
A Details on RL environments360

We adapt the IsaacGym humanoid environment for the three humanoid-related tasks, by modifying361

the observation space to include the vertical position of the torso, root coordinates and angular362

velocity, joint positions and velocities, and per-limb contact forces. We leave the reward for the363

Humanoid-Mod and Humanoid-Hill unchanged, while we adapt the reward for Humanoid-Bob by364

forcing the forward target velocity to zero, and appropriately adjusting the target and termination365

heights to take the balancing board into account. For the A1-Walk task, we adapt the codebase366

in Zhuang et al. [33] and train the policies using proprioception only for the actor, and additional367

simulation parameters for the critic. We define the task to mantain a target velocity of 0.5 m/s on368

an irregular terrain.369

B Real-World Deployment370

Figure 6: Real-World Deployment. Frame over-
lay demonstrating the deployment of the BoT
walking policy to a Unitree A1 quadruped robot.

We deployed the RL policy trained for A1-Walk371

task to a real-world Unitree A1 Robot. Compu-372

tation was runned offboard on CPU and com-373

mands were sent via WiFi or Ethernet connec-374

tion. We attach a supplementary video that375

demonstrates the real-world deployment. A376

frame overlay representing the robot motion are377

also shown in Figure 6.378

C Positional Encodings379

For the reinforcement learning experiments380

presented in Section 5.2, we found that the use381

of positional encodings improves the perfor-382

mance of BoT architectures. Specifically, we383

compute positional encodings through an em-384

bedding layer that maps indices – up to n – to385

encoding vectors, which are then added to the386

tokenizers’ outputs. While this is beneficial for387

the reinforcement learning setting, we did not388

report a considerable improvement in the imi-389

tation learning setting, which we present without the use of positional encodings. In fact, these are390

not strictly necessary, as in the BoT architecture tokenizers do not share weights across body parts,391

and may in principle replace the role of positional encodings.392

D Additional Imitation Learning Ablations393

Return Normed Length Normed
train test train test

BoT-Hard (ours) 0.908 / 0.703 0.89 / 0.648 1.000 / 0.876 1.000 / 0.841

BoT-Mix (ours) 0.943 / 0.679 0.844 / 0.604 0.982 / 0.853 0.964 / 0.785
BoT-Soft 0.900 / 0.678 0.843 / 0.598 0.993 / 0.859 0.962 / 0.789

BoT-Hard/Random 0.850 / 0.661 0.835 / 0.600 0.995 / 0.845 0.962 / 0.782

Figure 7: Additional Imitation Learning Ablations. Statistics of the various architecture-criterion
combinations are shown with two values, the leftside being the maximum mean value recorded
throughout all evaluation epochs across three seeds, the rightside being the mean of all evaluation
scores recorded in last 15 evaluation epochs across all three seeds.
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In this section we provide several ablations in addition to those presented in Section 5.1. Specifically,394

we compare (i) BoT-Hard, (ii) BoT-Mix, (iii) BoT-Soft, which – similarly to [25] – learns a mapping395

between the graph shortest path matrix and the matrix B in (1), and (iv) BoT-Hard with a randomly396

sampled mask, i.e. having ones on its diagonal and the same sparsity as the mask M used for the397

correct implementation of BoT-Hard.398

The table in Figure 7 shows the result of this comparison, with BoT-Hard outperforming all baselines399

on most of of the metrics. The bottlenecks introduced by the masked attention result in better400

performance compared both to a mixed approach (BoT-Mix) and an approach that also accounts for401

structure but does not prevent long-range communication (BoT-Soft). As expected, simply sampling402

a random mask without properly accounting for the embodiment structure deteriorates performance.403

E Additional Reinforcement Learning Ablations404

E.1 Effect of Body-Induced Masking in BoT405

Figure 8: Additional RL Experimental Results on the Effect of Body-induced Masking.

BoT relies on masked attention with its mask determined by the embodiment structure. We conduct406

an additional experiment in the RL setting to further demonstrate the effect of the body-induced407

masking in this setting. We compare with BoT-Hard/Random and BoT-Mix/Random, where the408

attention mask M is given by a randomly sampled symmetric binary matrix with the same degree409

of sparsity (� ⇡ 0.82 for the IsaacGym humanoid). The results are presented in Figure 8. Overall,410

BoT with random masking (dotted lines) underperforms BoT with body-induced masking (solid411

lines) in both a simpler task (Humanoid-Mod) and a hard-exploration task (Humanoid-Board), which412

highlights that the use of body-induced masking is crucial for the performance of BoT.413

E.2 Effect of Per-Limb Tokenizer vs. Shared Tokenizer414

Figure 9: Additional RL Experimental Results on the Effect of Per-Node (De)Tokenizers.

The existing works using Transformer-based policies [23, 24, 25] for multi-task RL adopt shared415

linear projections for tokenizers and detokenizers to deal with the varying number of limbs, i.e.,416
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per-limb observation features are projected into embedding vectors by the single shared tokenizer417

network, and the per-limb hidden vectors are transformed to per-limb actions via the single shared418

detokenizer network. In contrast, our BoT is designed for tasks with a single morphology, thus we419

adopt per-node linear projections for tokenizer and detokenizer. We conduct an additional experi-420

ment to investigate the effect of this design choice, and the results are demonstrated in Figure 9.421

In Figure 9, the solid lines denote the results of using per-node tokenizers/detokenizers, and the422

dotted lines present the results of using a shared tokenizer/detokenizer (which can be understood423

as representatives of the existing methods [23, 24, 25]). Overall, Transformer/BoT with per-node424

(de)tokenizers significantly outperform their shared (de)tokenizer counterparts in both a simpler425

task (Humanoid-Mod) and a hard-exploration task (Humanoid-Board). This shows that the use of426

tokenizers shared across different limbs for Transformer-based policies hinders efficient learning.427

F Training Details428

Parameter Values
MLP Transformers

Batch Size 256 256
# Epochs 100 100

# Encoder Layers 3 16
Embedding Input Size 320 320

Feedforward Size 2500 1024
# Attention Heads N/A 5

Learning Rate 1e-4 1e-4
# Parameters 16,696,656 17,544,120

(a) Training Parameters Used for Imitation Learning Experiments.

Parameter Values
MLP Transformers

Num Envs 2048 2048
Batch Size 8192 8192

# Encoder Layers 3 10
# Attention Heads N/A 2

Embedding Input Size N/A 64
Feedforward Size 150 128

# Parameters 699,467 688,762

(b) Training Parameters Used for Reinforcement Learning Experiments.

Figure 10: Training Parameters Used for Experiments in Section 5.

The training parameters of the experiments detailed in Section 5.1 and Section 5.2 are as summarized429

in Tables 10a and 10b.430

G FLOP Derivation for Custom Masked Attention Implementation431

Below, we comparatively analyze an asymptotic bound for the amount of floating-point operations432

required in one scaled dot product (see Equation (1)) call between the vanilla and the masked ap-433

proach. From hereon, let n denote the sequence length and dk the input and output dimension of our434

attention mechanism.435

Computing
QKT
p

dk
. Considering Q 2 Rn⇥dk (and similarly for K), the computation of QKT will436

generally require dk multiplications and dk�1 additions for all of n2 pairs. Division by
p
dk results437

in n2 divisions and one constant factor c1 of FLOPs for computing
p
dk. The total amount of flops438

is 2n2dk + c1.439
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Masked computation of
QKT
p

dk
. Exploiting sparsity, we ignore all inner product computations for440

zero entries in M , computing only �n2 pairs of multiplications. This results in a reduction to441

2�n2dk + c1 FLOPs.442

Computing Softmax(S). A softmax for one vector of dimension n requires n exponentiations,443

n � 1 additions, and n divisions, performed for n rows. Let exponentiations require c2 FLOPs per444

element, then a total of (2 + c2)n2
� n FLOPs is performed.445

Masked computation of Softmax(S). As a result of sparsity, there is instead a total of �n2446

exponentiations �n2 divisions, and �n2
� n additions to compute, reducing our demand to (2 +447

c2)�n2
� n FLOPs.448

Computing the multiplication Softmax(S)V . A total of ndk pairs are multiplied, where each449

pair requires 2n� 1 operations to complete. The total amount of FLOPs is 2n2dk �ndk. Following450

a similar reasoning with previous writing, a total of 2n2dk � ndk FLOPs are performed.451

Assuming that our physical agent provides a graph-induced mask M 2 {0, 1}n⇥n of sparsity � 2452

[ 1n , 1] (such that there are �n2 > n nonzero entries), then the amount of FLOPs required by a vanilla453

masked self-attention implementation is 4n2dk+(2+ c2)n2
�ndk�n+ c1, while that of a custom454

masked implementation is (2�+2)n2dk+(2+ c2)�n2
�ndk�n+ c1. Therefore, the performance455

gap between the vanilla and masked implementations is determined by the sparsity coefficient �, that456

is, the number of FLOPs that a vanilla approach requires will be c(n) times the number of FLOPs a457

custom masked approach requires:458

lim
n!1

# FLOPs in vanilla approach
# FLOPs in masked implementation

= lim
n!1

4n2dk + (2 + c2)n2
� ndk � n+ c1

(2� + 2)n2dk + (2 + c2)�n2 � ndk � n+ c1

=
4dmodel + 2 + c2

(2� + 2)dmodel + 2� + �c2
� 1

Therefore, even though these implementations share the same asymptotic bound O(n2dk), the cus-459

tom masked implementation’s amount of FLOPs scales better than the vanilla implementation.460

Note that it is possible to further optimize our implementation by sparsifying the multiplication461

Softmax(S)V ; this is left as a direction of future work, and requires the use of sparse array libraries,462

which was not in the scope of this analysis.463
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