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A PROOF FOR THEOREM 3.1

Proof. To estimate p
�
y|x, do(zs)

�
, we introduce variables Zc:

p
�
y|x, do(zs)

�
=

Z

zc

p
�
y|zc,x, do(zs)

�
p
�
zc|x, do(zs)

�
dzc (7)

We can simplify the calculation of p(y|zc,x, do(zs)) using Pearl’s Do-Calculus Rules.

p
�
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�
=p

�
y|zc, do(zs)

�
(Y ??X|Zc,Zs)GZs

According to Rule 1

=p(y|zc) (Y ?? Zs|Zc)GZs
According to Rule 3

(8)

We employ the Backdoor Adjustment Theorem and Pearl’s Do-Calculus Rule 2 to estimate
p
�
zc|x, do(zs)

�
,

p(zc|x, do(zs)) =
p
�
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�
p
�
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�

p
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x|do(zs)
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=
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(9)

Between Zs,Zc, there is a valid backdoor path from Zc  Y  Uxy ! Zs, we can directly apply
the Backdoor Adjustment Theorem with a valid adjusting set {Y }:

p
�
zc|do(zs)

�
=

X
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p(zc|y, zs)p(y)

=
X

y
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= p(zc)

(10)

Between Zs,X , there is a valid backdoor path from X  Zc  Y  Uxy ! Zs. We are able to
adjust on {Y }, {Zc} or {Y,Zc}3. In our case, we choose to adjust on {Zc}:

p
�
x|do(zs)

� Adjust on Zc=

Z

zc

p(x|zc, zs)p(zc) dzc (11)

Substitute Eq. equation 10, equation 11 into Eq. equation 9, we obtain:

p
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�
=

p(x|zc, zs)p(zc)R
zc

p(x|zc, zs)p(zc) dzc
(12)

Substitute Eq. equation 12 and equation 8 into Eq. equation 7, we obtain Eq. equation 1 in Theorem
3.1:
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=
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zc

p
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p
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�
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zc
p(x|zc, zs)p(zc) dzc
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(13)

3The equations for conditioning on those three different adjusting sets are the same.
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B DERIVATIONS

B.1 THE DERIVATION IN EQ. (2)

Ep(zs|x)[p(y|x, do(zs))] =Ep(zs|x)[

R
zc

p(y|zc)p(x|zc, zs)p(zc) dzcR
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(14)

B.2 THE DERIVATION OF THE MARGINAL LIKELIHOOD IN EQ. (4)

We character the joint likelihood over the variables in the proposed SCM. However, there are 6
variables of interest and only the observations for 2 of them are available. Therefore, we start from
the marginal likelihood p(x, y).
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We further simplify the first term as follows,
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We parameterize the encoder distributions using parameter ⇥ = {⇥s,⇥c}, denoted as q⇥s(zs|x)
and q⇥c(zc|x), the decoder distribution with parameter � as p�(x|zc, zs), and the classifier dis-
tribution with parameter  as p (y|zc). During training, we optimize these defined parameters
to construct the corresponding distributions. Additionally, we make assumptions or estimations
about the prior distributions, specifically p(zc) and p(zs|ux, uxy), to help regularize the learning
of representations. Notably, we do not parameterize over p(y|uxy), as it is not necessary for either
obtaining representations or computing interventional distributions. As a result, we omit the term
Ep(uxy) log p(y|uxy), as it is independent of the parameters for optimization. By combining Eq.(15)
with Eq.(16), we propose the following training objective for the causal representation learning pro-
cedure:

Lobj(x, y,⇥,�, ) =� Ep(ux,uxy)KL
�
q⇥s(zs|x)||p(zs|ux, uxy)

�
�KL(q⇥c(zc|x)||p(zc))

+ Eq⇥c (zc|x) log p (y|zc) + Eq⇥(zc,zs|x) log p�(x|zc, zs)
(17)

C EMPIRICAL ABLATION STUDY

In this section, we perform three ablation studies: 1) We show the sensitivity of our proposed CRLII
method with respect to the value of |U | that we specify during SCM parameterization and learning.
2) We demonstrate the necessity of our intervention inference approach due to the imperfect disen-
tanglement between zs and zc. 3) We provide a detailed approach to choose the number of zc,l that
we need to obtain to perform interventional inference.
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C.1 THE NUMBER OF DOMAINS

In this section, we explore how varying the number of domains |U | affects out-of-distribution (OOD)
prediction performance. We incrementally increase the values of |U | from 1 to 5 and present the
corresponding prediction performance in Figure 5.

Figure 5: Ablation study on the influence from the number of domains |U |. The results on PACS
dataset are averaged over four domains.

The findings from Figure 5 reveal that our method exhibits its poorest performance when the number
of domains, denoted as |U |, is set to 1. In such a scenario, the assumption is made that zs follows
a Gaussian distribution, and its prior distribution mirrors that of zc. This results in a compromise
in the asymmetry regularization between the two types of representations, leading to suboptimal
disentanglement. The restoration of this asymmetry occurs when we set |U | � 2. However, per-
formance results appear comparable for cases where |U | exceeds 2. The optimal selection of |U |
hinges on the dissimilarities between the true data distributions across each domain. In situations
involving observational datasets lacking domain-specific information, setting |U | = 2 can still yield
a reasonably well-disentangled set of representations.

C.2 INFLUENCE OF INTERVENTIONAL INFERENCE

In Section 4.1, we provide theoretical justification for our choice of interventional inference, driven
by the partial disentanglement observed between zc and zs during the SCM learning process. In
Table 4, our empirical results demonstrate that the zc representation we obtain still retains infor-
mation from zs. Consequently, interventional inference proves effective in further enhancing OOD
performance when compared to direct prediction using p(y|zt

c), where zt
c = argmaxzc q(zc|xt).

Table 4: Comparison between prediction and interventional inference.

Datasets Accuracy (%)
Prediction with zc Interventional Inference

CMNIST 52.6 69.8
PACS 86.7 88.6
VLCS 76.3 79.1
OfficeHome 67.7 69.5

C.3 THE SELECTION OF L

For the purpose of inference, we generated a set of zc samples from the training inputs and computed
their weighted sum for p(y|zc). However, this process proved to be time-consuming and inefficient,
especially when dealing with a large number of training inputs. We observed significant variation
in the magnitudes of weights assigned to different samples of zc. Let’s denote the obtained samples
as zc,1, zc,2, · · · , zc,l, with !(zc,1, zs,n) � !(zc,2, zs,n) � · · · � !(zc,L, zs,n). Notably, when
L > 5, the ratio !(zc,1,zs,n)

!(zc,L,zs,n)
exceeds 10, and when L > 10, it surpasses 100. In cases where

!(zc,1, zs,n) > 100!(zc,L, zs,n), the contribution of !(zc,L, zs,n) to the weighted sum becomes
negligible. Consequently, it becomes unnecessary to consider values of L greater than 10.
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