
A Meta-Reward-Net Algorithm

In this section, we present the detailed procedures of MRN in Algorithm 1. The updating of the
reward function uses both the outer loss in (7) and supervised loss in (2). The reward function is
updated using supervised loss per K iterations, while the bi-level optimization is performed per N
iterations.

Algorithm 1 Meta-Reward-Net
Input: supervised reward learning frequency K, bi-level updating frequency N

Input: number of human’s preference labels per session M

1: Initialize ✓ and
2: Initialize a preference dataset D ;
3: Initialize B and � with unsupervised exploration
4: for each iteration do
5: Take action at ⇠ ⇡�(at|st) and obtain st+1 ⇠ p(st+1 | st, at)
6: Store transition {(st, at, st+1, br (st, at))} in B
7: Sample minibatch {(⌧j)}Bj=1 ⇠ B
8: if iteration % K == 0 then
9: Query a human teacher for M preference labels and store them in D

10: Sample preference data in D
11: Optimize (2) with respect to
12: Use updated br to relabel the replay buffer B
13: end if
14: if iteration % N == 0 then
15: Sample preference data in D
16: Pseudo update ✓ using (10)
17: Update using (12)
18: Use updated br to relabel the replay buffer B
19: end if
20: Update ✓ and � using (13) and (14), respectively
21: end for
Output: policy ⇡�

B Derivation

In Section 4.2, the implicit derivative at iteration k of is calculated by:

g
(k)
meta = r✓̂Lmeta(✓̂

(k)())r ✓̂(k)((k)) = h ·r br(st, at; (k)). (17)

where h is defined in (19). In this section, we present the full derivation of (17). Given trajectory
pairs x and their preference labels y, the parameters of the reward function is updated to minimize
the cross-entropy loss between y and the preference labels from the Q-function in the outer loop.
Before the outer loop, pseudo updating is performed to build the connection between ✓ and . In
pseudo updating, a copy of the Q-function is updated to minimize the Bellman residual using the
reward estimation from the reward function, which is formulated in (10). With the built connection,
the gradient of with respect to Lmeta is:

g
(k)
meta =

@

@
CE(y, P✓(x; ✓̂()))

���
 (k)

=
@CE(y, P✓(x; ✓̂()))

@✓̂

�����
✓̂(k)

@✓̂
(k)()

@

�����
 (k)

=
@CE(y, P✓(x; ✓̂()))

@✓̂

�����
✓̂(k)

@✓̂
(k)()

@br(st, at;)

�����
 (k)

@br(st, at;)
@

����
 (k)

= 2↵ · @CE(y, P✓(x; ✓̂))
@✓̂

�����
✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

@br(st, at;)
@

����
 (k)

,

(18)

16

where CE(·) denotes the cross-entropy loss. Let

h = 2↵ ·

@CE(y, P✓(x; ✓̂))

@✓̂

�����
✓̂(k)

!>

· @Q(st, at; ✓)

@✓

����
✓(k)

. (19)

Then the parameters of the reward function are updated by (20):

(k+1) =

(k) � �h r br(st, at;)| (k) . (20)

C Proofs for Algorithm Convergence

Lemma 1. (Lemma 1.2.3 in [59]) If function f(x) is Lipschitz smooth on Rn
with constant L, then

8x1, x2 2 Rn
, we have

��f(x2)� f(x1)� f
0(x1)

>(x2 � x1)
��  L

2
kx2 � x1k2 . (21)

Proof. 8x1, x2 2 Rn, we have

f(x2) = f(x1) +

Z 1

0
f
0(x1 + ⌧(x2 � x1))

>(x2 � x1)d⌧

= f(x1) + f
0(x1)

>(x2 � x1) +

Z 1

0
[f 0(x1 + ⌧(x2 � x1))� f

0(x1)]
>(x2 � x1)d⌧.

(22)

Then we can derive that
��f(x2)� f(x1)� f

0(x1)
>(x2 � x1)

�� =
����
Z 1

0
[f 0(x1 + ⌧(x2 � x1))� f

0(x1)]
>(x2 � x1)d⌧

����


Z 1

0

����[f
0(x1 + ⌧(x2 � x1))� f

0(x1)]
>(x2 � x1)

����d⌧


Z 1

0
kf 0(x1 + ⌧(x2 � x1))� f

0(x1)k · kx2 � x1k d⌧


Z 1

0
⌧L kx2 � x1k2 d⌧ =

L

2
kx2 � x1k2 ,

(23)
where the first inequality holds for

���
R b
a f(x)dx

��� 
R b
a |f(x)| dx, the second inequality holds for

Cauchy-Schwarz inequality, and the last inequality holds for the definition of Lipschitz smoothness.

Lemma 2. Assume the outer loss Lmeta is Lipschitz smooth with constant L, and the gradient of the

Q-function is bounded by ⇢. Let br be twice differential, with its gradient and Hessian respectively

bounded by � and B. Then the gradient of with respect to the outer loss is Lipschitz continuous.

Proof. The gradient of with respect to the outer loss is:

r Lmeta(✓̂
(k)())

���
 (k)

= r✓̂Lmeta(✓̂())
���
✓̂(k)
r ✓̂(k)()

���
 (k)

= 2↵ · @Lmeta(✓̂)

@✓̂

�����
✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

@br(st, at;)
@

����
 (k)

= h · @br(st, at;)
@

����
 (k)

,

(24)

where h is defined in (19). Taking gradient of in both sides of (24), we obtain that

r2
 2Lmeta(✓̂

(k)())
���
 (k)

=
@h

@

����
 (k)

@br(st, at;)
@

����
 (k)

+ h
@
2br(st, at;)

@ 2

����
 (k)

. (25)

17

The first term in (25) can be derived as follows:

�����
@h

@

����
 (k)

@br(st, at;)
@

����
 (k)

�����  2↵�

�������

@

@✓̂

0

@ @Lmeta(✓̂)

@

�����
 (k)

1

A

������

>

✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

�������

= 4↵2
�

������
@

@✓̂

@Lmeta(✓̂)

@✓̂

�����
✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

@br(st, at;)
@

����
 (k)

!�����

>

✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

������

= 4↵2
�

������

@
2Lmeta(✓̂)

@✓̂2

�����
✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

@br(st, at;)
@

����
 (k)

!�����

>

✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

������

 4↵2
L⇢

2
�
2
,

(26)

since
��� @

2Lmeta(✓̂)

@✓̂2

���
✓̂(k)

���  L,
��� @Q(st,at;✓)

@✓

���
✓(k)

���  ⇢,
����
@br(st,at;)

@

���
 (k)

����  �.

The second term in (25) can be derived as follows:
�����h

@
2br(st, at;)

@ 2

����
 (k)

����� = 2↵

������
@Lmeta(✓̂)

@✓̂

�����

>

✓̂(k)

@Q(st, at; ✓)

@✓

����
✓(k)

@
2br(st, at;)

@ 2

����
 (k)

������
 2↵B⇢2,

(27)

since
��� @Lmeta(✓̂)

@✓̂

���
✓̂(k)

���  ⇢,
����
@2br(st,at;)

@ 2

���
 (k)

����  B.

Since ka+ bk  kak+ kbk, we can derive that
����r

2
 2Lmeta(✓̂

(k)())
���
 (k)

���� =

�����
@h

@

����
 (k)

@br(st, at;)
@

����
 (k)

+ h
@br(st, at;)

@

����
 (k)

�����



�����
@h

@

����
 (k)

@br(st, at;)
@

����
 (k)

�����+

�����h
@br(st, at;)

@

����
 (k)

�����

 2↵⇢2(2↵L�2 + B).

(28)

According to Lagrange mean value theorem, 8 1, 2, we have
���r Lmeta(✓̂

(k)(1))�r Lmeta(✓̂
(k)(2))

���  L
0 k 1 � 2k , (29)

where r Lmeta(✓̂(k)(1)) = r Lmeta(✓̂(k)())
���
 1

, L0 = 2↵⇢2(2↵L�2 + B).

Theorem 1. Assume the outer loss Lmeta is Lipschitz smooth with constant L, and the gradient

of Lmeta and JQ is bounded by ⇢. Let br be twice differential, with its gradient and Hessian

respectively bounded by � and B. For some c1 > 0, suppose the learning rate of the inner updating

↵k = min{1, c1
T }, where c1 < T . For some c2 > 0, suppose the learning rate of the outer updating

�k = min{ 1
L ,

c2p
T
}, where

p
T

c2
� L,

P1
k=1 �k  1 and

P1
k=1 �

2
k  1. Meta-Reward-Net can

achieve:

min
1kT

E
���r Lmeta(✓̂

(k)((k)))
���
2
�
 O

✓
1p
T

◆
. (30)

Proof. The difference between k + 1-th outer loss and k-th outer loss can be decomposed as:

Lmeta(✓̂
(k+1)((k+1)))� Lmeta(✓̂

(k)((k)))

=
n
Lmeta(✓̂

(k+1)((k+1)))� Lmeta(✓̂
(k)((k+1)))

o

+
n
Lmeta(✓̂

(k)((k+1)))� Lmeta(✓̂
(k)((k)))

o
.

(31)

18

Since the outer loss function Lmeta is Lipschitz smooth with constant L, the first term in (31) can be
derived according to Lemma 1:

Lmeta(✓̂
(k+1)((k+1)))� Lmeta(✓̂

(k)((k+1)))

 r✓̂Lmeta(✓̂
(k)((k+1)))>(✓̂(k+1)((k+1))� ✓̂(k)((k+1)))

+
L

2

���✓̂(k+1)((k+1))� ✓̂(k)((k+1))
���
2
.

(32)

For the first term in (32), since ✓̂(k+1)((k+1))� ✓̂(k)((k+1)) = �↵kr✓JQ(✓(k+1)), we have

r✓̂Lmeta(✓̂
(k)((k+1)))>(✓̂(k+1)((k+1))� ✓̂(k)((k+1)))


���r✓̂Lmeta(✓̂

(k)((k+1)))
��� ·
���✓̂(k+1)((k+1))� ✓̂(k)((k+1))

���

 ⇢ ·
����↵kr✓JQ(✓(k+1))

���

 ↵k⇢
2
,

(33)

where
���r✓̂Lmeta(✓̂(k)((k+1)))

���  ⇢,
��r✓JQ(✓(k+1))

��  ⇢ and the first inequality holds for
Cauchy-Schwarz inequality. Combining (32) and (33), we obtain

Lmeta(✓̂
(k+1)((k+1)))� Lmeta(✓̂

(k)((k+1)))  ↵k⇢
2 +

L

2
↵
2
k⇢

2
. (34)

According to Lemma 2 and 1, the second term in (31) can be derived as follows:

Lmeta(✓̂
(k)((k+1)))� Lmeta(✓̂

(k)((k)))

 r Lmeta(✓̂
(k)((k)))>((k+1) � (k)) +

L

2

��� (k+1) � (k)
���
2

= ��kr Lmeta(✓̂
(k)((k)))>r Lmeta(✓̂

(k)((k))) +
L�

2
k

2

���r Lmeta(✓̂
(k)((k)))

���
2

= �(�k �
L�

2
k

2
)
���r Lmeta(✓̂

(k)((k)))
���
2
,

(35)

since (k+1) � (k) = ��kr Lmeta(✓̂(k)((k))). Combining (34) and (35), we have

Lmeta(✓̂
(k+1)((k+1)))� Lmeta(✓̂

(k)((k)))

 ↵k⇢
2 +

L

2
↵
2
k⇢

2 � (�k �
L�

2
k

2
)
���r Lmeta(✓̂

(k)((k)))
���
2
.

(36)

Summing up both sides in (36) from k = 1 to T , we obtain

TX

k=1

(�k �
L�

2
k

2
)
���r Lmeta(✓̂

(k)((k)))
���
2

 Lmeta(✓̂
(1)((1)))� Lmeta(✓̂

(T+1)((T+1))) +
TX

k=1

(↵k⇢
2 +

L

2
↵
2
k⇢

2)

 Lmeta(✓̂
(1)((1))) +

TX

k=1

(↵k⇢
2 +

L

2
↵
2
k⇢

2).

(37)

19

Therefore

min
1kT

E
���r Lmeta(✓̂

(k)((k)))
���
2
�



PT
k=1(�k �

L�2
k

2)
���r Lmeta(✓̂(k)((k)))

���
2

PT
k=1(�k �

L�2
k

2)

 1
PT

k=1(2�k � L�
2
k)

"
2Lmeta(✓̂

(1)((1))) +
TX

k=1

(2↵k⇢
2 + L↵

2
k⇢

2)

#

 1
PT

k=1 �k

"
2Lmeta(✓̂

(1)((1))) +
TX

k=1

↵k⇢
2(2 + L↵k)

#

 1

T�k

h
2Lmeta(✓̂

(1)((1))) + T↵1⇢
2(2 + L)

i

=
2Lmeta(✓̂(1)((1)))

T

1

�k
+
↵1⇢

2(2 + L)

�k

=
2Lmeta(✓̂(1)((1)))

T
max{L,

p
T

c2
}+min{1, c1

T
}max{L,

p
T

c2
}⇢2(2 + L)

 2Lmeta(✓̂(1)((1)))

c2

p
T

+
c1⇢

2(2 + L)

c2

p
T

= O
✓

1p
T

◆
,

(38)

where the third inequality holds since
PT

k=1(2�k � L�
2
k) �

PT
k=1 �k.

Lemma 3. (Lemma A.5 in [60]) Let (an)n�1, (bn)n�1 be two non-negative real sequences such that

the series
P1

n=1 an diverges, the series
P1

n=1 anbn converges, and there exists K > 0 such that

|bn+1 � bn|  Kan. Then, the sequence (bn)n�1 converges to 0.

Theorem 2. Assume the outer loss Lmeta is Lipschitz smooth with constant L, and the gradient

of Lmeta and JQ is bounded by ⇢. Let br be twice differential, with its gradient and Hessian

respectively bounded by � and B. For some c1 > 0, suppose the learning rate of the inner updating

↵k = min{1, c1
T }, where c1 < T . For some c2 > 0, suppose the learning rate of the outer updating

�k = min{ 1
L ,

c2p
T
}, where

p
T

c2
� L,

P1
k=1 �k  1 and

P1
k=1 �

2
k  1. Meta-Reward-Net can

achieve:

lim
k!1

E
���r✓JQ(✓(k); (k+1))

���
2
�
= 0. (39)

Proof. The difference between k + 1-th inner loss and k-th inner loss can be decomposed as:

JQ(✓
(k+1); (k+2))� JQ(✓

(k); (k+1))

=
n
JQ(✓

(k+1); (k+2))� JQ(✓
(k+1); (k+1))

o
+
n
JQ(✓

(k+1); (k+1))� JQ(✓
(k); (k+1))

o
.

(40)
According to Lemma 1, the first term in (40) can be derived as follows:

JQ(✓
(k+1); (k+2))� JQ(✓

(k+1); (k+1))

 r JQ(✓(k+1); (k+1))>((k+2) � (k+1)) +
L

2

��� (k+2) � (k+1)
���
2

= ��k+1r JQ(✓(k+1); (k+1))>r Lmeta(✓̂
(k+1)((k+1))) +

L�
2
k+1

2

���r Lmeta(✓̂
(k+1)((k+1)))

���
2
.

(41)

20

And the second term in (40) can be derived as follows:

JQ(✓
(k+1); (k+1))� JQ(✓

(k); (k+1))  r✓JQ(✓(k); (k+1))>(✓(k+1) � ✓(k)) + L

2

���✓(k+1) � ✓(k)
���
2

= �↵kr✓JQ(✓(k); (k+1))>r✓JQ(✓(k); (k+1)) +
L↵

2
k

2

���r✓JQ(✓(k); (k+1))
���
2

= �(↵k �
L↵

2
k

2
)
���r✓JQ(✓(k); (k+1))

���
2
.

(42)
Combining (41) and (42), we obtain

JQ(✓
(k+1); (k+2))� JQ(✓

(k); (k+1))

 ��k+1r JQ(✓(k+1); (k+1))>r Lmeta(✓̂
(k+1)((k+1))) +

L�
2
k+1

2

���r Lmeta(✓̂
(k+1)((k+1)))

���
2

� (↵k �
L↵

2
k

2
)
���r✓JQ(✓(k); (k+1))

���
2
.

(43)
Taking expectation at both sides of (43), we can derive that

E
h
JQ(✓

(k+1); (k+2))
i
� E

h
JQ(✓

(k); (k+1))
i

 ��k+1E
h���r JQ(✓(k+1); (k+1))

��� ·
���r Lmeta(✓̂

(k+1)((k+1)))
���
i

+
L�

2
k+1

2
E
���r Lmeta(✓̂

(k+1)((k+1)))
���
2
�
� (↵k �

L↵
2
k

2
)E
���r✓JQ(✓(k); (k+1))

���
2
�
.

(44)
Rearranging the terms of (44) and summing up both sides of it from k = 1 to1, we have
1X

k=1

↵kE
���r✓JQ(✓(k); (k+1))

���
2
�
+

1X

k=1

�k+1E
h���r JQ(✓(k+1); (k+1))

��� ·
���r Lmeta(✓̂

(k+1)((k+1)))
���
i


1X

k=1

L↵
2
k

2
E
���r✓JQ(✓(k); (k+1))

���
2
�
+ E

h
JQ(✓

(1); (2))
i
� lim

k!1
E
h
JQ(✓

(k+1); (k+2))
i

+
1X

k=1

L�
2
k+1

2
E
���r Lmeta(✓̂

(k+1)((k+1)))
���
2
�


1X

k=1

L(↵2
k + �

2
k+1)

2
⇢
2 + E

h
JQ(✓

(1); (2))
i
 1,

(45)
where the second inequality holds for

P1
k=1 ↵

2
k  1,

P1
k=1 �

2
k  1,

��r✓JQ(✓(k); (k+1))
��  ⇢,���r Lmeta(✓̂(k+1)((k+1)))

���  ⇢.

Then we can derive that
���E

h��r✓JQ(✓(k+1); (k+2))
��2

i
� E

h��r✓JQ(✓(k); (k+1))
��2

i���

=
���E

h���r✓JQ(✓(k+1); (k+2))
�� +

��r✓JQ(✓(k); (k+1))
��� +

���r✓JQ(✓(k+1); (k+2))
�� �

��r✓JQ(✓(k); (k+1))
���

i���

 E
h���
��r✓JQ(✓(k+1); (k+2))

�� +
��r✓JQ(✓(k); (k+1))

��
���
���
��r✓JQ(✓(k+1); (k+2))

�� �
��r✓JQ(✓(k); (k+1))

��
���
i

 E
h���r✓JQ(✓(k+1); (k+2)) + r✓JQ(✓(k); (k+1))

��� ·
���r✓JQ(✓(k+1); (k+2)) � r✓JQ(✓(k); (k+1))

���
i

 E
h⇣���r✓JQ(✓(k+1); (k+2))

��� +
���r✓JQ(✓(k); (k+1))

���
⌘
·
���r✓JQ(✓(k+1); (k+2)) � r✓JQ(✓(k); (k+1))

���
i

 2L⇢E
h���(✓(k+1), (k+2)) � (✓(k), (k+1))

���
i

 2L⇢↵k�k+1E
h���

⇣
r✓JQ(✓(k); (k+1)),r Lmeta(✓̂

(k+1)((k+1)))
⌘���

i

 2L⇢↵k�k+1

s

E
���r✓JQ(✓(k); (k+1))

���
2
�
+ E

���r Lmeta(✓̂(k+1)((k+1)))
���
2
�

 2L⇢↵k�k+1

q
2⇢2

 2
p
2L⇢2�1↵k,

(46)

21

where the second inequality holds for |(kak+ kbk)(kak � kbk)|  ka+ bkka� bk.
Since

1X

k=1

�k+1E
h���r JQ(✓(k+1); (k+1))

��� ·
���r Lmeta(✓̂

(k+1)((k+1)))
���
i
 L⇢

1X

k=1

�k+1  1,

(47)
according to (45), we have

1X

k=1

↵kE
���r✓JQ(✓(k); (k+1))

���
2
�
<1 (48)

Since
P1

k=1 ↵k =1, according to Lemma 3, we have

lim
k!1

E
���r✓JQ(✓(k); (k+1))

���
2
�
= 0. (49)

D Details of PEBBLE

In this section, we present details of unsupervised exploration and sampling scheme used in our
experiments in Section 5.1. These two techniques play an essential role in improving the feedback
efficiency of PEBBLE [17]. In our experiments, all preference-based RL algorithms use unsupervised
exploration and disagreement-based sampling for fairness.

D.1 Unsupervised Pre-training

For a random policy, in the initial stage of training, the generated trajectories are difficult to cover
the trajectory space, or the agent lacks behavioural diversity. As a result, the information conveyed
by human preference feedback is limited. Even worse, it might be difficult for human experts
to give preferences to trajectory pairs (e.g., a pair of poor trajectories.). This problem leads to a
significant impact on the efficiency of the feedback in the initial stage. A practical solution is to
encourage the agent to explore the environment and improve the diversity of trajectories. For specific
implementation, the entropy of the agent’s state can be considered:

bH(s) = �Es⇠p(s) [log p(s)] /
1

N

NX

i

log(ksi � s
k
i k), (50)

where bH is the particle-based entropy estimator and s
k
i denotes the k-th nearest neighbor of si.

Specifically, the intrinsic reward is constructed to facilitate the agent to explore the environment and
cover a broader range of state space. By maximizing the accumulation of intrinsic reward, the agent
is effectively encouraged to explore the environment and improve the diversity of agent trajectories.
Inspired by this, PEBBLE [17] proposed a method to construct intrinsic reward by using state entropy.
It defines the intrinsic reward as the formula (51).

r
int(st) = log(kst � s

k
t k). (51)

(51) represents the immediate reward of st depends on the distance between st and the k-th nearest
neighbor of st. In our experiment, to ensure the fairness of the experiment, all algorithms use the
technique of unsupervised exploration.

D.2 Disagreement Sampling

The sampling scheme is a strategy for selecting queries, which will have an impact on feedback
efficiency during reward learning. Disagreement sampling [31] is one of the sampling schemes
used in this work, the same as PEBBLE [17] and SURF [18]. It selects segments from the human
preference dataset with high variance across an ensemble of reward models. Intuitively, the variance
of the predicted return of segment across multiple reward models approximates the reward models’
uncertainty to a certain extent.

22

E Experimental Details

E.1 Tasks

The locomotion tasks from DeepMind Control Suite (DMControl) [22, 23] and simulated robotic
manipulation tasks from Meta-world [21] used in our experiments are shown in Figure 5.

(a) Walker (b) Cheetah (c) Quadruped

(d) Hammer (e) Door Open (f) Button Press

(g) Sweep Into (h) Drawer Open (i) Window Open

Figure 5: Nine tasks used for experiments. (a-c) DMControl tasks. (d-i) Meta-world tasks.

DMControl Tasks.

• Walker: A planar walker learns to control its torso and walk on the ground.
• Cheetah: A planar biped learns to control its body and run on the ground.
• Quadruped: A quadruped ant learns to control its body and limbs and crawl on the ground.

Meta-world Tasks.

• Hammer: An agent controls the robotic arm to hammer a screw into the wall. The initial
positions of the hammer and screw are random.

• Door Open: An agent controls the robotic arm to open a door with a revolving joint. The initial
position of the door is random.

• Button Press: An agent controls the robotic arm to press a button. The initial position of the
button is random.

• Sweep Into: An agent controls the robotic arm to sweep a ball into the hole. The initial position
of the ball is random.

• Drawer Open: An agent controls the robotic arm to open a drawer. The initial position of the
drawer is random.

• Window Open: An agent controls the robotic arm to open a window. The initial position of the
window is random.

23

E.2 Implementation Details

For SAC, the agent is provided the ground-truth reward function and SAC serves as the upper bound
of all methods. The detailed hyperparameters of SAC are shown in Table 2. For Preference PPO, we
follow the hyperparameters settings used in PEBBLE [17], which are shown in Table 3. The settings
of PEBBLE are kept the same with their implementation, and they are detailed in Table 4. For SURF,
most hyperparameters are the same as those of PEBBLE in Table 4 and other hyperparameters are
detailed in Table 5. The reward model is an ensemble of three MLPs. Each MLP has three layers
with 256 hidden units. The output of the reward model is limited within [�1, 1] using tanh activation.
The hyperparameters of MRN are the same as those of PEBBLE in Table 4. The only difference is
the bi-level updating frequency, which is detailed in Section 5.1.

Table 2: Hyperparameters of SAC.

Hyperparameter Value Hyperparameter Value
Number of layers 2 (DMControl), 3 (Meta-world) Initial temperature 0.1
Hidden units of each layer 1024 (DMControl), 256 (Meta-world) Optimizer Adam
Learning rate 0.0005 (Walker), 0.001 (Cheetah) Critic target update freq 2

0.0001 (Quadruped), 0.0003 (Meta-world) Critic EMA ⌧ 0.005
Batch size 1024 (DMControl), 512 (Meta-world) (�1,�2) (0.9, 0.999)
Steps of unsupervised pre-training 9000 Discount � 0.99

Table 3: Hyperparameters of Preference PPO.

Hyperparameter Value Hyperparameter Value
Learning rate 0.0003 (Meta-world), 0.0001 (Cheetah) Batch Size 512 (Cheetah)

5e�5 (Walker, Quadruped) 128 (others)
Number of parallel environments 32 (Walker, Meta-world) GAE parameter � 0.92

16 (Cheetah, Quadruped) Entropy coefficient 0.0
Steps of unsupervised pre-training 32000 Discount � 0.99

Table 4: Hyperparameters of PEBBLE.

Hyperparameter Value
Length of segment 50
Learning rate 0.0005 (Walker, Cheetah), 0.0001 (Quadruped), 0.0003 (Meta-world)
Frequency of feedback 20000 (Walker, Cheetah), 30000 (Quadruped), 5000 (Meta-world)
Amount of feedback / 700/35 (Quadruped), 100/10 (Walker, Cheetah)
feedback amount per session 10000/50 (Hammer), 4000/20 (Sweep Into)

1000/10 (Door Open, Drawer Open), 100/5 (Button Press, Window Open)
Number of reward functions 3

Table 5: Hyperparameters of SURF.

Hyperparameter Value
Unlabeled batch ratio µ 4
Threshold ⌧ 0.999 (Cheetah, Window Open, Sweep Into)

0.99 (others)
Loss weight � 1
Min/Max length of cropped segment [Hmin, Hmax] [45, 55]
Segment length before cropping 60

F Additional Results

To further study the properties of MRN, we additionally conduct a range of supplementary experiments
which include the impact of bi-level updating frequency and supervised reward learning frequency on
the performance of MRN, and the robustness of MRN with noisy preference labels.

24

Bi-level Updating Frequency. To investigate how bi-level updating frequency influences our
method, we conduct several experiments of different bi-level updating frequency settings. For
Walker, MRN is evaluated using N 2 {400, 800, 1000, 1200, 1600}. MRN is evaluated using
N 2 {1000, 5000, 10000, 15000, 20000} for Door Open and N 2 {1000, 3000, 5000, 7500, 10000}
for Hammer and Window Open. It is shown in Figure 6 that under the same amount of human’s
preference labels, our method performs well when the bi-level updating frequency is moderate, i.e.,
neither too low or too high. When the frequency is too high (i.e., small N), the inner level is not fully
optimized. When the frequency is too low (i.e., large N), bi-level optimization has a relatively small
influence on the performance of MRN.

(a) Walker (b) Door Open

(c) Hammer (d) Window Open

Figure 6: Training curves on Walker, Door open, Hammer and Window Open with different bi-level
updating frequencies. The solid line and shaded regions respectively denote mean and standard
deviation, across five runs.

Supervised Loss Updating Frequency. To investigate how supervised loss influences our
method, we evaluate MRN using different supervised loss updating frequency K. K 2
{10000, 20000, 30000, 40000} are used for Walker and K 2 {1000, 3000, 5000, 7500, 10000} are
used for Door Open. Figure 7 demonstrates that MRN learns both quickly and well when K is
moderate. When K is small, the influence of supervised loss exceeds that of bi-level updating loss,
and the performance is close to that of PEBBLE. When K goes larger, MRN learns slower at initial
stage, but finally learns a good policy.

Robustness of MRN. To evaluate the robustness of our method, we conduct extensive experiments
when 10% of human preference data is modified at random (i.e., when the label is (1, 0), it will be
changed to (0, 1), and vice versa). In this way, introducing erroneous data simulates that human
experts make mistakes with a constant probability when giving preferences to trajectory pairs.
Figure 8 shows that MRN has excellent robustness with 10% erroneous data. When there are a few
errors in the preferences, the performance of all methods are affected. However, MRN is more robust

25

(a) Walker (b) Door Open

Figure 7: Training curves on Walker and Door Open with different supervised loss updating frequen-
cies. The solid line and shaded regions respectively denote mean and standard deviation, across five
runs.

and outperforms PEBBLE and SURF with noisy labels. We remark that the performance of MRN
with noisy preferences is the same as that of PEBBLE trained by perfect data on Walker. Likewise,
the performance of MRN with noisy labels is the same as that of PEBBLE trained by perfect data on
Door Open.

(a) Walker (b) Door Open

Figure 8: Training curves on Walker and Door Open. The solid/dashed line and shaded regions
respectively denote mean and standard deviation, across five runs.

26

	Introduction
	Related Work
	Preliminaries
	Meta-Reward-Net
	The Objective
	Bi-level Optimization
	Algorithm Convergence

	Experiments
	Setup
	Results
	Ablation Study

	Conclusion
	Meta-Reward-Net Algorithm
	Derivation
	Proofs for Algorithm Convergence
	Details of PEBBLE
	Unsupervised Pre-training
	Disagreement Sampling

	Experimental Details
	Tasks
	Implementation Details

	Additional Results

