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Abstract

Recent work targeting large language models
(LLMs) for code generation demonstrated that
increasing the amount of training data through
synthetic code generation often leads to ex-
ceptional performance. In this paper we ex-
plore data pruning methods aimed at enhancing
the efficiency of model training specifically for
code LLMs. We present techniques that inte-
grate various clustering and pruning metrics to
selectively reduce training data without com-
promising the accuracy and functionality of the
generated code. We observe significant redun-
dancies in synthetic training data generation,
where our experiments demonstrate that bench-
mark performance can be largely preserved by
training on only 10% of the data. Moreover,
we observe consistent improvements in bench-
mark results through moderate pruning of the
training data. Our experiments show that these
pruning strategies not only reduce the compu-
tational resources needed but also enhance the
overall quality code generation.

1 Introduction

The performance of large language models (LLMs)
is heavily dependent on the size and quality of
their training datasets, as highlighted by recent
studies on scaling laws (Achiam et al., 2023;
Zhang et al., 2024). State-of-the-art code LLMs,
such as CodeAlpaca (Chaudhary, 2023), Wizard-
Coder (Luo et al., 2024), and MagicCoder (Wei
et al., 2023), have achieved remarkable perfor-
mance by significantly expanding their supervised
fine-tuning datasets through synthetic code genera-
tion. Various synthetic code generation approaches
have been developed, including the Self-Instruct
technique (Wang et al., 2022), Evol-Instruct (Xu
et al., 2023a), and OSS-Instruct (Wei et al., 2023).
However, such scaling approaches not only in-
crease the training cost but also demands substan-
tial computational resources, making it expensive
and less accessible.

Achieving optimal performance in fine-tuned
models for downstream tasks often relies on large,
high-quality datasets. Recently, there has been a
growing interest in more efficient fine-tuning meth-
ods for large language models (LLMs). One recent
work introduces the Superficial Alignment Hypoth-
esis (Zhou et al., 2023), which suggests that most
knowledge in LLMs is acquired during pretraining,
and only minimal instruction tuning data is required
to align models with human preferences. Promising
strategies to reduce computational demands include
parameter-efficient fine-tuning (PEFT) methods,
which reduce the number of parameters needed for
training (Fu et al., 2023; Hu et al., 2021). Another
research direction uses active learning to iteratively
select data samples during training, thereby en-
hancing model learning (Su et al., 2022; Diao et al.,
2023). These methods primarily aim to improve
model accuracy through iterative processes, requir-
ing multiple rounds of training and data selection.

Data selection and pruning methods have also
been well-explored in literature, with evidence
suggesting that careful pruning can sometimes
even surpass the performance of using the full
dataset (Penedo et al., 2024; Wang et al., 2023).
Moreover, many of these methods are compu-
tationally intensive such as supervised metrics
that involves multiple times of model training to
keep track of loss and gradients (Xia et al., 2024;
Pruthi et al., 2020) or heavy sampling method
with Monte Carlo (Schoch et al., 2023), limiting
their scalability. Practical pruning methods that
aims for large-scale data have been investigated in
the contexts of LLM pretraining (Das and Khetan,
2023; Penedo et al., 2024) and fine-tuning (Chen
et al., 2024; Schoch et al., 2023) datasets, image
datasets (Moser et al., 2024; Meding et al., 2021),
and vision-text training datasets (Wang et al., 2023),
and demonstrate success by applying clustering and
by choosing proper indicator functions.

Despite these advances, there remains a gap in



efficient pruning strategies specifically tailored for
coding datasets. Most large-scale code datasets
are synthetically generated, resulting in many data
samples with similar lexical appearances due to
consistent formatting and style. Large-scale syn-
thetic datasets commonly used for training code
LLMs often suffer from significant redundancy and
noise (Wang et al., 2023). This redundancy arises
from the impracticality of verifying the functional
correctness of each program, leading to a substan-
tial portion of instruction-code pairs being noisy.
Therefore, enhancing data efficiency through care-
ful selection and pruning of data samples is crucial
for improving model performance without relying
on excessively large datasets.

In this work, we present a scalable and effective
data pruning method to enhance code generation in
large language models. Our approach clusters data
samples based on problem instructions and their
code solutions, applying dimensionality reduction
to reduce computational load. We then select a
representative subset from each cluster using var-
ious pruning metrics. Experiments on large-scale
datasets and evaluations on downstream coding
tasks show that our method maintains or even im-
proves model performance while significantly re-
ducing training data. Our contributions and key
findings are summarized as follows:

* We are the first to study data pruning for large-
scale synthetic code fine-tuning. We create an
efficient and scalable pruning strategy based
on unsupervised learning methods.

* We find large redundancies in synthetic gen-
erated code datasets, as training on just 10%
retains most benchmark performance, with
slight degradation of 3.9% on HumanEval and
1.5% on MBPP compared with using all data.

* We observe consistent improvement by moder-
ately pruning the dataset, leading to improve-
ments of up to 2.7% on HumanEval and 3.5%
on MBPP compared with using all data.

* We perform detailed ablation studies, where
results demonstrate the clustering algorithm
to be critical, while pruning metrics to be less
important.

2 Related Work

In this section, we review the advancements of
large language models (LLMs) for code generation

in Section 2.1 and review prior work on instruc-
tional finetuning in Section 2.2. Finally, we discuss
earlier research on data selection and pruning meth-
ods in Section 2.3.

2.1 Large Language Models for Code
Generation

Great advancements have been achieved in improv-
ing Large Language Models (LLMs) for code gen-
eration. Codealpaca (Chaudhary, 2023) extends
the capabilities of the LLaMA model (Touvron
et al., 2023a) by incorporating 20,000 instruction-
following data points generated through the Self-
Instruct technique (Wang et al., 2022), which
aligns language models with self-generated instruc-
tions. CodeLlama (Roziere et al., 2023) further
enhances this methodology by fine-tuning from
LLaMAZ2 (Touvron et al., 2023b), utilizing 14,000
instruction-following data points also generated via
the Self-Instruct technique.

Wizardcoder (Luo et al., 2024) utilizes the Evol-
Instruct method (Xu et al., 2023a) to evolve the
Codealpaca dataset further. This technique itera-
tively evolves instruction-following data in both
depth and breadth dimensions. On the other hand,
Magicoder (Wei et al., 2023) employs the OSS-
Instruct technique to create instruction-following
data from unlabeled open-source code snippets,
constructing a dataset of 75,000 samples based on
the StarCoder dataset (Lozhkov et al., 2024).

2.2 Instructional Fine-tuning

Fine-tuning language models with instructional
datasets has emerged as a powerful technique, of-
fering notable improvements in model performance
and alignment with human preferences and safety.
By exploring a diverse array of instructional tasks,
(Wei et al., 2021) demonstrated a significant en-
hancement in zero-shot performance on unseen
tasks through fine-tuning. Building on this, (Chung
et al., 2024) showed that scaling both the number
of tasks and the model size can lead to substantial
performance gains across different model architec-
tures. (Peng et al., 2023) further advanced this field
by leveraging large language models (LLMs) to
generate high-quality instruction-following data,
resulting in improved zero-shot performance on
new tasks.

A recent study (Zhou et al., 2023) introduces the
Superficial Alignment Hypothesis, which posits
that the bulk of knowledge in LLMs is acquired
during pretraining. It further suggests that min-



imal fine-tuning data is sufficient to align these
models with human preferences. The study demon-
strates a noteworthy enhancement in LLM perfor-
mance with just 1,000 high-quality instruction data
points. Subsequently, a plethora of research endeav-
ors have concentrated on refining dataset quality
through diverse filtering methodologies for general
instruction following (Xu et al., 2023b; Chen et al.,
2024; Liu et al., 2023b).

2.3 Data Pruning for Efficient Training

Various pruning methods have been explored for
selecting more informative samples for model train-
ing, each tailored to different scenarios. Data
clustering has been widely used as a highly ef-
fective technique for data pruning. TLDR (Wang
et al., 2023) utilized KMeans clustering to group
similar data points and uniformly sampled from
each cluster. They employ Image-Text Matching
(ITM) scores to identify suitable vision-text pairs,
offering another perspective on sample selection.
DEFT (Das and Khetan, 2023) utilizes unsuper-
vised core-set selection for clustering-based data-
efficient fine-tuning of LLMs. This approach sig-
nificantly enhances data efficiency in fine-tuning
for text-editing applications.

Metrics like Hardness (Sorscher et al., 2022),
Instruction Following Difficulty (IFD) (Li et al.,
2023) (Li et al., 2023), and SuperFiltering (Li
et al., 2024) focus on identifying "hard" samples
that are either difficult to learn or easy to forget,
tracking each data sample throughout training. In
addition to these, sample influence metrics such as
LESS (Xia et al., 2024) and TraclIn (Pruthi et al.,
2020) monitor model gradients and the impact of
individual samples, albeit with significant compu-
tational overhead for large models and datasets.
Quality metrics from external oracles (Chen et al.,
2024; Liu et al., 2023b), leverage strong language
models like ChatGPT for data selection. However,
utilizing external oracles may not always be feasi-
ble due to cost constraints.

3 Methodology

Our goal is to select high-quality, representative
data samples so that training on these subsets yields
performance that is comparable to or better than
training on the entire dataset. The overview of effi-
cient data pruning for fine-tuning LLMs with large
scale datasets is illustrate in Figure 1. First, we
use an embedding model to project the instruction-

code pairs into a vector representation. We further
reduce the dimension of feature representation to
reduce computation complexity of the following
steps. We then apply clustering to identify and
group up similar data samples. Finally, we applied
pruning metrics to further reduce data size. The
detail pseudo code is in Algorithm 1.

When dealing with coding datasets, two primary
selection directions can be considered: syntactical
and semantic. Selecting programs that are syntacti-
cally different but semantically equivalent, or vice
versa, can be inefficient. Our design will focus
on identifying syntactical differences. Detecting
semantic differences between programs typically
requires fuzzing techniques (Chen et al., 2018),
which involve creating larger test samples and exe-
cuting programs to group them based on behavior.
This approach contradicts our objective of reduc-
ing computational costs. Therefore, our method
emphasizes syntactical analysis to achieve efficient
and effective data selection.

Algorithm 1 Data Pruning Algorithm

Initialize Embbedding, Compression Ratio

Initialize selected + ||

X < PCA(Embedding)

Cluster < ClusterAlgo(X)

for each idx, items in Cluster do
score <— PruningMetrics(item)
remain <— Random(items, prob=score)
Update Cluster[ids] < remain
Append selected < remain

end for

: Output: selected
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3.1 Dimension Reduction

We convert each instruction-code pair into vec-
tor representation using a embedding model from
raw text to enhance the efficiency of clustering
and computation of pruning metrics (Naik, 2024).
Recent research indicates that distances based on
LLM embeddings effectively capture syntactic dif-
ferences. To address the computational complexity,
we employ Principle Component Analysis (PCA)
(Mackiewicz and Ratajczak, 1993) to reduce the
dimensionality of the vector representations, as rep-
resentations extracted from LLMs often exceed a
thousand dimensions. Moreover, this approach pre-
vents the subsequent utilization of several pruning
metrics, which involve kernel methods, from being
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Figure 1: The overview of efficient data pruning for fine-tuning LLMs with large scale datasets. First, We reduce
the encode instruction-following data into embedding and reduce the dimension of feature representation. Second,
we apply clustering to identify and group up similar data samples. Finally, we applied pruning metrics to further

reduce data size.

hindered in high-dimensional spaces by the curse
of dimensionality.

3.2 Clustering

Clustering is a critical step in our methodology to
group similar instruction-code pairs, which facil-
itates the selection of diverse and representative
samples. Before clustering, we normalize the vec-
tor representations to ensure that each feature con-
tributes equally to the distance calculations. From
each cluster, we then sample instruction-code pairs
to create a subset that is representative of the entire
dataset. The sampling strategy is further decided
by different pruning metrics.

3.2.1 KMeans

The KMeans algorithm (Kanungo et al., 2002) par-
titions data into k clusters. By minimizing the
within-cluster sum-of-squares, KMeans ensures
that each cluster is as compact as possible. The
main advantage of KMeans is its scalability and
efficiency in handling large datasets.

3.2.2 Agglomerative Clustering

Agglomerative Clustering (Miillner, 2011) builds
nested clusters with linkage criteria. This method is
advantageous since it does not require the number
of clusters to be specified a priori. This flexibility
allows for a more nuanced selection of representa-
tive samples, which is beneficial for maintaining
the quality of the dataset.

3.2.3 HDBSCAN

Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) (Rahman
et al., 2016) performs clustering based on the con-
cept of core samples, which are samples located in
high-density areas measured by a distance metric.
This approach aligns well with our design hypoth-
esis to find the most syntactically representative
data samples. Notably, HDBSCAN removes noisy
samples not clustered into core samples as outliers.

3.3 Pruning Metrics

The criteria of choosing pruning metrics contin-
ually aligns with the idea of detecting syntactic
difference and find most representative samples.
We explain the pruning metrics explored in our
experiments in the following sections.

3.3.1 Diversity Metric

We use a distance-based metric that simply evalu-
ates the diversity score of a single instance shown
as follow,

d; = min dist(x;,x), (1

xe\{x;}

where z; is the vector representation, dist is a dis-
tance function, K represents selected query set
within the dataset cluster, and d; is the diversity
score of a sample x;. We use the dot product of the
embeddings as the distance function as our embed-
dings are normalized prior to pruning.

3.3.2 Density Metric

We applied kernel density estimation (KDE) to
measure the density of samples in the feature space.
KDE estimates the probability density function of
a random variable. The density score for a sample
X; 1s given by,

S
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where K is the kernel function, h is the bandwidth
parameter, d is the dimension of the feature space,
and n is the total number of samples. The kernel
function K (typically a Gaussian) measures the in-
fluence of nearby points on the density estimate. A
high density score indicates that a sample is located
in a region with many similar instances, suggesting
it is less critical for maintaining diversity.



Model Training Benchmark Improvement Over Base
Tokens HumanEval (+) MBPP (+) HumanEval (+) MBPP (+)
GPT-3.5 Turbo - 72.6 (65.9) 81.7 (69.4) - -
GPT-4 Turbo - 85.4 (81.7) 83.0 (70.7) - -
DeepSeek-Coder-Base - 47.6 (39.6) 70.2 (56.6) - -
DeepSeek-Coder-Instruct 2B 73.8 (70.1) 72.7 (63.4) 26.2 (30.5) 2.5 (6.8)
Magicoder-DS 90M 66.5 (60.4) 75.4 (61.9) 18.9 (20.8) 52 (5.3)
MagicoderS-DS 240M 76.8 (70.7) 75.7 (64.4) 29.2 (31.1) 5.5 (7.8)
Ours (full data) 234M 74.3 (70.8) 74.5 (62.3) 26.7 (31.2) 43 (5.7)
Ours (90%) 192M 77.0 (71.6) 76.9 (64.0) 294 (32.0) 6.7 (7.4)
Ours (50%) 106M 71.0 (64.0) 78.0 (64.0) 23.4 (24.4) 7.8 (7.4)
Ours (10%) 21M 70.4 (65.0) 73.0 (60.2) 22.8 (25.4) 2.8 (3.6)
Ours (1%) 2M 64.6 (58.0) 74.3 (61.9) 17.0 (18.4) 4.1 (5.3)

Table 1: pass@1 (%) results of different LLMs on HumanEval (+) and MBPP (+) with greedy decoding. We directly
use results from prior work (Guo et al., 2024; Wei et al., 2023). All our results are reported using the HDBSCAN
clustering algorithm with the diversity pruning metric (HDBSCAN-diversity). To account for the randomness of
clustering and training, we report the averaged results from three runs evaluated with EvalPlus (Liu et al., 2023a).

3.3.3 Random

The simplest baseline is random selection, where
we randomly sample data from the selected cluster
or entire training dataset (without clustering) for
instruction tuning.

4 Experiments

In this section, we first present the experimental
setup in Section 4.1, followed by our primary find-
ings in Section 4.5. Here, we highlight the perfor-
mance improvements of our pruning methods com-
pared to full dataset training across four datasets:
MBPP(+), and HumanEval(+). We also compare
the pass@1 scores with baseline methods at vari-
ous compression ratios.

4.1 Setup

We employed DeepSeek-Coder-Base 6.7B (Guo
et al., 2024) as the base model due to its superior
performance among open-source models. We used
PCA (Mackiewicz and Ratajczak, 1993) algorithm
in all experiments and reduce the dimension to 10.
To account for randomness in clustering algorithm
and training, we repeat each experiment 3 times
and report the average and standard deviation.

4.2 Training

Datasets In our experiment, we adopt two syn-
thetic code dataset as training data: Magicoder-

OSS-Instruct-75K ! (MIT License) and Magicoder-
Evol-Instruct-110K 2 (Apache-2.0 License). To-
gether we have a combined 185k entries in total as
our target large scale dataset.

We fine-tune the base model by combining and
shuffling the two training dataset. This is different
as in the original Magicoder (Wei et al., 2023) im-
plementation, where they first fine-tune the base
models for 2 epochs on OSS-Instruct data and con-
tinue training for 2 more epochs on Evol-Instruct
data. We note that despite such difference in our im-
plementation details, our full dataset performance
closely matches the MagicoderS-DS results.

Training Training is conducted with 16 NVIDIA
A100-80GB GPUs through the Distributed Data
Parallel (DDP) module from PyTorch. We set the
learning rate at Se-5 with 15 warmup steps and a lin-
ear learning rate scheduler. We use Adam (Kingma
and Ba, 2014) as our optimizer with full param-
eter updates and truncate sequence length longer
than 4096 tokens. We use a batch size of 512 sam-
ples (Wei et al., 2023) when the dataset size ex-
ceeds > 10% of the original size, and a batch size
of 32 (Zhou et al., 2023) for heavily pruned small-
scaled data experiments in Figure 3. We fine-tune
for 2 epochs regardless of the dataset size.

1https://huggingface.co/datasets/ise—uiuc/
Magicoder-0SS-Instruct-75K

2https://huggingface.co/datasets/ise—uiuc/
Magicoder-Evol-Instruct-110K
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Figure 2: Performance comparison of HDBSCAN-diversity and nocluster-random methods across different bench-
marks. Our strategy outperform the baseline across different datasets with a large margin. We also maintain better
or equivalent performance compare to full dataset even at the size of 10% on MBPP. The pass@1 metric is plotted
against varying compression ratios, demonstrating the robustness and effectiveness. HumanEval presents larger
variance across experiments possibly due to less problems entries.

4.3 Evaluation

Datasets HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) are two of the most
widely used benchmarks for code generation. The
two datasets contains 164 and 1401 problems re-
spectively. Each task in these benchmarks in-
cludes a task description (e.g., docstring) as the
prompt, where LLMs generate corresponding code
whose correctness is checked by a handful of test
cases. Because tests in these benchmarks can
be insufficient, for more rigorous evaluation, we
use HumanEval+ and MBPP+, both powered by
EvalPlus (Liu et al., 2023a) to obtain 80x and 35x
more tests, respectively.

Metric Following prior work (Chen et al., 2021;
Liu et al., 2023a), for each experiment we use the
unbiased pass@k estimator shown as follow and
mainly focus on comparing pass@1 metric:

)
(%)
Inference We employ the EvalPlus (Liu et al.,
2023a) inference script with sanitation postprocess-
ing. We adopted the vLLM (Kwon et al., 2023)
framework and use greedy decoding for every code
generation. The inference engine is setup with bf16

dtype, tensor parallel size of 2 and a maximum
length of 4096.

paSS@k := Eproblems [1 - 3)

4.4 Implementation Details

In our experiment, the PCA reduction is fitted on
the benchmark dataset and then apply the projec-
tion to the instruction data. We used the Ope-
nAl text-embedding-ada-002 embedding model

to encode data. All the clustering and kernel
density estimation parameters are as default in
sklearn (Pedregosa et al., 2011). For algorithms
that requires choosing an optimal number of clus-
ters (such as KMeans) is crucial, we utilize the
Elbow method (Roy, 1953) to find the point where
adding more clusters does not significantly improve
the variance explained. For pruning metrics, we
applied the Scott’s Rule (Scott, 2010), a normal-
reference rule for deciding the Gaussian kernel
bandwidth, for kernel density estimation and ran-
dom select 10% of the dataset as query set (K) for
diversity metric.

4.5 Main Results

Table 1 presents the pass@1 results of different
leading code LL.Ms on the HumanEval and MBPP
benchmarks, computed with greedy decoding. All
our results are reported using the HDBSCAN clus-
tering algorithm with the diversity pruning metric
(HDBSCAN-diversity). To account for the ran-
domness of clustering and training, we report the
averaged results from three runs. Notably, slight
pruning of the training data could yield a perfor-
mance improvement of up to 2.7% on HumanEval
and 3.5% on MBPP compared to training with the
full dataset. We further show that benchmark accu-
racy can be largely retained with 10% of the dataset,
with slight degradation of 3.9% on HumanEval and
1.5% on MBPP compared with using the full train-
ing data. Even with just 1% of the data (~ 700
samples), our method maintains competitive per-
formance and achieves large improvements over
the base model, underscoring the efficiency of our
pruning strategy.
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Figure 3: Comparison of performance under extreme data pruning conditions on the MBPP and HumanEval
benchmarks. The pass@1 score on MBPP shows that even with just 1% of the data, our method achieves nearly
equivalent performance to the full dataset, with a 4.1% improvement over the base model. On the HumanEval
benchmark, while the performance with 1% of the data degrades compared to the full dataset training, it still

achieves an 17.0% improvement over the base model.

Figure 2 illustrates the detail of our pruning
methods across four datasets: MBPP, MBPP+,
HumanEval, and HumanEval+. Each subplot
compares the pass@1 scores of the HDBSCAN-
diversity method with the nocluster-random base-
line at various compression ratios. HDBSCAN-
diversity method consistently outperforms the
nocluster-random baseline. The performance typ-
ically improves with slight compression, peaking
around 10-20%, and then gradually declines. This
trend highlights the robustness of the HDBSCAN-
diversity method, maintaining higher pass@1
scores than full dataset even at 90% compression.

We further examine how our data pruning
method performs when pushed to the extreme, aim-
ing to achieve the smallest possible dataset size
on the MBPP benchmark. The results are pre-
sented in Figure 3. Remarkably, we found that
even with just 1% of the data, our method achieves
a 4.1% improvement over the base model, which
is nearly equivalent to training on the full dataset.
This demonstrates the robustness of our pruning
method, highlighting its ability to maintain high
performance with minimal data, thus significantly
reducing the computational resources required.

Overall, these results demonstrate the effective-
ness of data pruning strategy in preserving critical
data features and maintaining model performance
under significant data reduction, making it a supe-
rior choice for coding dataset pruning.

5 Ablation Studies

Our research includes four ablation studies de-
signed to evaluate the impact of (1) clustering algo-
rithms (2) pruning metrics (3) dimension reduction
(4) input for vector representation on the effective-
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Figure 4: pass@1 on the MBPP benchmark compar-
ing across different clustering algorithms and varied
compression ratios of the training dataset. HDBSCAN
demonstrate strong robustness in maintaining higher
pass@1 scores compared to full dataset at the compres-
sion ratio of 90%.

ness of data pruning. In the studies, we will mainly
focus on the MBPP benchmark since it provides
more stable and consistent results.

5.1 Compare Clustering Algorithm

In Figure 4, we present the results of applying
different clustering algorithms without additional
pruning metrics. The algorithms evaluated include
Agglomerative Clustering, HDBSCAN, KMeans,
and a baseline with no clustering (nocluster).

The results demonstrate that clustering algo-
rithms generally improve performance compared to
the nocluster baseline, particularly at higher com-
pression ratios. HDBSCAN consistently maintains
higher pass@1 scores, showcasing its robustness in
preserving critical data features. KMeans and Ag-
glomerative Clustering also perform well, though
with higher variability. These findings highlight the
importance of clustering algorithms in enhancing
data efficiency for coding datasets.
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Figure 5: Comparison of different pruning metrics using
HDBSCAN clustering algorithms. Diversity metric has
marginal advantage but its benefit may be limited and
dependent on the clustering algorithm.

5.2 Compare Pruning Metrics

We examine the impact of different pruning met-
rics on model performance. Using HDBSCAN
clustering algorithm, we assess how these metrics
influence performance as the data size decreases,
as illustrated in Figure 5. The results indicate that
the effectiveness of pruning metrics varies across
different compression ratio. While Diversity met-
rics show slight improvements over other metrics,
the margin of improvement is not substantial and
only works between 10-40% compression ratio.
This suggests that while more sophisticated prun-
ing metrics can offer some benefits, their impact
may be limited and also dependent on the cluster-
ing algorithm used.

5.3 Effect of PCA

In Table 2, we evaluate the impact of applying
Principal Component Analysis (PCA) on the per-
formance of the KMeans clustering algorithm and
Density metric at the compression ratio of 50%.
The findings indicate that applying PCA generally
degrades performance in terms of pass@1 scores
for less than 0.6% on MBPP, and moderate nega-
tive impact of 4.3% on HumanEval. We hypoth-
esize that the observed impact might be due to
the imbalance between the MBPP and HumanEval
datasets used for PCA training. Since the Hu-
manEval dataset is significantly smaller than the
MBPP dataset, it results in suboptimal extraction
of principal components for HumanEval-like data.

Nonetheless, reducing the dimension from 1536
to 10 leads to ~12x speed up for KMeans. HDB-
SCAN clustering without PCA does not complete
within 4 hours, thus we do not report its numbers.

No PCA PCA
Dimension 1536 10
Runtime 1307 sec 183 sec
MBPP (+) 74.4 (63.3) 73.8(62.4)

HumanEval (+) 71.8 (65.0) 67.5(62.5)

Table 2: Comparison of pass@1 scores, dimension, and
data pruning runtime (excludes embedding and training)
at 50% compression ratio for KMeans clustering with
and without PCA (averaged over 3 runs).

5.4 Embeddings for Instruction or Code

In Table 3, we investigate the influence of various
inputs on the embedding model. Specifically, we
examine the effects of using only the instruction,
only the code solution, or both as inputs for generat-
ing embeddings. Our findings indicate that combin-
ing both instructions and code as embedding inputs
yields better performance compared to using either
one alone. There are no significant differences in
the results when using only instructions or only
code. This suggests that even though instructions
and code samples often correspond closely, it is
crucial to maintain diversity and select informative
samples from both during data pruning.

Feature Type MBPP (+) HumanEval (+)
Both 76.3 (62.5) 73.1 (69.6)
Instruction 74.0 (63.7) 69.1 (63.6)
Code 74.1 (62.7) 69.2 (63.3)

Table 3: pass@1 scores for different embedding inputs
with 50% compression ratio using KMeans clustering.
Using both instruction and code brings slight benefits.

6 Conclusion

This study presents an efficient data pruning strat-
egy designed to improve the efficiency of fine-
tuning large language models on coding datasets.
Our results demonstrate that advanced clustering
and pruning techniques can significantly improve
data efficiency in LLMs, reducing computational
costs while maintaining performance. Future work
could focus on enhancing data quality by generat-
ing more informative data from clusters with low
pruning metrics. We hope our findings provide
valuable insights for developing more effective and
scalable strategies in training code-focused LLMs,
further enhancing synthetic data generation and the
efficiency of human annotations.



Limitations

One of the key limitations of our study is the in-
herent randomness from the clustering algorithms
and training framework. Due to computational con-
straints, we only performed three runs and averaged
the results for each of our experiments. While this
approach provides a general indication of perfor-
mance, it may not fully capture the variability and
could lead to less accurate conclusions. More ex-
tensive experimentation with a larger number of
runs would be necessary to achieve a higher degree
of confidence in the results.

Throughout our experiments, we closely follow
the hyperparameters described in (Wei et al., 2023),
using a batch size of 512 samples and training for
2 epochs. However, such a high batch size results
in only a few gradient updates when training on
smaller datasets. Therefore, we switch to a lower
batch size of 32, as recommended in (Zhou et al.,
2023), when our pruned dataset is less than 10%
of the original size. We acknowledge that differ-
ent hyperparameter settings could affect training
outcomes and defer the determination of optimal
hyperparameter settings for various training data
sizes as future work.

Potential Risks

This study focus exclusively on English prompts
for Python code generation, thus prompts in other
languages might not produce accurate or functional
code. Additionally, the lack of safety alignment
means there is a risk of generating malicious code
or harmful language, which could lead to security
vulnerabilities or unintended consequences. Code
generation using LLMs carries inherent risks, such
as producing incorrect or suboptimal code, failing
to adhere to best practices, or introducing security
flaws. Furthermore, LLMs may inadvertently prop-
agate biases present in their training data, leading
to biased outcomes in the generated code.

Use of AI Assistants

ChatGPT was utilized to refine paper writing and
generate code templates for drawing figures. The
authors took careful attention to ensure that Al-
generated contents are accurate and align with the
authors intentions.
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A Code Samples from Data Pruning

We show examples from our data pruning. The
selected data samples adheres closely to the down-
stream coding tasks, from English problem descrip-
tion to code generation. We also provide an exam-
ple of removed data from our pruning strategy.

Input

You are given a Python function that takes in a list of
integers and a target integer. The function is intended
to find two distinct elements in the list that sum up to
the target integer. However, the function is incomplete
and needs to be filled in with the appropriate code to
achieve this functionality.

Complete the Python function ‘find_two_sum* to find
and return the indices of two distinct elements in

the input list that sum up to the target integer. If no
such pair exists, return an empty list. The function
signature is:

def find_two_sum(nums: List[int], target: int)
— -> List[int]:

For example, given the input ‘nums = [2, 7, 11, 15]
and ‘target = 9°, the function should return ‘[0, 1]°
since ‘nums[0] + nums[1] =2+ 7 =9.

Output
from typing import List

def find_two_sum(nums: List[int], target: int)
— -> List[int]:
num_indices = {}
for i, num in enumerate(nums):
complement = target - num
if complement in num_indices:
return [num_indices[complement], i]
num_indices[num] = i
return []

Figure 6: Example of a selected data sample.
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Input

You are given a list of integers representing the daily stock prices of a company. You need to write a function

to calculate the maximum profit that can be obtained by buying and selling the stock at most once. If it is not
possible to make any profit, return 0.

Write a function ‘maxProfit’ that takes in a list of integers ‘prices® as input and returns the maximum profit that can
be obtained.

Function signature:

def maxProfit(prices: List[int]) -> int:
Example:

Input: prices =[7, 1, 5, 3, 6, 4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit =6 - 1 =5.

Input: prices = [7, 6, 4, 3, 1]
Output: @
Explanation: In this case, no transaction is done, i.e., max profit = @.

Assumptions:
- The input list ‘prices’ will have at least one element.
- The stock prices are given in chronological order.

Output
from typing import List

def maxProfit(prices: List[int]) -> int:
if not prices:
return 0

min_price = prices[0]
max_profit = 0

for price in prices:
if price < min_price:
min_price = price
else:
max_profit = max(max_profit, price - min_price)

return max_profit
The ‘maxProfit’ function iterates through the list of prices, keeping track of the minimum price encountered so far

and the maximum profit that can be obtained. It updates these values as it iterates through the list and returns the
maximum profit at the end.

&

Figure 7: Another example of a selected data sample.
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Input

Background:

You are a Product Manager, named Alice, your goal is Efficiently create a successful product, and the
— constraint is .

Question:

# Context

## Original Requirements

[BOSS: Write a podcast search engine which search for all index podcast. Each podcast belongs to a
<« channel and each podcast contain title, description, published, audio link, transcript text]

## Search Information
### Search Results
### Search Summary

## mermaid quadrantChart code syntax example. DONT USE QUOTO IN CODE DUE TO INVALID SYNTAX. Replace
— the <Campain X> with REAL COMPETITOR NAME

quadrantChart
title Reach and engagement of campaigns
x-axis Low Reach --> High Reach
y-axis Low Engagement --> High Engagement

Output

## Original Requirements

We are tasked with creating a podcast search engine that indexes all podcasts. Each podcast is

< associated with a channel and contains a title, description, publication date, audio link, and
— transcript text.

## Product Goals
T python
L
"Create a user-friendly podcast search engine that indexes all podcasts”,
"Ensure each podcast contains necessary information: title, description, publication date, audio
— 1link, and transcript text”,
"Develop a system that efficiently updates and maintains the podcast index”

## User Stories

T “python

L
"As a user, I want to search for podcasts by title or description so that I can find the content
— I'm interested in",
"As a user, I want to see all the necessary information about a podcast (title, description,
< publication date, audio link, transcript text) so that I can decide whether to listen to it",
"As a user, I want the search engine to suggest podcasts based on my search history so that I can
< discover new content”,
"As a user, I want the podcast search engine to be updated regularly so that I can access the
< latest podcasts”,
"As a user, I want to filter search results by publication date, channel, or transcript text so
— that I can narrow down my search”

## Competitive Analysis

Figure 8: Example of a removed data sample (outlier).
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