,377

Kangaroo, Krull and Qbert. This delay in learning could possibly be attributed to the378

agent draining its interaction budget by exploring areas suggested by one of the layers that379

are ineffective for that particular game. However, we hypothesise that since all the layers380

provide different types of exploration, their combination is more often helpful than wasteful.381
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Figure 4: Learning curves of EVaDE-SimPLe agents, SimPLe(30) agents and agents which
only add one of the EVaDE layers trained on the 12 game subset of the Atari 100K test
suite.

This is validated by the fact that EVaDE-SimPLe achieves higher mean HNS and IQM than382

any other agent in this study.383

We also look at the policies learnt by these agents in RoadRunner, where every EVaDE384

layer seems to improve the performance of the SimPLe agent even when added individually.385

We find that the vanilla-SimPLe RoadRunner agent learns a suboptimal policy where it386

frequently either collides with a moving obstacle or gets caught by the coyote. When the387

agent adds noisy interaction layers into its reward models, the policy learns to trick the388

coyote into colliding with the obstacle, an interaction beneficial to the roadrunner. On the389

other hand, when the reward models use only the noisy translation layers, the agent seems390

to learn a less risky policy, as it aggressively keeps away from both the obstacle as well as the391

coyote. The agent that adds only the noisy weighting layers seems to prioritize collecting392

points. This allows the coyote to get near the roadrunner, which could be undesirable.393

The policy learnt by the EVaDE-SimPLe agent combines the properties of the agents that394

add only the interaction and translation layers, as it tricks the coyote to colliding with395

the obstacle, while keeping a safe distance from both. The behaviour of the agent in this396

game provides some evidence that EVaDE layers can allow us to design different types of397

exploration based on our prior knowledge. We include videos of one episode run of each398

agent in the supplementary.399

From Table 2, it can be seen that individually, each filter achieves a higher HNS than400

SimPLe(30), thus indicating that, on average, all the filters help in aiding exploration.401

Moreover, we see that with the exception of the noisy event interaction layer, the increase in402

HNS when the other two EVaDE layers are added individually is considerable. Additionally,403

all agents that add any of the noisy convolutional layers achieve higher IQM scores than404

baseline SimPLe agents. Furthermore, we hypothesise that all the layers provide different405

types of exploration since their combination is more often helpful than wasteful. This is406

validated by the fact that EVaDE-SimPLe achieves a higher mean HNS and IQM than any407

other agent in this study.408

While having more parameters enlarges the class of functions representable by the model409

used by EVaDE agents, we emphasize that it is the design of the layers and not the higher410

number of parameters that is the reason for the performance gains. The agents that include411

only the noisy translation layers outperform SimPLe(30) on all metrics but add just 4K412
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(a) Input Frame 1 (b) Input Map 11 (c) Input Map 12 (d) Output Map 1

(e) Input Frame 2 (f ) Input Map 21 (g) Input Map 22 (h) Output Map 2

Figure 5: This figure shows the output map that captures interactions between two input
maps when passed through the noisy event interaction layer.

(a) Input Frame (b) Input Map (c) Output Map

Figure 6: This figure shows an output map (channel) that up-weights the corresponding
input feature map when passed through the noisy event weighting layer.

parameters to the reward model which contains about 10M parameters. Similarly, EVaDE-413

SimPLe adds only 0.43M parameters for its improvements.414

4.5. Visualizations of the EVaDE layers415

We also present some visualizations that help us understand the functionality of the EVaDE416

layers. All these visualizations were obtained after the completion of training, with the417

learned weights and variances of the final trained model.418

In Figure 5 we show illustrations of output map of a noisy event interaction layer detect-419

ing interactions between the right facing green-coloured enemy ships and the right facing420

blue-coloured divers given different input images from the game of Seaquest. We also show421

two input feature maps, which seem to capture the positions of these objects at the same422

locations. We observe that the pixels in the output feature map in Figure 5d are brighter423

at the locations where the two objects are close to each other, whereas in the same feature424

map these pixels are dimmer when the two objects are separated by some distance (Figure425

5h).426

In Figures 6 and 7, we show two feature maps before and after passing them through427

a noisy event weighting layer. The input images for these visualizations were taken from428

the game of Breakout. The input feature maps to the noisy event weighting layer seem429
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(a) Input Frame (b) Input Map (c) Output Map

Figure 7: This figure shows an output map (channel) that down-weights the corresponding
input feature map when passed through the noisy event weighting layer.

(a) Input Frame (b) Input Map (c) Output Map

Figure 8: This figure shows the function of the noisy translation layer. The output map
translates the input pixels to its top, bottom, left and right to different degrees

to capture the objects from the input image. The output feature map in Figure 6 is an430

upweighted version of its input, as the pixels seem to be brighter. On the other hand, the431

output feature map in Figure 7 seems to down-weight its input feature map, as the pixels432

seem a lot dimmer. The weighting factors for the input-output pairs shown in Figures 6 and433

7 are 1.93 and 0.57 respectively. In Figure 8, we show the input and output feature maps434

of a game state from Krull, before and after passing it through a noisy event translation435

layer. The input feature map seems to capture different objects from the input image. The436

translation effect in output feature map can be seen clearly as every light pixel in the input437

seems to have lightened up the pixels to its top, bottom, left and right to different degrees.438

5. Conclusion439

In this paper, we introduce Event-based Variational Distributions for Exploration (EVaDE),440

a set of variational distributions over reward functions. EVaDE consists of three noisy441

convolutional layers: the noisy event interaction layer, the noisy event weighting layer, and442

the noisy event translation layer. These layers are designed to generate trajectories through443

parts of the state space that may potentially give high rewards, especially in object-based444

domains. We can insert these layers between the layers of the reward network models,445

inducing variational distributions over the model parameters. The dropout mechanism446

then generates perturbations on object interactions, importance of events, and positional447

importance of objects/events. We draw samples from these variational distributions and448

generate simulations to train the policy of a Simulated Policy Learning (SimPLe) agent.449

We conduct experiments on the Atari 100K test suite, a test suite comprising 26 games450

where the agents are only allowed 100K interactions with the real environment. EVaDE-451

SimPLe agents outperform vanilla-SimPLe(30) on this test suite by achieving a mean HNS452
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of 0.682, which is 30% more than the mean HNS of 0.525 achieved by vanilla-SimPLe(30)453

agents. EVaDE-SimPLe agents also surpass human performances in five games of this454

suite. Additionally, these agents also outperform SimPLe(30) on median HNS as well as455

IQM scores, which is a metric that is resilient to outlier runs and games. Furthermore,456

a paired-t test also confirms the statistical significance of the improvements in HNS on457

the test suite (p = 3 × 10−3). We also find, through an ablation study, that each noisy458

convolutional layer, when added individually to SimPLe results in a higher mean HNS and459

IQM. Additionally, the three noisy layers complement each other well, as EVaDE-SimPLe460

agents, which include all three EVaDE layers, achieve higher mean HNS and IQM than461

agents which add only one noisy convolutional layer. Finally, we also present visualizations462

that help us understand the functionality of the EVaDE layers.463
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Appendix A. EVaDE-SimPLe as an approximation of PSRL464

Algorithm 1 Approximate PSRL with EVaDE equipped Simulated Policy Learning

Initialize agent policy, environment model and reward model dropout parameters
θπ, θenv, σrew respectively;
Initialize empty real environment interaction dataset Dreal ← {};
for iteration in 1 · · ·T do

s← ∅
// Interact with real environment

while kreal real-world interactions not collected do
if s is terminal or ∅ then

Start new episode, initialize start state s
end
Sample action a ∼ Policy(s, θπ)
(s′, r)← Interact Real World(s, a)
Dreal ← Dreal ∪ {(s, a, r, s′)}, s← s′

end
// Learn a variational posterior

θenv, σrew ← Supervised Learn(θenv, σrew, Dreal)
// Draw a sample from the posterior

for layer i in environment model do
if i is an EVaDE layer then

Sample ϵi ∼ N(0, 1)
θ̃ienv ← θienv(1 + σi

rewϵ
i)

end
else

θ̃ienv ← θienv
end

end
// Train policy with environment sample

s← ∅, Dsim ← ∅, steps ← 0
while ksim interactions not completed do

if s is terminal or ∅ then
Start new episode, initialize start state s

end
Sample action a ∼ Policy(s, θπ)
(s′, r)← Interact Env Sample(θ̃env, s, a)
Dsim ← Dsim ∪ {(s, a, r, s′)}, s← s′, steps ← steps + 1
if steps mod update frequency = 0 then

Update policy: θπ ← Reinforcement Learn(θπ, Dsim)
end

end

end
return θπ
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We present the pseudocode of EVaDE-SimPLe in Algorithm 1. As mentioned in Section465

3, an EVaDE-SimPLe agent has the same iterative training structure as SimPLe and PSRL.466

In the first step of each iteration, the agent interacts with the real environment using its467

latest policy to collect interactions. The agent then updates its posterior distribution over468

the environment model parameters by jointly optimizing the environment model parameters469

θenv which include the parameters of the transition and reward function and the Gaussian470

dropout parameters of the reward network σrew with the help of supervised learning. A471

sample from this approximate posterior distribution is then acquired with the help of Gaus-472

sian dropout. Subsequently, the agent updates its policy by optimizing the parameters of473

the policy network, θπ by interacting with this environment sample. This optimized policy474

is used by the agent to procure more training interactions by interacting with the475

Appendix B. Proof of Theorem 1476

We provide the proof for Theorem 1, which is restated below, in this section.477

Theorem 1 : Let n be any neural network. For any convolutional layer l, let mi(l)×478

ni(l) × ci(l) and mo(l) × no(l) × co(l) denote the dimensions of its input and output re-479

spectively. Then, any function that can be represented by n can also be represented by480

any network ñ ∈ Ñ , where Ñ is the set of all neural networks that can be constructed481

by adding any combination of EVaDE layers to n, provided that, for every EVaDE layer l̃482

added, l̃ uses a stride of 1, mi(l̃) ≤ mo(l̃), ni(l̃) ≤ no(l̃) and ci(l̃) ≤ co(l̃).483

B.1. Notations484

Neural Networks485

Any function f represented by a k-layer neural network n is an ordered composition of486

the functions f1, f2, · · · , fk computed by its layers N1, N2, · · ·Nk respectively, i.e., f =487

fk ◦ fk−1 ◦ · · · f1.488

Convolutional Layers489

Anym×n convolutional layer l has a total ofm×n×ci(l)×co(l) learnable parameters, where490

ci(l) and co(l) are the number of channels in the input and output of the layer respectively.491

The parameters of any convolutional layer l can be partitioned into co(l) filters, where each492

filter has m× n× ci(l) parameters, and is responsible for computing one output channel.493

We denote the set of parameters of any convolutional layer by θ. We denote the set of494

parameters of the kth filter by θk, and the parameters of the lth channel of this filter by495

θlk. We denote the (i, j)th parameter of the lth channel of the kth filter by θl,i,jk . For noisy496

convolutional layers, we have a learnable Gaussian dropout parameter attached to every497

parameter of the convolutional layer (see Equation 1). We use σk, σ
l
k and σl,i,j

k to denote498

the dropout parameters of the kth filter, the lth channel of the kth filter and the (i, j)th499

parameter of the lth channel of the kth filter respectively.500

Strides501

A stride is a hyperparameter of a convolutional layer, that determines the number of pixels502

of the input that each convolutional filter moves, to compute the next output pixel.503
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B.2. Implications of the constraints in Theorem 1504

Theorem 1 states that every EVaDE layer l̃ added uses a stride of 1 and satisfies the con-505

straints mi(l̃) ≤ mo(l̃), ni(l̃) ≤ no(l̃) and ci(l̃) ≤ co(l̃). This means that for any inserted506

EVaDE layer, every output dimension is at least as large as its corresponding input dimen-507

sion. This eventually implies that for every EVaDE layer, all input and output dimensions508

match, i.e., mi(l̃) = mo(l̃), ni(l̃) = no(l̃) and ci(l̃) = co(l̃).509

To see why, let us assume that the EVaDE layers l̃j , · · · l̃k are inserted, in order, in510

between the layers Ni and Ni+1 of a neural network n. As Ni and Ni+1 are two consecutive511

layers of n, we must have mi(Ni+1) = mo(Ni), ni(Ni+1) = no(Ni) and ci(Ni+1) = co(Ni).512

This implies that the dimensions of the input to layer l̃j match the dimensions of the output513

of the layer l̃k, i.e., mi(l̃j) = mo(l̃k), ni(l̃j) = no(l̃k) and ci(l̃j) = co(l̃k). However, under514

the constraints imposed in Theorem 1, every output dimension is greater than or equal515

to its corresponding input dimension for every EVaDE layer. Thus, matching the output516

dimensions of l̃k with the input dimensions of l̃j is only possible if the input and output517

dimensions match for every EVaDE layer l̃j , · · · l̃k that is added.518

With the above implications, the constraint of using a stride of 1, forces SAME padding519

for every EVaDE layer, and also ensures that patches centred around every (i, j)th pixel520

of every channel in the input are used to compute the outputs. This is an important521

implication that will help us prove the claims that all EVaDE layers can represent the522

identity transformation.523

B.3. Claims524

We prove the three following claims by construction, i.e., showing that there is a combina-525

tion of parameters using which these layers can perform the identity transformation.526

527

Claim 1 The noisy event interaction layer can represent the identity transformation.528

Proof Let us assume an m×m noisy event interaction layer. With the help of the obser-529

vations made in the previous section, we are ensured of using patches centred around every530

input xli,j ∀i, j, l and the constraints also ensure that the number of filters in this layer is531

equal to the number of input channels.532

The identity transformation can be achieved with the following parameter assignments.533

• The dropout parameter σl,i,j
k corresponding to every convolutional layer parameter534

θl,i,jk is set to zero.535

• The layer parameter corresponding to the central entry of the kth layer of the kth536

convolutional filter, i.e., θ
k,⌈m

2
⌉,⌈m

2
⌉

k is set to 1 ∀k.537

• All other convolutional layer parameters are set to 0.538

As stated in Equation 2, the event interaction layer computes the outputs yki,j ∀i, j, k
using the following equation.

yki,j =

c∑
l=0

1
T
m

(
θ̃lk ⊙ Pxl

i,j

)
1m
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Applying the above parameter assignments, we get yki,j = xki,j , as the only non-zero539

parameter in the kth filter, that is set to 1, aligns with xki,j . This is the required identity540

transformation.541

542

Claim 2 The noisy event weighting layer can represent the identity transformation.543

Proof The noisy event weighting layer uses c 1 × 1 convolutional filters, where c is the544

number of input channels. Consequently, θkk , is just a single trainable parameter instead of545

a grid of trainable parameters as in the other two EVaDE layers.546

The identity transformation can be achieved with the following parameter assignments.547

• The dropout parameter σl
k corresponding to every convolutional layer parameter θlk548

is set to zero.549

• The layer parameter corresponding to the kth layer of the kth convolutional filter, i.e.,550

θkk is set to 1 ∀k.551

• All other convolutional layer parameters are set to 0.552

This is a valid assignment, as the only parameters set to 1 are trainable, while the other553

parameters are forced to be set to 0 by construction (see Section 3.2).554

As stated in Equation 3, the event interaction layer computes every output yki,j using
the following equation.

yki,j = θ̃kkx
k
i,j

Setting θkk = 1 and σk
k = 0 ∀k, yields yki,j = xki,j ∀i, j, k , which is the identity transfor-555

mation required.556

Claim 3 The noisy event translation layer can represent the identity transformation.557

Proof558

In this case, we can use the parameter assignments as stated in the proof of Claim 1559

to produce an identity transformation. This is possible, since we construct the noisy event560

translation layer with the same structure of an m×m convolutional layer with the number561

of filters equalling the number of input channels. Moreover, the only non-zero parameter562

(which is set to 1) in the kth filter, θ
k,⌈m

2
⌉,⌈m

2
⌉

k is in the middle row and middle column of its563

kth channel, making it a valid assignment for the noisy event translation layer (see Section564

3.3).565

As stated in Equation 4, the event interaction layer computes every output yki,j using
the following equation.

yki,j = 1
T
m

(
θ̃kk ⊙ Pxk

i,j

)
1m

As in the case with the noisy event interaction layer, substituting these assignments, we566

get yki,j = xki,j ∀i, j, k , which is the identity transformation required.567

568
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B.3.1. Proof of Theorem 1569

We have to prove that all elements from Ñ , the set of neural networks that can be con-570

structed by adding any combination of EVaDE layers to the neural network n, can represent571

the functions represented by k-layered neural network n.572

Let ñ be a general element from Ñ , that adds the EVaDE layers l̃1, l̃2, · · · ˜lm, in order,573

after the layers Ni1 , Ni2 , · · ·Nim of the neural network n, where ij−1 ≤ ij ≤ ij+1 ;∀2 ≤ j ≤574

m − 1 and i1 ≥ 0, im ≤ k. Adding an EVaDE layer after N0 refers to it being added after575

the input layer and before the first layer of n. Note that more than one EVaDE layer can576

be added after any layer Nj of n.577

Also, let f1, f2, · · · fk be the functions computed by the layers N1, N2, · · · , Nk of n re-578

spectively. Thus the function represented by n is f = fk ◦ fk−1 ◦ · · · f1.579

Let f̃1, f̃2, · · · f̃m be the functions computed by the EVaDE layers l̃1, l̃2, · · · ˜lm respec-580

tively. Thus the function computed by ñ is f̃ = fk ◦ fk−1 ◦ · · · ◦ f̃m ◦ fim · · · ◦ f̃1 ◦ fi1 ◦ · · · f1.581

As all f̃1, f̃2, · · · f̃m can learn to represent the identity transformation, f̃ can learn to repre-582

sent f . This implies that ñ can represent any function represented by n.583

Appendix C. Variational Distributions using Dropouts584

Variational methods are used to approximate inference and/or sampling when using in-585

tractable posterior distributions. These methods work by using variational distributions586

that facilitate easy sampling and/or inference, while approximating the true posterior as587

closely as possible.588

These methods require the user to define two distributions, the prior p(θ), and the589

variational distribution q(θ). Given a set of training samples D = (X,Y ), where X is the590

set of input samples and Y the set of corresponding labels, variational methods work to591

minimize the KL-divergence between the learnt variational distribution q(θ) and the true592

posterior p(θ|D). This is equivalent to maximizing the Evidence Lower Bound (ELBO) as593

shown below.594

KL(q(θ), p(θ|D)) =

∫
q(θ) log

q(θ)

p(θ|D)
dθ

Now,595

p(θ|D) =p(θ|X,Y ) =
p(θ)p(X,Y |θ)

p(X,Y )
=

p(θ)p(Y |X, θ)p(X|θ)
p(X,Y )

=
p(θ)p(Y |X, θ)p(X)

p(X,Y )
;
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Substituting the value for p(θ|D),596

KL(q(θ), p(θ|D)) =

∫
q(θ)

[
log

q(θ)p(X,Y )

p(θ)p(Y |X, θ)p(X)

]
dθ

=

∫
q(θ) log

q(θ)

p(θ)p(Y |X, θ)
dθ +

∫
q(θ) log

P (X,Y )

P (X)
dθ

=

∫
q(θ) log

q(θ)

p(θ)p(Y |X, θ)
dθ + log

P (X,Y )

P (X)

=

∫
q(θ) log

q(θ)

p(θ)
dθ −

∫
q(θ) log p(Y |X, θ)dθ + log

P (X,Y )

P (X)

= KL(q(θ), p(θ))−
∫

q(θ) log p(Y |X, θ)dθ + log
P (X,Y )

P (X)

Since P (X,Y ) and P (X) are constants with respect to θ, the set of parameters that minimize597

KL(q(θ), p(θ|D)) are the same as the ones that maximize the ELBO, i.e.,598

argmin
θ

KL(q(θ), p(θ|D)) = argmax
θ

∫
q(θ) log p(Y |X, θ)dθ −KL(q(θ), p(θ))

C.1. Dropouts as Variational Distributions599

[12] introduces the usage of dropout as a mechanism to induce variational distributions,
samples from which are used to approximate the ELBO. The first term of the ELBO can
be re-written as, ∫

q(θ)
N∑
i=1

log p(yi|xi, θ)dθ

where every (xi, yi) is a training example from D.600

This integral can be approximated by averaging out the log-probabilities using several601

samples drawn from the variational distribution q(θ) (Equation 5).602

∫
q(θ)

N∑
i=1

log p(yi|xi, θ)dθ ≈
N∑
i=1

log p(yi|xi, θi); where θi ∼ q(θ) (5)

Neural networks that use different types of dropouts help us maintain variational distri-603

butions q(θ) that approximate posteriors over deep Gaussian processes [12, 20, 3]. Procuring604

a sample from this posterior using q(θ) is easy, as a random dropped out network corre-605

sponds to a sample from the posterior over these deep Gaussian processes.606

Appendix D. Network Architectures607

In this section, we detail the network architectures used for training the environment models608

of SimPLe [45] and EVaDE-SimPLe, and the policy network architectures used by both the609

methods.610
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D.1. Environment Network Architecture611

D.1.1. SimPLe612

In our experiments we use the network architecture of the deterministic world model intro-613

duced in [45] to train the environment models of the SimPLe agents, but do not augment614

it with the convolutional inference network and the autoregressive LSTM unit.615

Given four consecutive game frames and an action as input, the network jointly models616

the transition and reward functions, as it predicts the next game frame and the reward using617

the same network. The network consists of a dense layer, which outputs a pixel embedding618

of the stacked input frames. This layer is followed by a stack of six 4 × 4 convolutional619

layers, each with a stride of 2. These layers are followed by six 4×4 de-convolutional layers.620

For 1 ≤ i ≤ 5, the ith de-convolutional layers, take in as input, the output of the previous621

layer, as well as the output of the 6 − ith convolutional layer. The last de-convolutional622

layer takes in as input the output of its previous layer and the dense pixel embedding layer.623

An embedding of the action input is multiplied and added to the input channels of every624

de-convolutional layer. The outputs from the last de-convolutional layer is passed through a625

softmax function to predict the next frame. The outputs from the last de-convolutional layer626

is also combined with the output of the last convolutional layer and then passed through a627

fully connected layer with 128 units followed by the output layer to predict the reward.628

D.1.2. EVaDE-SimPLe629

The architecture of the environment model used by EVaDE agents is shown in Figure 3.630

This model resembles the model of SimPLe agents until the fourth de-convolutional layer.631

All the stand-alone EVaDE layers that we use, use a stride of 1 and SAME padding so as to632

keep the size of the inputs and outputs of the layer same. As the EVaDE layers are added633

only to the reward function, we split the network into two parts, one that predicts the634

next frame (the transition network) and one that predicts the reward (the reward network)635

respectively. We denote the last two de-convolutional layers in each part dt5, d
t
6 and dr5, d

r
6636

respectively.637

As shown in Figure 3, in the transition network, the outputs of the fourth de-convolutional638

layer and the first convolutional layer are passed to dt5. d
t
6 takes in as inputs the outputs of639

dt5 and the pixel embedding layer.640

The reward network adds a combination of a 3× 3 noisy event translation layer, a noisy641

event weighting layer and a 1 × 1 noisy event interaction layer which are inserted before642

both dr5 and dr6. dr5 shares weights with dt5, and takes in the outputs of the previous event643

interaction layer and the first convolutional layer as inputs. Likewise, dr6 shares weights with644

dt6, and takes in the outputs of the previous event interaction layer and the pixel embedding645

layer as inputs. Moreover, we also apply Gaussian multiplicative dropout to the weights646

of dr6, to make it act as an event interaction layer. As with SimPLe agents, an embedding647

of the action input is multiplied and added to the input channels of every de-convolutional648

layer (also shown in Figure 3).649

The outputs of dt6 are passed through a softmax to predict the next frame, while the650

outputs of dr6 are combined with the output of the last convolutional layer and passed651

through a fully connected layer with 128 units followed by the output layer to predict the652

reward.653
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D.2. Policy Network654

The policy network for both SimPLe and EVaDE-SimPLe agents consists of two convo-655

lutional layers followed by a hidden layer and an output layer. The inputs to the policy656

network are four consecutive game frames, which are stacked and passed through two 5× 5657

convolutional layers, both of which use a stride of 2. These convolutional layers are followed658

by a fully connected layer with 128 hidden units, which is followed by the output layer, that659

predicts the stochastic policy, i.e., the probabilities corresponding to each valid action, and660

the value of the current state of the agent.661

Appendix E. Experimental Details662

E.1. Codebase used and Hyperparameters663

The code for Simple(30) and EVaDE-SimPLe agents is provided in the supplementary.664

We build our SimPLe(30) and EVaDE-SimPLe agents by utilizing the implementation665

of SimPLe agents from [39]. To keep the comparison fair, we use the same hyperparameters666

as used by [39] to train all our agents. The codebase in [39] uses an Apache 2.0 license, thus667

allowing for public use and extension of their codebase.668

E.2. Computational Hardware Used669

We train our agents on a cluster of 4 NVIDIA RTX 2080 Ti GPUs with an Intel Xeon Gold670

6240 CPU. The total time taken to train 5 independent runs of all 5 algorithms on the test671

suite of 12 games in addition to 5 independent runs of SimPLe(30) and EVaDE-SimPLe on672

the rest of the 14 games in the suite was around 195 days (or about 6.5 months).673

E.3. Human Normalized Score674

We use the human normalized scores from [7] as defined in Equation 6 to compare our675

agents.676

HNSagent =
Scoreagent − Scorerandom
Scorehuman − Scorerandom

(6)

where Scoreagent, Scorehuman and Scorerandom denote the scores achieved by agent being677

evaluated, a human and an agent which acts with a random policy respectively.678

We also list the baseline scores achieved by humans and random agents, as listed in [7]679

in Table 3 for easy access.680

E.4. Inter-Quartile Mean681

Benchmarking the results of reinforcement learning algorithms is inherently noisy, as the682

results of most training runs of these algorithms depend on a variety of factors including683

random seeds, choice of the evaluation environment and the codebase used by these runs684

[17]. While the human normalized scores will average out the variability in the performances685

of these training runs with a large number of training runs, often these scores are skewed686

by outlier games or scores, i.e., games or random trials in which the algorithm achieves687

unusually high or low scores.688
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Table 3: Baseline human and random values used to calculate Human Normalized Scores

Game Human Score Random Score

Alien 7,127.7 227.8
Amidar 1719.5 5.8
Assault 742 222.4
Asterix 8503.3 210

BankHeist 753.1 14.2
BattleZone 37187.5 2360
Boxing 12.1 0.1
Breakout 30.5 1.7

ChopperCommand 7387.8 811
CrazyClimber 35829.4 10780.5
DemonAttack 1971 152.1

Freeway 29.6 0
Frostbite 4334.7 65.2
Gopher 2412.5 257.6
Hero 30826.4 1027

JamesBond 302.8 29
Kangaroo 3035 52
Krull 2665.5 1598

KungFuMaster 22736.3 258.5
MsPacman 6951.6 307.3

Pong 14.6 -20.7
PrivateEye 69571.3 24.9

Qbert 13455 163.9
RoadRunner 7845 11.5
Seaquest 42054.7 68.4
UpNDown 11693.2 533.4

The inter-quartile mean [1] (IQM) of a reinforcement learning algorithm that is evaluated689

on n tasks, with m evaluation runs per task, can be computed as the mean of the human690

normalised scores of those training runs that comprise the 25 - 75 percentile range of these691

n ×m training runs. In doing so, this metric judges the algorithm on the group of games692

as a whole, while ignoring the outliers.693

E.5. More Experimental Details694

We present the scores achieved by all five independent runs of all agents trained on the695

12-game subset of the Atari 100K test-suite in Table 4. Additionally, we also present the696

learning curves with error bars equal to a width of 1 standard error on each side are shown697

in Figure 9.698

We present the scores of all five independent runs of EVaDE-SimPLe and SimPLe(30)699

agents trained on rest of the 14 games in the 100K test-suite in Table 5 and in Table 6, we700
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present the mean scores achieved by SimPLe(30), EVaDE-SimPLe and other baselines in701

the Atari 100K test-suite.702

shows the learning curves as shown in Figure 4 with error bars equal to a width of 1703

standard error on each side.704

Looking at the learning curves presented in Figure 4, it can possibly be said that an705

increase in scores of SimPLe(30) equipped with one of the EVaDE layers at a particular706

iteration would mean an increase in scores of EVaDE-SimPLe, albeit in later iterations.707

This pattern can clearly be seen in the games of BankHeist, Frostbite, Kangaroo, Krull708

and Qbert. This delay in learning could possibly be attributed to the agent wasting its709

interaction budget exploring areas suggested by one of the layers that is ineffective for that710

particular game. However, we hypothesise that since all the layers provide different types711

of exploration, their combination is more often helpful than wasteful. This is validated by712

the fact that EVaDE-SimPLe achieves higher mean HNS, IQM and SimPLe-NS than any713

other agent in this study.714
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Table 4: Scores achieved by every independent run of every SimPLe agent and when
equipped with different EVaDE layers in the 12 game subset of the Atari 100K test-suite.

Game SimPLe(30) Inter. Layer Weight. Layer Trans. Layer EVaDE-SimPLe

BankHeist

133.1 85 232.2 218.4 155.3
9.375 12.5 195.3 128.8 205.9
13.13 186.9 154.7 158.4 347.8
69.38 142.8 130.6 187.5 250.9
167.8 110.3 129.4 210.6 160.9

BattleZone

4156 1313 9250 4438 10844
6969 8031 4250 6000 9375
3344 9781 4938 6844 11063
5719 4750 3906 9313 11219
2531 9563 15281 12156 12969

Breakout

20.09 8.563 29.78 14.45 35.38
18.25 25.03 27.56 23.64 20.91
20.94 24.81 0.625 19.69 20.5
12.69 14.25 26.13 21.13 15.84
22.69 26.53 28 18.81 27.59

CrazyClimber

54569 57534 75300 69494 55194
51244 58522 74141 59838 59934
12959 62266 65431 61503 70719
47391 69391 47234 53328 68747
51128 50019 58847 50866 48984

DemonAttack

55.31 215.3 134.1 129.7 169.1
112.7 71.41 155.5 105.9 100.9
127.7 152.2 142.2 62.5 166.4
159.5 102 75.31 151.1 141.1
148.1 140.6 153 219.5 131.3

Frostbite

261.3 256.6 250 263.4 268.4
251.9 241.6 259.4 258.1 249.4
259.1 242.2 259.1 267.5 268.4
262.5 268.1 261.3 259.1 315.6
266.9 264.4 242.2 268.1 269.4

JamesBond

268.8 12.5 59.38 371.9 232.8
240.6 282.8 332.8 117.2 101.6
256.3 82.81 92.19 23.44 228.1
257.8 350 126.6 262.5 203.1
204.7 282.8 301.6 26.56 412.5

Kangaroo

987.5 3294 293.8 25 1144
56.25 1588 362.5 1481 956.3
112.5 37.5 175 1719 1444
37.5 5500 1756 1681 1663
1688 587.5 1600 1581 725

Krull

5639 6124 5150 5548 5569
4873 3103 3290 7266 4906
2868 2142 4460 1443 5744
7035 2384 5386 6236 3864
2244 1831 5806 5430 6591

Qbert

3002 3935 516.4 1193 1082
4151 1133 1420 4190 3916
4106 857 873.4 3494 4208
806.3 3198 1034 3325 3983
849.2 640.6 814.1 4462 631.3

RoadRunner

2793 8794 3034 5709 8666
831.3 8744 4763 6763 8541
5034 6188 7397 12622 9538
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3219 2791 8069 2581 9566
46.88 9375 1000 2675 2684

Seaquest

392.5 791.3 221.3 649.4 536.3
419.4 286.3 288.1 604.4 813.8
395 692.5 849.4 854.4 861.9
249.4 760.6 851.3 513.8 671.9
151.9 691.3 832.5 598.8 203.8
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Table 5: Scores achieved by every independent run of every SimPLe(30) and EVaDE-
SimPLe agent when trained on the remaining 14 games of the Atari 100K test suite.

Game SimPLe(30) EVaDE-SimPLe

Alien

579.1 671.9
494.1 605.9
387.5 545.9
330.3 444.1
33.44 595.6

Amidar

90.25 112.1
29.56 128.7
92.25 171.5
84.41 99.25
75.19 149.8

Assault

2170 1255
895.2 868.1
901.9 1315
768.4 868.8
961.5 837.8

Asterix

1559 1228
345.3 1322
1269 1150
1569 1727
403.1 917.2

Boxing

47.91 26.69
35.94 44.63
41.56 44.66
27.81 42.16
17.38 39.44

ChopperCommand

859.4 734.4
878.8 984.8
487.5 953.1
821.9 818.2
872.7 875

Freeway

33.63 33.94
20.84 32.5
32.47 33.66
33.44 33.31
33.78 33.41

Gopher

659.4 752.5
293.8 793.1
690.6 1854
656.9 530
1038 423.8

Hero

3028 3056
2908 2904
2976 3009
71.88 3275
3079 3004

KungFuMaster

13703 14175
17406 14384
13481 21191
11175 21684
13006 14248

MsPacman

1194 1794
939.1 1551
1400 1050
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1118 1483
1058 1688

Pong

4.313 6.375
-1.781 16.13
-17.78 13.03
-7.781 10.22
17.31 20.09

PrivateEye

0 34.09
-38.25 100
332 0
4071 100
100 100

UpNDown

566.9 1452
1163 1182
1016 1681
1870 1586
236.6 1264
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Table 6: Mean scores achieved by SimPLe(30), EVaDE-SimPLe and other popular baselines
in the Atari 100K test-suite.

Game SimPLe SimPLe(30) Curl OTRainbow Eff Rainbow EVaDE-Simple

Alien 616.9 364.888 558.2 824.7 739.9 572.68
Amidar 88 74.332 142.1 82.8 188.6 132.27
Assault 527.2 1139.4 600.6 351.9 431.2 1028.94
Asterix 1128.3 1029.08 734.5 628.5 470.8 1268.84

BankHeist 34.2 78.557 131.6 182.1 51 224.16
BattleZone 5184.4 4543.8 14870 4060.6 10124.6 11094
Boxing 9.1 34.12 1.2 2.5 0.2 39.516
Breakout 16.4 18.932 4.9 9.84 1.9 24.024

ChopperCommand 1246.9 784.06 1058.5 1033.33 861.8 873.1
CrazyClimber 62583.6 43458.2 12146.5 21327.8 16185.3 60715.6
DemonAttack 208.1 120.662 817.6 711.8 508 141.76

Freeway 20.3 30.832 26.7 25 27.9 33.364
Frostbite 254.7 260.34 1181.3 231.6 866.8 274.24
Gopher 771 667.74 669.3 778 349.5 870.68
Hero 2656.6 2412.576 6279.3 6458.8 6857 3049.6

Jamesbond 125.3 245.64 471 112.3 301.6 235.62
Kangaroo 323.1 576.35 872.5 605.4 779.3 1186.46
Krull 4539.9 4531.8 4229.6 3277.9 2851.5 5334.8

KungFuMaster 17257.2 13754.2 14307.8 5722.2 14346.1 17136.4
MsPacman 1480 1141.82 1465.5 941.9 1204.1 1513.2

Pong 12.8 -1.1438 -16.5 1.3 -19.3 13.169
PrivateEye 58.3 892.95 218.4 100 97.8 66.818

Qbert 1288.8 2582.9 1042.4 509.3 1152.9 2764.06
RoadRunner 5640.6 2384.836 5661 2696.7 9600 7799
Seaquest 683.3 321.64 384.5 286.92 354.1 617.54
UpNDown 3350.3 970.5 2955.2 2847.6 2877.4 1433
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Figure 9: Learning curves of EVaDE-SimPLe agents, SimPLe(30) agents and agents which
only add one of the EVaDE layers with error bars of 1 standard error.
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