Under review as a conference paper at ICLR 2021

A VISUALIZATION OF PRUNED ARCHITECTURES

In Fig[6] we visualize the pruned architecture for ResNet-50 and MobileNetV2.

B BIAS OF FLOPS REGULARIZATION

We briefly discuss two types of FLOPs regularization used in our paper and trainable gate (TG) (Kim
et al.,2020). First, we provide the specific definition of T'(v;) (FLOPs of ith layer):

1T’U7;,1

where G; is the number of groups in a convolution layer, K is the kernel size, 1 is a all one vector,
and 17v; is the number of perversed channels in ith layer. With T'(v;), T(v) = ZiL:I T(v;).
In TG, they simply use mean square error (MSE) as the regularization term, and in their paper
Rmse(T(V), pTiowt) = (T(v) — pTior)?. The gradients w.r.t v; is:

8RMSE 8T (Ui)
dv; ov;

For the regularization used in our method: R(T'(v), pTiota) = log(|T(v) — pTiotal| + 1), the gradients
W.I.t v; 1S:

= 2(T(V) - thotal) , ®)

IR _ 1 T(v) = pTow T (v)

avi ‘T(V) - tholal| +1 |T(V) — thotal| 8%
For both regularization functions, the ratio between the gradients w.r.t v; of two layers k, j is
lc—l W, Hy

(©))

217

OT (vg) /3T(1)J) K T
Ovg Ov; K. Jl 1 W, H,
of a bottleneck block and we random initialize HSN. If j is in the first block, and £ is in the last

block, then K}, = K; = 3, W; = H; = 56, W}, = k—? 17 vj_1 =~ 0.5 x 64 (due to random

. . T 6T(vk) 0T (vj) ., 3x3X256X7XT7T ., 1 : :
initialization), 1" v;_1 = 0.5 x 512, finally, Tor / o, ~ Sx3x32x56%50 ~° 5 which is not

trivial.

. Take ResNet-50 as an example, let j, k be the middle layers

When calculating the gradients w.r.t §;, we have g? =cr 8?5{’3) g’é’} , all §; share the same ¢y decided
ov;

by the regularization function. Without loss of generality, we assume the magnitude of 37* is similar
given different layers. The assumption is based on the following derivation (to simplify derivation,
we omit weight norm in dense layers):

81}1- o 8z1

00; 00;’
o 8Zi 807;
N 801' 891’

aOi S ibT.
00; — 41"

= %sigmoid((oi + g)/7)(1 — sigmoid((o; + g)/7))

where sigmoid(z)(1 — sigmoid(z)) < 1, and b; is the input to ith dense layer, which is also the
outputs of GRU. Since all b; have the same shape, and weights in GRU are normalized, we can

assume all b; have similar magnitude. Since %b? is a upper bound of gz’j , similar assumptions can
be made.

Following this assumption, the relative magnitude of gradients w.r.t §; and 6, for layers j, k can
be roughly represented by 821”’“) / ag Vi) - After training for a while, the ratio might be smaller,
ke v

however, it only indicates that early layers are more aggressively pruned. Thus, when applying
FLOPs regularization, it penalizes early layers much heavier compared to latter layers.

One should also note that this is a general problem when using gradient based model compression

methods with the FLOPs regularization. It’s quite hard to circumvent calculating 8T(1,”) as in
TG (Kim et al.;,2020) and our paper.

14

Under review as a conference paper at ICLR 2021

600 T T T 1000
(I Pruned Architecture
Oringal Architecture

Channel Count
Channel Count

0 5 10 15 20 25 30

Layers Layers
(a) ResNet-50 (b) MobileNetV2
450 1000
400 \ /
/ \ 900 /

350 | \\/N 800 /
25000 | o 700 it
2 | T /
£ /
Saso | § ooor 7
T [2 s00 /
g 5o / \\ ’ @ 400
= /N \ 2 300 /™

100 / /\/\ V\,d _ / \ _—

AN / 200 o —
50 / /T 100 e
0 \'\\‘/ L L L L L 0 L L
5 10 15 20 25 30 2 4 6 8 10 12 14 16
Layers Layers
(c) ResNet-50 (d) MobileNetV2

Figure 6: (a,b): visualization of pruned architectures for ResNet-50 and MobileNetV2. (c,d): mean
and variance of 20 generated sub-networks for pruning.

i —
|— hypemet

o 50 100 150 200 o 50 100 150 200 0 50
Epochs Epochs Epochs.

100 150 200 0 50 100 150 200
Epochs

(a) Acc, ResNet (b) Acc, MobileNetV2 (¢) R Loss, ResNet (d) R Loss, MobileNetV2

Figure 7: (a,b): Performance of sub-networks when using HSN or not using HSN (the setting in
Eq.[TT). (c.d): Regularization loss for the same settings.

C DETAILED SETUP OF HYPER-STRUCTURE NETWORK

In Tab. [3] we present the architecture of HSN. The forward calculation is:
bz‘, hi = GRU(G,Z‘, hifl)

o; = dense; (b;) (10)

where h; and b; are hidden states and outputs of GRU at step i, o; is the final output of HSN. GRU
also requires hidden layer input at time-step O hg. In the experiment, the hy is a all zero tensor. As
mentioned in Tab. |3|, the dimension of a; is 64. Since a; is a single input instead of a mini-batch,
we cannot apply batchnorm. To make the training more stable, we use weight norm (S &

2016)) on both GRU and dense layers.

Initially, we tried to use a huge dense layer (input size 64, output size Cy + C2 + - - - + C) as HSN.
However, we find that the huge dense layer is hard to optimize and also parameter heavy.

To verify the strength of the proposed HSN, we can instead use a simplified setting to prune neural
networks, which is shown as follows:

2, = sigmoid((d; + g)/7),
@i — round(éi), and ’(A)i S {07 1}Ci7

(1)

15

Under review as a conference paper at ICLR 2021

Inputs a;, i=1,---, L

GRU(64,128), WeightNorm, Relu
dense;(128,C};), WeightNorm, i=1, - - -, L.

Outputs o0;, i=1, ---, L

Table 3: The structure of HSN used in our method.

. o Birnn
100 s0 100 0 50 100 150 200 0 50 100 150
Epochs Epochs Epochs Epochs

(a) Acc, ResNet (b) Acc, MobileNetV2 (c) R Loss, ResNet (d) R Loss, MobileNetV2

Figure 8: (a,b): Performance of sub-networks when training HSN given forward (c=0) and backward
pruning (c=3). (c,d): Regularization loss of sub-networks when training HSN given forward (c=0)
and backward pruning (c=3). All experiments are done on CIFAR-10.

where the architecture vector is parameterized by 6;. Under this setting, the parameter for each
channel does not have relationships. We use this setting to prune ResNet-56 and MobileNetV2 on
CIFAR-10, the results are shown in Fig.|/| From the figure, we can see that the performance and
convergence speed of using HSN is much better. Under high dimensional setting, like MobileNetV2,
the simplified setting shown in Eq. [IT] can not learn efficiently, which demonstrate that capturing
inter-channel and inter-layer relationships are crucial for pruning deep neural networks.

D FORWARD AND BACKWARD PRUNING

Here, we refer forward pruning as start pruning from a random sub-network, and refer backward
pruning as start pruning from the original large model. Many model compression methods use
backward pruning. We also provide a simple way to extend our method to backward pruning. When
we binarize the output of HSN, we can add a constant c:

sigmoid((o; + (g + ¢))/7),
v; = round(z;), and v; € {0,1}%%

Zi

(12)

where g ~ Gumbel(0, 1), and the Gumbel(0, 1) distribution can be sampled using inverse transform
sampling by drawing u ~ ¢(0, 1) and computing g = — log(— log(u)). When the constant c is big
enough, it will make v; become an all one vector, thus the sub-network produced by HSN will start
from the original large CNN. If we set ¢ to 0, then it will start from a random sub-network. In Fig.[8]
we show the results of forward and backward pruning. It can be seen that they can achieve similar
sub-network performance, but the changes in regularization loss various dramatically.

E DERIVATIVE OF HYPER-GRADIENT WITH ADAM OPTIMIZER
The update rule of ADAM for §; is shown in Alg.[2] and it is:
w0 af) = 0,7t — i/ (Vi + €), (13)

16

Under review as a conference paper at ICLR 2021

Algorithm 2: ADAM optimizer for 6;

Input: 7, 51, 32 € [0,1): learning rate and decay rate for ADAM.
Initialize mg, ng,t =0

Update rule at step ¢:

my = Bimg—1 + (1 = Br)(af agﬁl + Aagzl)

ny = Pong—1 + (1 — B2)(af 32€€1 +)\8251)’
e =my/(1 - 5%)

= ne/(1 - 65)

0 = u(; ' af) = 071 — i/ (Vi +¢)

ou(9r'at) .

Then the derivation of e is:
ou(0 1, at) A/ (VI +€))
=-n
80@ 804,;

O+ G (Vi + o)
! (Vi + o

O Ong .
_ _77(da; . Ao 't)
\/’th + € 2\/ ﬁt(\/ﬁt +6)2
i (1 By) gger (1_5QWK£EJ2+A££a£§JmH
-y i _ 9% i i :
(1 =B (Ve +€) Vi (Ve +€)2(1 — B5)
(-89 2018 (al(SBE7)24A 2L 2R
where %Zf = %{611 and % = aeiliﬂé 20!t 90!~ 1 . Recall that when updating
aﬁ_l to a!, we have to compute:
~ J(w(0:72,al71)) , OF . ou(B% a7t
t t—1 i et t—1 T [) g
o = o 15} e, o 5(895*1) D, (14)

We need o when updating 92_1 to 6%. Thus at each update step, it requires an extra copy of Hf ~2 and
du(0! %ot
Oa;

t—1
parameters of ADAM to compute a,ai) The cost of the extra storage is trivial.

F CHOICE OF p GIVEN DIFFERENT DATASETS AND ARCHITECTURES.

Dataset CIFAR-10 ImageNet
Architecture | ResNet-56 | MobileNetV2 | ResNet-34 | ResNet-50 | ResNet-101 | MobileNetV2
P 0.50 0.60 0.55 0.38 0.42 0.64

Table 4: Choice of p for different models. p is the remained FLOPs divided by the total FLOPs

In Tab. 4] we list the choices of p for different models and datasets used in our experiments.

REFERENCES

Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck Choe. Plug-in, trainable gate for
streamlining arbitrary neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate

training of deep neural networks. In Advances in neural information processing systems, pp.

901-909, 2016.

17

	Visualization of Pruned Architectures
	Bias of FLOPs Regularization
	Detailed Setup of Hyper-structure Network
	Forward and Backward Pruning
	Derivative of Hyper-Gradient with ADAM Optimizer
	Choice of p Given Different Datasets and Architectures.

