
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SUPPLEMENTARY MATERIAL FOR VLN-MME

Section A details the process for generating semantic annotations for the environment. The method
for constructing agent-centric visual observations is described in Section B. Section C explains the
complete prompt structure used for all agent variants. Our custom tool for trajectory visualiza-
tion and analysis is introduced in Section D. Section E provides a detailed quantitative analysis of
agent failures and successes. Finally, Section F illustrates common agent behaviors through several
qualitative case studies. Section G shows the examples of CoT reasoning of MLLMs. Addition-
ally, Section H includes our declaration on the use of large language models to aid in polishing the
manuscript.

A GENERATION OF SEMANTIC ANNOTATIONS

To enrich the agent’s environmental understanding in our simulator-free setup, we generated two
types of semantic annotations: descriptive captions for navigable markers and concise summaries
for each viewpoint.

A.1 MARKER CAPTION GENERATION

The visual markers indicating navigable viewpoints in the panoramic images were annotated with
short, descriptive captions. This process provides the agent with crucial semantic cues about the
direction of potential paths. We used GPT-4o for this task. For each viewpoint, the model was
provided with the panoramic image containing numbered visual markers and prompted to generate
a JSON object mapping each marker index to a descriptive sentence. The prompt used for this
captioning process was as follows:

Figure 1: GPT4o prompt for generating marker caption

A.2 VIEWPOINT SUMMARY GENERATION

In addition to marker captions, a single, holistic summary of the scene was generated for each
viewpoint to give map-based agents a global understanding of their current location. For this process,
we adopt the same methodology presented in NavGPT (Zhou et al., 2024).

The generation follows a two-stage process. First, initial descriptions are generated for images from
a viewpoint using the BLIP-2 model. To elicit descriptions that are rich in object details and relevant
to indoor scenes, each image is fed to BLIP-2 with the prompt: “This is a scene of ”.

As this initial step often produces redundant information across different images of the same view-
point, a second summarization step is employed. The descriptions generated by BLIP-2 (Li et al.,
2023) are consolidated into a single, coherent sentence using a GPT-3.5 summarizer. The model is
prompted with the following template in Figure 2, where “{description}” is replaced by the text
from BLIP-2:

This two-stage approach ensures the final viewpoint summary is both informative and compact, ideal
for inclusion in the agent’s prompt history.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 2: GPT4o prompt for generating viewpoint summarization

B CONSTRUCTION OF AGENT-CENTRIC VISUAL OBSERVATIONS

To provide the MLLM with a full 360-degree visual context from the agent’s perspective, we con-
struct a single panoramic image at each step. This process leverages the four pre-rendered, world-
oriented images associated with each viewpoint and reorients them based on the agent’s current
heading. This method serves as a lightweight, simulator-free proxy for real-time rendering.

Pre-rendered Image Set As described in the main paper, each viewpoint in the environment is
associated with four high-resolution images, each with a 90-degree vertical Field of View (vFOV).
These images are centered on the four cardinal directions relative to the global coordinate system:
0° (North), 90° (East), 180° (South), and 270° (West).

Heading Correction and Image Selection Since an agent’s heading is continuous (e.g., 60°), it
will not always align perfectly with one of the four pre-rendered directions. To resolve this, we
implement a heading correction mechanism. The agent’s current continuous heading is first mapped
to the closest cardinal direction. This is achieved by quantizing the heading angle to the center of
the 90-degree quadrant it falls within. For instance, any agent heading h ∈ [45, 135) is mapped to
the 90° image, which then serves as the agent’s Front view.

Panoramic Image Composition Once the Front image is determined through heading correc-
tion, the remaining three images are assigned to the agent’s relative directions: Left, Right, and
Back. These four images are then concatenated horizontally in the following order to form a single
panoramic strip: [Left, Front, Right, Back].

To ensure the MLLM can correctly interpret this composite view, we explicitly annotate the image
by overlaying the corresponding directional labels above each of the four segments, as illustrated
in Figure 3. This provides a clear, agent-centric visual input that grounds the model in its current
orientation.

Figure 3: An example of the composite visual observation provided to the MLLM. The four pre-
rendered images are stitched together in an agent-centric order (Left, Front, Right, Back) based on
the agent’s corrected heading.

C AGENT PROMPT DESIGN

A central component of our framework lies in the design of prompts that guide multimodal large
language models (MLLMs) to behave as navigation agents. Since the main paper provides only

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

a brief overview, we expand here with a full account of the structure, components, and variations
used across all eight agent types. Our agents are divided into two families: Text Summarization as
Memory (NavGPT), which relies purely on local observations and history, and Text Map as Memory
(MapGPT), which augments navigation with dynamically constructed topological maps. Within
each family, we instantiate four variants: a baseline version, a chain-of-thought (CoT) agent, a
reflection-enabled agent, and a combined CoT+Reflection agent. This section explains the design
philosophy of each family and the detailed structure of their prompts.

C.1 PROMPT STRUCTURE

All prompts are composed of two distinct parts: the system and the task component. The system
portion defines the global context of the agent, introducing the VLN setting, enumerating the input
elements, and stating the rules the model must follow when reasoning about navigation. It also
enforces the strict output format required for downstream evaluation. The task portion is dynamic,
providing the specific input to the agent at each time step: the instruction, navigation history, agent
orientation, and the set of navigable options. Together, these two components establish both the
constraints and the situational awareness necessary for coherent decision making. Figure 4 illustrates
an example of the full text summarization as memory baseline prompt.

Figure 4: Text summarization memory baseline agent prompt structure

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

C.2 TEXT SUMMARIZATION AS MEMORY AGENTS

The NavGPT-style agents are designed to operate with information that would be available in a
simulator-based VLN setup but translated into our simulator-free representation. The system prompt
explicitly instructs the model to select a single next action, referencing only the option identifiers,
and to obey a series of rules that reduce common navigation errors such as looping, oscillation, and
premature stopping.

The task inputs are carefully structured. The navigation instruction is passed in verbatim, ensuring
the model has access to the original language guidance. The history describes prior movements in
natural language, with each step recorded as a turning angle, forward displacement, and the semantic
description of the destination viewpoint. This representation provides both spatial reasoning cues
and semantic grounding. The agent’s current heading and elevation are provided as numerical
values, anchoring the model’s interpretation of orientation. Finally, the action options are repre-
sented as a dictionary keyed by relative directions, where each entry contains a marker ID and a
semantic description of the corresponding navigable viewpoint, along with an explicit “Stop” ac-
tion. This structured but naturalistic representation ensures the model can ground its decisions in
both geometry and semantics.

C.3 REASONING-ENHANCED TEXT SUMMARIZATION MEMORY AGENT VARIANTS

To probe the role of explicit reasoning, we introduce three reasoning-augmented variants of text
summarization memory agent. In the CoT version, the system prompt is modified so that the agent
first produces a reasoning trace encapsulated in <Reasoning> tags before committing to its final
action choice. This design encourages more transparent step-by-step deliberation. The Reflection
variant modifies the output format further: after producing an action, the agent generates a reflec-
tive evaluation wrapped in <Reflection> tags, followed by a <Final Decision> statement
declaring whether to keep or revise its action. If the reflection deems the decision unsound, the
agent replans rather than moving. The CoT+Reflection version combines both mechanisms, first
reasoning explicitly and then reflecting on the proposed choice, providing the richest form of in-
trospective navigation. These modifications shift the model from direct action prediction toward a
more deliberative, self-monitoring behavior.

C.4 TEXT MAP AS MEMORY AGENTS

While NavGPT-style focuses on local decision making, the MapGPT-style agents introduces a form
of spatial memory through a dynamically constructed topological graph. At each step, the agent aug-
ments its prompt with a map connectivity field, expressed in natural language, that lists adjacency
relationships between viewpoints (e.g., “node 0 is connected to node 1, node 2”). This evolving
graph representation enables the MLLM to reason not only about immediate action choices but also
about the broader connectivity of the explored environment.

The navigation history for text map memory agents is likewise enriched. Instead of recording only
motion trajectories, it includes the current node identifier, a semantic description of the viewpoint,
and the sets of visited and unvisited nodes. This structure gives the agent both a local semantic
grounding and a global perspective on the exploration state. A complete prompt example after one
navigation step is illustrated in Figure 5.

C.5 REASONING-ENHANCED TEXT MAP MEMORY AGENT VARIANTS

The CoT, Reflection, and CoT+Reflection augmentations are applied to text map memory agents in
the same manner as for text summarization agens, modifying only the output structure while retain-
ing the additional map input. Thus, the text map memory agents explores how explicit reasoning
interacts not just with semantic cues, but also with global topological memory.

D TRAJECTORY VISUALIZATION AND ANALYSIS TOOL

This section details the custom tool developed for the qualitative analysis of agent trajectories. The
tool, named the VLN Result Visualizer, developing using Gradio, provides an interactive interface

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 5: Text map memory agent prompt example (Step 1)

for a step-by-step inspection of any navigation episode, which is crucial for understanding the nu-
ances of agent behavior beyond aggregate metrics.

The visualizer is built entirely using the Gradio framework. Its primary function is to parse the
evaluation result files and present the information in a human-readable format. At the top of the
interface, a user can specify the configuration used during evaluation, including the agent type,
MLLM model, task, and data split. Once a configuration is loaded, a dropdown menu is populated
with all episode IDs from that run, allowing for the selection of any specific trajectory for analysis.

The core of the interface, shown in Figure 6, is the visual observation panel. It displays the agent’s
panoramic view for the Current Viewpoint and, if a valid move is made, the panoramic view of the
chosen Next Viewpoint. Each panoramic image is a composite of four individual images presented
in the agent-centric order of [Left, Front, Right, Back], with the global orientation (e.g., “View:
Right”) explicitly labeled above each segment. Navigable options are clearly marked with green
circular markers.

Below the visual panel, detailed textual information for the current step is provided. This includes:
the step number, the original navigation instruction, the raw LLM Output, the parsed agent
action (turn angle and forward distance), the full trajectory path taken so far, and the ground truth
path. Critically, the tool also flags the exact step at which the agent’s path first deviated from the
ground truth, enabling quick identification of crucial mistakes. This is followed by the complete
history log that was fed into the model at that step, allowing for an in-depth analysis of the agent’s
reasoning context.

To further enhance usability, the interface provides status indicators directly on the display during
navigation. The ID of the current viewpoint and the numeric ID of the next chosen marker are
displayed at the top of the screen, providing immediate context without needing to consult the text
logs.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 6: The main interface of the VLN Result Visualizer.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

At the conclusion of each episode, a final summary panel presents the quantitative evaluation met-
rics, such as Success, SPL, Navigation Error, and Trajectory Length, offering a direct link between
the agent’s step-by-step actions and its final performance score. This tool was indispensable for
conducting the detailed error analysis presented in this paper.

E DETAILED ERROR AND SUCCESS ANALYSIS

This section provides a detailed analysis of agent performance across 200 navigation trajectories. By
breaking down both failures and successes, we can identify the primary challenges MLLM-based
agents face in the VLN task.

The results reveal a significant performance gap, with 148 failures compared to only 52 successes.
An initial breakdown of the failures, as shown in Figure 7, indicates that the vast majority (131
out of 148) stem from incorrect navigation rather than technical MLLM Generation Errors (17
cases). This suggests that while the models are generally capable of producing valid actions, their
decision-making logic is the primary point of failure.

Figure 7: Analysis of error sources in 148 fail-
ure episodes.

Figure 8: Analysis of navigation behavior in 52
successful episodes.

Within the incorrect navigation errors, looping is the most dominant failure mode, accounting for
a remarkable 106 cases. This behavior, where the agent repeatedly revisits the same viewpoints,
points to a fundamental difficulty in spatial awareness and state tracking. The root causes for these
loops, as well as for timeouts, are primarily failures in high-level scene understanding. Specifically,
region recognition (37 cases in looping), vertical movement understanding (30 cases), and object
detection (25 cases) are the most frequent triggers for getting stuck. This highlights the agent’s
struggle to match abstract instructions (e.g., “go to the kitchen”, “go upstairs”) with visual evidence.

Conversely, an analysis of the 52 successful trajectories provides a more nuanced picture of the
agent’s capabilities, as illustrated in Figure 8. A striking finding is that only 2 trajectories were
completed perfectly. The vast majority of successes (42 cases) were achieved despite the agent ex-
hibiting looping behavior, typically near the target. This suggests that while agents can eventually
recover from local confusion, their navigation is often highly inefficient. The challenges in these
near-success cases mirror those in the failures: difficulties with object recognition (16 cases), ver-
tical movement (13 cases), and region understanding (11 cases) still persist, causing inefficiency
even when the final goal is reached.

In conclusion, the data indicates that the primary obstacle for these MLLM agents is not language
generation but robust spatial and semantic reasoning. The pervasive issue of looping, both in failed
and successful episodes, underscores a weakness in creating and maintaining a stable understanding

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

of the environment. Future work should focus on enhancing these core reasoning capabilities to
improve both the reliability and efficiency of navigation.

F CASE STUDIES

In this section, we provide a qualitative analysis of five navigation episodes to illustrate the agent’s
common behaviors, highlighting both its capabilities and frequent failure modes.

Figures 10 and 11 showcase successful episodes that also reveal subtle inefficiencies. In Figure
10, the agent correctly identifies the target treadmill but exhibits redundant behavior by moving
away and looping back before executing the final stop action. Similarly, the episode in Figure 11
demonstrates a strong recovery capability, yet the agent struggles with precise vertical positioning,
causing it to loop on the stairs rather than stopping at the correct step.

Conversely, Figures 12, 13, and 14 depict common failure scenarios. The trajectory in Figure 12
represents a case of ’oracle success,’ where the agent navigates to the immediate vicinity of the des-
tination downstairs but ultimately fails by getting trapped in a repetitive loop on the staircase. Figure
13 illustrates a multi-faceted failure; the agent not only fails to ground the directional instruction and
identify the ’hallway’ but also produces a malformed output, resulting in an un-parsable command
and an invalid action error. Finally, Figure 14 demonstrates a failure in semantic region understand-
ing, where the agent is unable to correctly interpret the goal of stopping ‘inside of the sauna’.

G EXAMPLE COT REASONING

Figure 9: Two examples of chain-of-thought (CoT) reasoning generated by Qwen2.5-VL-7B. Both
cases demonstrate structured step-wise reasoning but limited integration of historical context.

Figure 9 presents two representative CoT outputs. In both cases, the model correctly decomposes the
navigation instruction into progress estimation, further analysis, and prediction. However, despite
being provided with full interaction history, the reasoning predominantly relies on local observations
and the most recent instruction, while largely neglecting prior context.

This illustrates a broader issue: even when the input tokens are well within the context window, the
model exhibits poor reasoning fidelity across multiple rounds of context. Instead of leveraging accu-
mulated history for richer reasoning, the MLLM tends to perform single-turn grounding of the im-
mediate observation. This behavior highlights a critical limitation for VLN tasks, where successful
navigation often depends on integrating long-term history with dynamic, stepwise decision-making.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

As disclosed, we utilized LLMs (GPT5, Google Gemini etc.) to aid in polishing the manuscript’s
prose. Its role was to improve grammatical correctness and sentence clarity, with all final content
being reviewed and approved by the authors, who take full responsibility for this work.

Figure 10: A successful but inefficient trajectory. After observing the target treadmill, the agent
loops around the room before stopping.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 11: A successful episode showcasing recovery capabilities. However, the agent exhibits
looping behavior during vertical movement on the stairs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Figure 12: A failure case with oracle success. The agent reaches the correct general area but fails to
stop, getting stuck in a loop on the stairs.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Figure 13: Navigation failure due to misinterpreting a directional instruction and a model generation
error that produced an invalid action.

Figure 14: A failure episode caused by the agent’s inability to understand and navigate into the
specified target region (‘sauna’).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

REFERENCES

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language naviga-
tion with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 7641–7649, 2024.

13


	Generation of Semantic Annotations
	Marker Caption Generation
	Viewpoint Summary Generation

	Construction of Agent-Centric Visual Observations
	Agent Prompt Design
	Prompt Structure
	Text Summarization as Memory Agents
	Reasoning-Enhanced Text Summarization Memory Agent Variants
	Text Map as Memory Agents
	Reasoning-Enhanced Text Map Memory Agent Variants

	Trajectory Visualization and Analysis Tool
	Detailed Error and Success Analysis
	Case Studies
	Example CoT Reasoning
	The Use of Large Language Models (LLMs)

