
Under review as a conference paper at ICLR 2021

A VISUALIZATION OF PRUNED ARCHITECTURES

In Fig 6, we visualize the pruned architecture for ResNet-50 and MobileNetV2.

B BIAS OF FLOPS REGULARIZATION

We briefly discuss two types of FLOPs regularization used in our paper and trainable gate (TG) (Kim
et al., 2020). First, we provide the specific definition of T (vi) (FLOPs of ith layer):

T (vi) = K2
i

1T vi−1

Gl
1T viWiHi, (7)

where Gi is the number of groups in a convolution layer, Ki is the kernel size, 1 is a all one vector,
and 1T vi is the number of perversed channels in ith layer. With T (vi), T (v) =

∑L
i=1 T (vi).

In TG, they simply use mean square error (MSE) as the regularization term, and in their paper
RMSE(T (v), pTtotal) = (T (v)− pTtotal)

2. The gradients w.r.t vi is:

∂RMSE

∂vi
= 2(T (v)− pTtotal)

∂T (vi)

∂vi
, (8)

For the regularization used in our method: R(T (v), pTtotal) = log(|T (v)−pTtotal|+1), the gradients
w.r.t vi is:

∂R
∂vi

=
1

|T (v)− pTtotal|+ 1

T (v)− pTtotal

|T (v)− pTtotal|
∂T (vi)

∂vi
. (9)

For both regularization functions, the ratio between the gradients w.r.t vi of two layers k, j is

∂T (vk)
∂vk

/
∂T (vj)
∂vj

=
K2
k

1T vk−1
Gk

WkHk

K2
j

1T vj−1
Gl

WjHj

. Take ResNet-50 as an example, let j, k be the middle layers

of a bottleneck block, and we random initialize HSN. If j is in the first block, and k is in the last
block, then Kk = Kj = 3, Wj = Hj = 56, Wk = Hk = 7, 1T vj−1 ≈ 0.5 × 64 (due to random
initialization), 1T vk−1 ≈ 0.5 × 512, finally, ∂T (vk)

∂vk
/
∂T (vj)
∂vj

≈ 3×3×256×7×7
3×3×32×56×56 ≈

1
8 , which is not

trivial.

When calculating the gradients w.r.t θi, we have ∂R
∂θi

= cR
∂T (vi)
∂vi

∂vi
∂θi

, all θi share the same cR decided
by the regularization function. Without loss of generality, we assume the magnitude of ∂vi∂θi

is similar
given different layers. The assumption is based on the following derivation (to simplify derivation,
we omit weight norm in dense layers):

∂vi
∂θi

=
∂zi
∂θi

,

=
∂zi
∂oi

∂oi
∂θi

,

=
1

τ
sigmoid((oi + g)/τ)(1− sigmoid((oi + g)/τ))

∂oi
∂θi
≤ 1

4τ
bTi .

where sigmoid(x)(1 − sigmoid(x)) ≤ 1
4 , and bi is the input to ith dense layer, which is also the

outputs of GRU. Since all bi have the same shape, and weights in GRU are normalized, we can
assume all bi have similar magnitude. Since 1

4τ b
T
i is a upper bound of ∂vi∂θi

, similar assumptions can
be made.

Following this assumption, the relative magnitude of gradients w.r.t θj and θk for layers j, k can
be roughly represented by ∂T (vk)

∂vk
/
∂T (vj)
∂vj

. After training for a while, the ratio might be smaller,
however, it only indicates that early layers are more aggressively pruned. Thus, when applying
FLOPs regularization, it penalizes early layers much heavier compared to latter layers.

One should also note that this is a general problem when using gradient based model compression
methods with the FLOPs regularization. It’s quite hard to circumvent calculating ∂T (vi)

∂vi
as in

TG (Kim et al., 2020) and our paper.

14

Under review as a conference paper at ICLR 2021

(a) ResNet-50 (b) MobileNetV2

(c) ResNet-50 (d) MobileNetV2

Figure 6: (a,b): visualization of pruned architectures for ResNet-50 and MobileNetV2. (c,d): mean
and variance of 20 generated sub-networks for pruning.

(a) Acc, ResNet (b) Acc, MobileNetV2 (c)R Loss, ResNet (d)R Loss, MobileNetV2

Figure 7: (a,b): Performance of sub-networks when using HSN or not using HSN (the setting in
Eq. 11). (c,d): Regularization loss for the same settings.

C DETAILED SETUP OF HYPER-STRUCTURE NETWORK

In Tab. 3, we present the architecture of HSN. The forward calculation is:

bi, hi = GRU(ai, hi−1)

oi = densei(bi)
(10)

where hi and bi are hidden states and outputs of GRU at step i, oi is the final output of HSN. GRU
also requires hidden layer input at time-step 0 h0. In the experiment, the h0 is a all zero tensor. As
mentioned in Tab. 3, the dimension of ai is 64. Since ai is a single input instead of a mini-batch,
we cannot apply batchnorm. To make the training more stable, we use weight norm (Salimans &
Kingma, 2016) on both GRU and dense layers.

Initially, we tried to use a huge dense layer (input size 64, output size C1 + C2 + · · ·+ CL) as HSN.
However, we find that the huge dense layer is hard to optimize and also parameter heavy.

To verify the strength of the proposed HSN, we can instead use a simplified setting to prune neural
networks, which is shown as follows:

ẑi = sigmoid((θ̂i + g)/τ),

v̂i = round(ẑi), and v̂i ∈ {0, 1}Ci ,
(11)

15

Under review as a conference paper at ICLR 2021

Inputs ai, i=1,· · · , L

GRU(64,128), WeightNorm, Relu
densei(128,Ci), WeightNorm, i=1, · · · , L

Outputs oi, i=1, · · · , L

Table 3: The structure of HSN used in our method.

(a) Acc, ResNet (b) Acc, MobileNetV2 (c)R Loss, ResNet (d)R Loss, MobileNetV2

Figure 8: (a,b): Performance of sub-networks when training HSN given forward (c=0) and backward
pruning (c=3). (c,d): Regularization loss of sub-networks when training HSN given forward (c=0)
and backward pruning (c=3). All experiments are done on CIFAR-10.

where the architecture vector is parameterized by θ̂i. Under this setting, the parameter for each
channel does not have relationships. We use this setting to prune ResNet-56 and MobileNetV2 on
CIFAR-10, the results are shown in Fig. 7. From the figure, we can see that the performance and
convergence speed of using HSN is much better. Under high dimensional setting, like MobileNetV2,
the simplified setting shown in Eq. 11 can not learn efficiently, which demonstrate that capturing
inter-channel and inter-layer relationships are crucial for pruning deep neural networks.

D FORWARD AND BACKWARD PRUNING

Here, we refer forward pruning as start pruning from a random sub-network, and refer backward
pruning as start pruning from the original large model. Many model compression methods use
backward pruning. We also provide a simple way to extend our method to backward pruning. When
we binarize the output of HSN, we can add a constant c:

zi = sigmoid((oi + (g + c))/τ),

vi = round(zi), and vi ∈ {0, 1}Ci ,
(12)

where g ∼ Gumbel(0, 1), and the Gumbel(0, 1) distribution can be sampled using inverse transform
sampling by drawing u ∼ U(0, 1) and computing g = − log(− log(u)). When the constant c is big
enough, it will make vi become an all one vector, thus the sub-network produced by HSN will start
from the original large CNN. If we set c to 0, then it will start from a random sub-network. In Fig. 8,
we show the results of forward and backward pruning. It can be seen that they can achieve similar
sub-network performance, but the changes in regularization loss various dramatically.

E DERIVATIVE OF HYPER-GRADIENT WITH ADAM OPTIMIZER

The update rule of ADAM for θi is shown in Alg. 2, and it is:

u(θt−1
i , αti) = θt−1

i − ηm̂t/(
√
n̂t + ε), (13)

16

Under review as a conference paper at ICLR 2021

Algorithm 2: ADAM optimizer for θi
Input: η, β1, β2 ∈ [0, 1): learning rate and decay rate for ADAM.
Initialize m0, n0, t = 0
Update rule at step t:
mt = β1mt−1 + (1− β1)(αti

∂L
∂θt−1
i

+ λ ∂R
∂θt−1
i

)

nt = β2nt−1 + (1− β2)(αti
∂L

∂θt−1
i

+ λ ∂R
∂θt−1
i

)2

m̂t = mt/(1− βt1)
n̂t = nt/(1− βt2)
θti = u(θt−1

i , αti) = θt−1
i − ηm̂t/(

√
n̂t + ε)

Then the derivation of ∂u(θt−1
i ,αti)

∂αi
is:

∂u(θt−1
i , αti)

∂αi
= −η

∂
(
m̂t/(

√
n̂t + ε)

)
∂αi

= −η
−∂
√
n̂t+ε
∂αi

m̂t + ∂m̂t
∂αi

(
√
n̂t + ε)

(
√
n̂t + ε)2

= −η(
∂m̂t
∂αi√
n̂t + ε

−
∂n̂t
∂αi

m̂t

2
√
n̂t(
√
n̂t + ε)2

)

= −η
{ (1− β1) ∂L

∂θt−1
i

(1− βt1)(
√
n̂t + ε)

−
(1− β2)(αti(

∂L
∂θt−1
i

)2 + λ ∂L
∂θt−1
i

∂R
∂θt−1
i

)m̂t

√
n̂t(
√
n̂t + ε)2(1− βt2)

}
,

where ∂m̂t
∂αi

=
(1−β1) ∂L

∂θ
t−1
i

1−βt1
and ∂n̂t

∂αi
=

2(1−β2)
(
αti(

∂L
∂θ
t−1
i

)2+λ ∂L
∂θ
t−1
i

∂R
∂θ
t−1
i

)
1−βt2

. Recall that when updating

αt−1
i to αti, we have to compute:

αti = αt−1
i − β ∂J(u(θt−2

i , αt−1
i))

∂αi
= αt−1

i − β(
∂J
∂θt−1
i

)T
∂u(θt−2

i , αt−1
i)

∂αi
. (14)

We need αti when updating θt−1
i to θti . Thus at each update step, it requires an extra copy of θt−2

i and

parameters of ADAM to compute ∂u(θt−2
i ,αt−1

i)

∂αi
. The cost of the extra storage is trivial.

F CHOICE OF p GIVEN DIFFERENT DATASETS AND ARCHITECTURES.

Dataset CIFAR-10 ImageNet
Architecture ResNet-56 MobileNetV2 ResNet-34 ResNet-50 ResNet-101 MobileNetV2

p 0.50 0.60 0.55 0.38 0.42 0.64

Table 4: Choice of p for different models. p is the remained FLOPs divided by the total FLOPs

In Tab. 4, we list the choices of p for different models and datasets used in our experiments.

REFERENCES

Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck Choe. Plug-in, trainable gate for
streamlining arbitrary neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in neural information processing systems, pp.
901–909, 2016.

17

	Visualization of Pruned Architectures
	Bias of FLOPs Regularization
	Detailed Setup of Hyper-structure Network
	Forward and Backward Pruning
	Derivative of Hyper-Gradient with ADAM Optimizer
	Choice of p Given Different Datasets and Architectures.

