360

362
363
364
365
366
367
368
369

370

371
372
373
374
375

377
378

379

380
381
382
383

385
386
387
388
389
390
391
392

393

A Details on RL environments

We adapt the IsaacGym humanoid environment for the three humanoid-related tasks, by modifying
the observation space to include the vertical position of the torso, root coordinates and angular
velocity, joint positions and velocities, and per-limb contact forces. We leave the reward for the
Humanoid-Mod and Humanoid-Hill unchanged, while we adapt the reward for Humanoid-Bob by
forcing the forward target velocity to zero, and appropriately adjusting the target and termination
heights to take the balancing board into account. For the A1-Walk task, we adapt the codebase
in Zhuang et al. [33] and train the policies using proprioception only for the actor, and additional
simulation parameters for the critic. We define the task to mantain a target velocity of 0.5 m/s on
an irregular terrain.

B Real-World Deployment

We deployed the RL policy trained for A1-Walk
task to a real-world Unitree A1 Robot. Compu-
tation was runned offboard on CPU and com-
mands were sent via WiFi or Ethernet connec-
tion. We attach a supplementary video that
demonstrates the real-world deployment. A
frame overlay representing the robot motion are
also shown in Figure 6.

C Positional Encodings

For the reinforcement learning experiments
presented in Section 5.2, we found that the use
of positional encodings improves the perfor-
mance of BoT architectures. Specifically, we
compute positional encodings through an em-
bedding layer that maps indices — up to n — to ;

encoding vectors, which are then added to the Figure 6: Real-World Deployment. Frame over-
tokenizers” outputs. While this is beneficial for lay demonstrating the deployment of the BoT
the reinforcement learning setting, we did not Walking policy to a Unitree Al quadruped robot.
report a considerable improvement in the imi-

tation learning setting, which we present without the use of positional encodings. In fact, these are
not strictly necessary, as in the BoT architecture tokenizers do not share weights across body parts,
and may in principle replace the role of positional encodings.

D Additional Imitation Learning Ablations

\ Return Normed \ Length Normed
| train \ test | train \ test

BoT-Hard (ours) | 0.908 /0.703 0.89/0.648 | 1.000/0.876 1.000/0.841
BoT-Mix (ours) | 0.943/0.679 0.844/0.604 {0.982/0.853 0.964/0.785
BoT-Soft | 0.900/0.678 0.843/0.598|0.993/0.859 0.962/0.789
BoT-Hard/Random | 0.850 / 0.661 0.835/0.600|0.995/0.845 0.962/0.782

Figure 7: Additional Imitation Learning Ablations. Statistics of the various architecture-criterion
combinations are shown with two values, the leftside being the maximum mean value recorded
throughout all evaluation epochs across three seeds, the rightside being the mean of all evaluation
scores recorded in last 15 evaluation epochs across all three seeds.

12

394
395
396

398

399
400
401
402
403

404

406
407
408
409
410
411
412
413

414

415
416

In this section we provide several ablations in addition to those presented in Section 5.1. Specifically,
we compare (i) BoT-Hard, (ii) BoT-Mix, (iii) BoT-Soft, which — similarly to [25] — learns a mapping
between the graph shortest path matrix and the matrix B in (1), and (iv) BoT-Hard with a randomly
sampled mask, i.e. having ones on its diagonal and the same sparsity as the mask M used for the
correct implementation of BoT-Hard.

The table in Figure 7 shows the result of this comparison, with BoT-Hard outperforming all baselines
on most of of the metrics. The bottlenecks introduced by the masked attention result in better
performance compared both to a mixed approach (BoT-Mix) and an approach that also accounts for
structure but does not prevent long-range communication (BoT-Soft). As expected, simply sampling
a random mask without properly accounting for the embodiment structure deteriorates performance.

E Additional Reinforcement Learning Ablations

E.1 Effect of Body-Induced Masking in BoT

—— BoT-Hard (ours) —— BoT-Mix (ours)
BoT-Hard/Random Bot-Mix/Random

10000 Humanoid-Mod Humanoid-Board
c 2000
5
2
2 8000
3 1000
(@]
)
2 6000
(]

0 5000 10000 O0 5000 10000

epochs epochs

Figure 8: Additional RL Experimental Results on the Effect of Body-induced Masking.

BoT relies on masked attention with its mask determined by the embodiment structure. We conduct
an additional experiment in the RL setting to further demonstrate the effect of the body-induced
masking in this setting. We compare with BoT-Hard/Random and BoT-Mix/Random, where the
attention mask M is given by a randomly sampled symmetric binary matrix with the same degree
of sparsity (5 = 0.82 for the IsaacGym humanoid). The results are presented in Figure 8. Overall,
BoT with random masking (dotted lines) underperforms BoT with body-induced masking (solid
lines) in both a simpler task (Humanoid-Mod) and a hard-exploration task (Humanoid-Board), which
highlights that the use of body-induced masking is crucial for the performance of BoT.

E.2 Effect of Per-Limb Tokenizer vs. Shared Tokenizer

—— Transformer —— BoT-Hard (ours) —— BoT-Mix (ours)
Transformer/Shared BoT-Hard/Shared BoT-Mix/Shared
10000 Humanoid-Mod Humanoid-Board

2000
£ 9000
=}
1500
4“:' 8000
s 1000
8 7000
)
& 6000 500
5000 oL
0 2500 5000 7500 10000 0 2500 5000 7500 10000

epochs epochs

Figure 9: Additional RL Experimental Results on the Effect of Per-Node (De)Tokenizers.

The existing works using Transformer-based policies [23, 24, 25] for multi-task RL adopt shared
linear projections for tokenizers and detokenizers to deal with the varying number of limbs, i.e.,

13

417
418
419
420
421

422
423
424
425
426
427

428

429
430

431

432
433
434
435

437
438
439

per-limb observation features are projected into embedding vectors by the single shared tokenizer
network, and the per-limb hidden vectors are transformed to per-limb actions via the single shared
detokenizer network. In contrast, our BoT is designed for tasks with a single morphology, thus we
adopt per-node linear projections for tokenizer and detokenizer. We conduct an additional experi-
ment to investigate the effect of this design choice, and the results are demonstrated in Figure 9.

In Figure 9, the solid lines denote the results of using per-node tokenizers/detokenizers, and the
dotted lines present the results of using a shared tokenizer/detokenizer (which can be understood
as representatives of the existing methods [23, 24, 25]). Overall, Transformer/BoT with per-node
(de)tokenizers significantly outperform their shared (de)tokenizer counterparts in both a simpler
task (Humanoid-Mod) and a hard-exploration task (Humanoid-Board). This shows that the use of
tokenizers shared across different limbs for Transformer-based policies hinders efficient learning.

F Training Details

Parameter Values
MLP | Transformers

Batch Size 256 256
Epochs 100 100

Encoder Layers 3 16
Embedding Input Size 320 320
Feedforward Size 2500 1024

Attention Heads N/A 5
Learning Rate le-4 le-4

Parameters | 16,696,656 17,544,120

(a) Training Parameters Used for Imitation Learning Experiments.

Parameter Values
MLP |Transformers
Num Envs | 2048 2048
Batch Size| 8192 8192
Encoder Layers 3 10
Attention Heads| N/A 2
Embedding Input Size| N/A 64
Feedforward Size| 150 128
Parameters | 699,467 688,762

(b) Training Parameters Used for Reinforcement Learning Experiments.

Figure 10: Training Parameters Used for Experiments in Section 5.

The training parameters of the experiments detailed in Section 5.1 and Section 5.2 are as summarized
in Tables 10a and 10b.

G FLOP Derivation for Custom Masked Attention Implementation

Below, we comparatively analyze an asymptotic bound for the amount of floating-point operations
required in one scaled dot product (see Equation (1)) call between the vanilla and the masked ap-
proach. From hereon, let n denote the sequence length and dy the input and output dimension of our
attention mechanism.

QKT
Vi
generally require dj, multiplications and dy — 1 additions for all of n? pairs. Division by \/dj, results
in n? divisions and one constant factor ¢; of FLOPs for computing /dj,. The total amount of flops
is 2n2dy + c;.

Computing . Considering Q € R™*% (and similarly for K), the computation of QKT will

14

440

441
442

443
444
445

446
447
448

449

451

452
453
454
455
456
457
458

459
460

461
462
463

Masked computation of ?/12_: Exploiting sparsity, we ignore all inner product computations for

zero entries in M, computing only Bn? pairs of multiplications. This results in a reduction to
26n2dy + ¢; FLOPs.

Computing Softmax(.S). A softmax for one vector of dimension n requires n exponentiations,
n — 1 additions, and n divisions, performed for n rows. Let exponentiations require co FLOPs per
element, then a total of (2 + c2)n? — n FLOPs is performed.

Masked computation of Softmax(S). As a result of sparsity, there is instead a total of Sn?
exponentiations 3n? divisions, and fn? — n additions to compute, reducing our demand to (2 +
¢2)3n? — n FLOPs.

Computing the multiplication Softmax(S)V. A total of ndy pairs are multiplied, where each
pair requires 2n — 1 operations to complete. The total amount of FLOPs is 2n2dy — ndj. Following
a similar reasoning with previous writing, a total of 2n2dy — ndy FLOPs are performed.

Assuming that our physical agent provides a graph-induced mask M € {0, 1}"*™ of sparsity 5 €
[%, 1] (such that there are 3n2 > n nonzero entries), then the amount of FLOPs required by a vanilla
masked self-attention implementation is 4n2dy + 2+ 02)n2 —ndy — n + c¢1, while that of a custom
masked implementation is (23 + 2)n?dy + (2 + c2)3n? — ndy, — n+ c;. Therefore, the performance
gap between the vanilla and masked implementations is determined by the sparsity coefficient 3, that
is, the number of FLOPs that a vanilla approach requires will be ¢(n) times the number of FLOPs a
custom masked approach requires:
lim # FLOPs in vanilla approach
n—oo# FLOPs in masked implementation
~ lim an?dy + (2 + co)n? — ndx —n + ¢y
n—oo (28 + 2)n?dx + (24 ¢2)fn?® —ndx —n+ 1
4dm0del +2+ C2 1
(25 + 2)dm0de1 + 208+ Bea

Therefore, even though these implementations share the same asymptotic bound O(n?dy), the cus-
tom masked implementation’s amount of FLOPs scales better than the vanilla implementation.

Note that it is possible to further optimize our implementation by sparsifying the multiplication
Softmax(.S)V'; this is left as a direction of future work, and requires the use of sparse array libraries,
which was not in the scope of this analysis.

15

268

269
270

271
272
273
274

275
276
277

278
279

280
281
282

283
284
285

286
287
288

290

291
292
293

294
295

296
297

298
299
300

302

303
304
305

306
307

308
309
310

References

[1] H. Forssberg. Stumbling corrective reaction: a phase-dependent compensatory reaction during
locomotion. Journal of neurophysiology, 42(4):936-953, 1979.

[2] J.L. Secomb, O. R. Farley, L. Lundgren, T. T. Tran, A. King, S. Nimphius, and J. M. Sheppard.
Associations between the performance of scoring manoeuvres and lower-body strength and
power in elite surfers. International Journal of Sports Science & Coaching, 10(5):911-918,
2015.

[3] L. Seminara, S. Dosen, F. Mastrogiovanni, M. Bianchi, S. Watt, P. Beckerle, T. Nanayakkara,
K. Drewing, A. Moscatelli, R. L. Klatzky, et al. A hierarchical sensorimotor control framework
for human-in-the-loop robotic hands. Science Robotics, 8(78):eadd5434, 2023.

[4] S. H. Collins and A. D. Kuo. Recycling energy to restore impaired ankle function during
human walking. PLoS one, 5(2):¢9307, 2010.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[7] L. Dong, S. Xu, and B. Xu. Speech-transformer: a no-recurrence sequence-to-sequence model
for speech recognition. In 2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pages 5884-5888. IEEE, 2018.

[8] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[9] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084—15097, 2021.

[10] Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In international conference
on machine learning, pages 27042-27059. PMLR, 2022.

[11] I. Radosavovic, B. Zhang, B. Shi, J. Rajasegaran, S. Kamat, T. Darrell, K. Sreenath, and J. Ma-
lik. Humanoid locomotion as next token prediction. arXiv preprint arXiv:2402.19469, 2024.

[12] H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and J. Malik. General in-hand object
rotation with vision and touch. In Conference on Robot Learning, pages 2549-2564. PMLR,
2023.

[13] C. Sferrazza, Y. Seo, H. Liu, Y. Lee, and P. Abbeel. The power of the senses: Generalizable
manipulation from vision and touch through masked multimodal learning, 2023.

[14] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on
graph neural networks. [EEE transactions on neural networks and learning systems, 32(1):
4-24, 2020.

[15] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

[16] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

311
312
313

314
315
316

317

318
319

320
321

322
323
324

326

327
328

329
330
331

332
333

334
335

336
337

338
339

340
341

342
343
344

345
346
347

348

350
351

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263-1272.
PMLR, 2017.

[18] C.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really
perform badly for graph representation? Advances in neural information processing systems,
34:28877-28888, 2021.

[19] D. Buterez, J. P. Janet, D. Oglic, and P. Lio. Masked attention is all you need for graphs, 2024.

[20] P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[21] T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with graph neural
networks. In International conference on learning representations, 2018.

[22] W. Huang, I. Mordatch, and D. Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pages
4455-4464. PMLR, 2020.

[23] V. Kurin, M. Igl, T. Rocktischel, W. Boehmer, and S. Whiteson. My body is a cage: the role
of morphology in graph-based incompatible control, 2021.

[24] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei. Metamorph: Learning universal controllers with
transformers. arXiv preprint arXiv:2203.11931, 2022.

[25] S. Hong, D. Yoon, and K.-E. Kim. Structure-aware transformer policy for inhomogeneous
multi-task reinforcement learning. In International Conference on Learning Representations,
2021.

[26] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical implica-
tions, 2021.

[27] W. Park, W. Chang, D. Lee, J. Kim, and S. won Hwang. Grpe: Relative positional encoding
for graph transformer, 2022.

[28] J. Yeom, T. Kim, R. Chang, and K. Song. Structural and positional ensembled encoding for
graph transformer. Pattern Recognition Letters, 2024.

[29] N. Wagener, A. Kolobov, F. V. Frujeri, R. Loynd, C.-A. Cheng, and M. Hausknecht. Mocapact:
A multi-task dataset for simulated humanoid control, 2023.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[31] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning, 2021.

[32] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91-100. PMLR,
2022.

[33] Z.Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. arXiv preprint arXiv:2309.05665, 2023.

[34] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In Conference on Robot Learning, pages 2226-2240. PMLR, 2023.

10

352
353
354

355
356

357
358
359

[35] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,

2022.

[36] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient

exact attention with io-awareness, 2022.

[37] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel.

Humanoidbench: Simu-

lated humanoid benchmark for whole-body locomotion and manipulation. arXiv Preprint

arxiv:2403.10506, 2024.

11

	Introduction
	Related Work
	Background
	Attention Mechanisms in Transformers
	Transformer-based GNNs
	Masked Attention

	Body Transformer
	Experiments
	Imitation Learning Experiments
	Reinforcement Learning Experiments
	Real World Experiments
	Computational Analysis

	Conclusion
	Details on RL environments
	Real-World Deployment
	Positional Encodings
	Additional Imitation Learning Ablations
	Additional Reinforcement Learning Ablations
	Effect of Body-Induced Masking in BoT
	Effect of Per-Limb Tokenizer vs. Shared Tokenizer

	Training Details
	FLOP Derivation for Custom Masked Attention Implementation

