
A Hyperparameters and Infrastructure

When comparing the performance of NL-CG against DCG [4] and QMIX [22] on the MACO
benchmark, we adopted the following hyper-parameter settings. For all tasks, we used a discount
factor γ = 0.99 and ϵ-greedy exploration, where ϵ was linearly decayed from 1 to 0.05 within the first
50,000 training time steps. The replay buffer stored the last 5000 episodes, from which we uniformly
sampled batches of size 32 for training. The target network was updated every 200 episodes. The
learning rate of RMSprop was set to 5 × 10−4, except for the Pursuit experiment, which used
1× 10−2 for faster convergence. Every 10000 time steps we paused training and evaluated the model
with 300 greedy test trajectories sampled with ϵ = 0.

Each agent processed its local action-observation history at each time step using a linear layer of
64 neurons, followed by a ReLU activation, a GRU of the same dimensionality, and finally a linear
layer of |A| neurons. The output served as an individual feature vector and was fed into the utility
and payoff function. The parameters of the utility and payoff function were shared amongst agents,
who were identified by a one-hot encoded ID in the input. All message passing procedures in NL-
CG iterated for 4 rounds. The weights and bias of the mixing network in NL-CG were generated by a
2-layer hyper-network with a hidden layer of 64 ReLU neurons, except for the Aloha experiment,
which uses one linear layer.

Our implementation of NL-CG was based on the PyMARL* [23] framework. We used NVIDIA
GeForce RTX 3090 GPUs for training and evaluation.

B Weighted Max-Sum

Algorithm 1 and Algorithm 2 find global and approximate greedy actions for a non-linear coordination
graph, respectively. Both of these two algorithms rely on the weighted Max-Sum algorithm to find
local optimal action on a linear piece. We present the weighted Max-Sum algorithm in Algorithm 3.

C Representational Capability

In Sec. 4, we use a matrix game to show the representational capability of non-linear coordination
graphs. For conventional coordination graphs on State 2B of this game, since the value function
should be permutation invariant, there are five unknowns q1 = qi(s2B , A), q2 = qi(s2B , B), q3 =
qij(s2B , AA), q4 = qij(s2B , AB), and q5 = qij(s2B , BB) and five equations:



4q1 + 6q3 = 0

3q1 + q2 + 3q3 + 3q4 = −0.1
2q1 + 2q2 + q3 + 4q4 + q5 = 0.1

q1 + 3q2 + 3q4 + 3q5 = 0.3

4q2 + 6q5 = 8

(10)

The augmented matrix of this system has a higher rank (4) than its coefficient matrix (3). Therefore,
this linear system does not have a solution, which means that a conventional coordination graph
cannot represent the accurate value function for this task.

*https://github.com/oxwhirl/pymarl

13

https://github.com/oxwhirl/pymarl

Algorithm 3 w-MAX-SUM
/*Greedy action selection with k message passing for one linear piece of the mixing network fm.
This algorithm is called by Algorithm 1 and 2, and the definition of inputs can be found there.*/

Input: fV ∈ R|V|×A, fE ∈ R|E|×A×A, (WV ,WE) ∈ R|V|+|E|, b ∈ R
fV := WV ◦ fV

fE := WE ◦ fE

µ0, µ̄0 := 0 ∈ R|E|×A

/*Initialize forward messages (µ) and backward messages (µ̄).*/
q0 := fV

/*Initial “Q-value”.*/
qmax := −∞;amax :=

[
argmax

a∈Ai

q0ai
∣∣ i ∈ V]

/*Initialize the best found solution.*/
for t ∈ {1, . . . , k} do

/*k rounds of message passing.*/
for e = (i, j) ∈ E do

/*Update forward and backward messages. Subscripts of f , q, µ mean indexing.*/
µt

e := max
a∈Ai

{
(qt−1

ia − µ̄t−1
ea) + fE

ea

}
/*Forward: maximize sender.*/
µ̄t

e := max
a∈Aj

{
(qt−1

ja − µt−1
ea) + (fE

e)
⊤
a

}
/*Backward: maximize receiver.*/
µt

e ← µt
e − 1

|Aj |
∑

a∈Aj

µt
ea

/*Normalize forward messages to ensure converging.*/
µ̄t

e ← µ̄t
e − 1

|Ai|
∑

a∈Ai

µ̄t
ea

/*Normalize backward messages to ensure converging.*/
end for
for i ∈ V do

/*Update “Q-value” with messages.*/
qt
i := fV

i +
∑

e=(·,i)∈E

µt
e +

∑
e=(i,·)∈E

µ̄t
e

/*Utility plus incoming messages.*/
ati := argmax

a∈Ai

{qtia}

/*Select the greedy action of agent i.*/
end for
q′ ←

∑|V|
i=1 f

V
ai +

∑
(i,j)∈E f

E
aiaj + b

/*Get the Q-value of the greedy action.*/
if q′ > qmax then
{amax ← at; qmax ← q′ q ← qt

i}
/*Remember the best action.*/

end if
end for
return qmax,amax ∈ A1 × . . .×A|V|, q
/*Return the maximum Q value, the corresponding action, and utilities/payoffs.*/

14

	Hyperparameters and Infrastructure
	Weighted Max-Sum
	Representational Capability

