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A TECHNICAL APPENDICES

A.1 DERIVATION AND FUNCTION OF CRETTA

A.1.1 DERIVATION OF CRETTA

The marginal distribution of target data p✓ can be written as the product of the pretrained source
model q� and an exponential residual term:

p✓(x) =
1

Z
q�(x) exp(�

1

�
Ẽ✓(x)),

where Ẽ✓ represents the residual energy function encoding the distribution shift. During TTA, the
source model q� remains fixed, and the objective is to learn Ẽ✓ so as to align the source model more
closely with the target distribution. By expanding the equation with respect to the energy function
Ẽ✓, we can compute the residual energy score of an image sample x.

Ẽ✓(x) = ��

✓
log

p✓(x)

q�(x)
+ logZ

◆
.

Next, we substitute the ground-truth residual energy function Ẽ⇤
✓ into the Bradley-Terry (BT) model

(Bradley & Terry, 1952), which only depends on the difference in energy values between source and
target pairs:

P (Ẽ(xt) < Ẽ(xs)) =
1

1 + exp(�Ẽ✓(xs) + Ẽ✓(xt))
=

1

1 + exp
⇣
� log p✓(xs)

q�(xs)
� � log p✓(xt)

q�(xt)

⌘ ,

where xt and xs denote the target and source samples, respectively. Here, for pairwise comparison,
we use the negative residual energy.

Having derived the probability of the target distribution data in terms of the optimal energy function,
which can further be expressed using � and ✓, our objective for the target model is as follows:

L(✓;�) = �E(xs,xt)⇠B


log �

✓
� log

p✓(xt)
q�(xt)

� � log
p✓(xs)
q�(xs)

◆�
(5)

In section 3, we emphasize that the key advantage of CRETTA is that it avoids the costly Stochastic
Gradient Langevin Dynamics (SGLD) sampling required to compute the normalization constant as
required in TEA (Yuan et al., 2024). However, the objective Equation 5 still includes the normalization
constant for both target and source model.

To eliminate both normalization constants, we first redefine the target and source models using the
Gibbs distribution as follows:

p✓(x) =
exp(�E✓(x))

Z(✓)
, q�(x) =

exp(�E�(x))

Z(�)

By integrating p✓ and q� into the Equation 5 and applying the logarithm, the normalization constants
for both target and source model, i.e., Z(✓) and Z(�), are canceled out as shown in below:

L(✓;�) = �E(xs,xt)⇠B

h
ln�

⇣
�
�
� E✓(xt)�⇠⇠⇠lnZ(✓) + E�(xt) +⇠⇠⇠⇠lnZ(�)

�

� �
�
� E✓(xs)�⇠⇠⇠lnZ(✓) + E�(xs) +⇠⇠⇠⇠lnZ(�)

�⌘i
(6)
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Therefore, the final learning objective is expressed as follows:

L(✓;�) = �E(xs,xt)⇠B [ln� (� (�E✓(xt) + E✓(xs) + E�(xt)� E�(xs)))]

A.1.2 FUNCTION OF CRETTA

In this section, we provide a detailed explanation of how each component of CRETTA contributes to
adaptation, as well as the expected behavior during early and late stages of online adaptation.

If the target model ✓ successfully optimizes this objective, then residual energy function Ẽ✓(x) in
p✓(x) =

1
Z q�(x) exp(� 1

� Ẽ✓(x)) models the residual component of the distribution shift between
the source and target domains.

At the beginning of adaptation, the model has not yet encoded the distribution shift. Therefore, the
residual energy E✓(x) is close to zero for both source samples xs and target samples xt. This results
in: p✓(x) ⇡ q�(x) meaning that predictions for both source and target data remain similar to the
source model outputs.

As training progresses, the residual energy function learns the discrepancy between target and source
distributions. For source samples xs, Ẽ✓(xs) remains small, leading to p✓(xs) ⇡ q(xs), preserving
source performance. For target samples xt, the residual energy adjusts predictions reflecting the
learned domain shift and improving performance on the target domain. By progressively learning the
residual while maintaining alignment with the source model, CRETTA achieves better generalization.

A.1.3 BUFFER MANAGEMENT OF CRETTA

CRETTA initializes the source buffer Bs at model initialized, prior to adaptation, by randomly
sampling source data up to a fixed buffer size, with an equal number of samples per class. During
adaptation, the samples in the buffer are used sequentially in batches without any additional sampling
or refresh, unlike TEA, thereby incurring no additional computational overhead.

Table 8: Comparison of classification accuracy (Acc ") and expected calibration error (ECE #) on the
CIFAR10-C, CIFAR100-C, and TinyImageNet-C datasets at corruption severity level 5, the average
across severity levels 1-5, and on clean data. The best adaptation results are emphasized in BOLD,
while the second-best results are UNDERLINED.

CIFAR-10-C CIFAR-100-C TinyImageNet-C
Clean Corr Severity 5 Corr Severity 1-5 Avg Clean Corr Severity 5 Corr Severity 1-5 Avg Clean Corr Severity 5 Corr Severity 1-5 Avg

Method Acc(") Acc(") ECE(#) Acc(") ECE(#) Acc(") Acc(") ECE(#) Acc(") ECE(#) Acc(") Acc(") ECE(#) Acc(") ECE(#)

Source 95.08% 81.73% 10.18% 88.82% 5.45% 76.28% 53.25% 17.71% 64.11% 11.73% 59.60% 35.12% 16.17% 43.16% 13.46%

Normalization
BN Adapt 93.59% 85.46% 4.85% 89.12% 3.15% 72.84% 60.74% 8.32% 65.83% 6.88% 56.72% 39.60% 13.66% 44.72% 12.12%

Pseudo Labeling
PL 94.85% 84.85% 10.10% 90.09% 6.20 % 75.98% 56.33% 23.81% 65.72% 16.66% 58.95% 35.40% 30.95% 43.79% 23.47%
SHOT 94.38% 87.91% 5.42% 90.78% 3.86 % 75.00% 64.41% 8.93% 68.80% 7.44% 56.90% 39.84% 13.81% 44.95% 12.24%

Entropy Minimization
TENT 94.35% 87.84% 5.49 % 90.74% 3.89 % 74.95% 64.31% 8.93% 68.73% 7.47% 56.92% 39.83% 13.82% 44.94% 12.24%
ETA 93.72% 85.46% 4.85 % 89.12% 3.15 % 73.71% 61.77% 8.54% 66.66% 7.10% 56.82% 39.67% 13.70% 44.79% 12.16%
EATA 93.72% 85.46% 4.85% 89.12% 3.15% 73.66% 61.79% 8.54% 66.65% 7.11% 56.86% 39.68% 13.70% 44.79% 12.16%
SAR 93.61% 86.54% 4.79% 89.80% 3.13% 73.73% 62.71% 8.31% 67.36% 6.91% 56.77% 39.66% 13.72% 44.77% 12.16%
AEA 94.21% 88.27% 5.09% 90.88% 3.73% 75.17% 64.40% 9.16% 68.75% 7.61% 56.97% 39.87% 13.82% 44.97% 12.25%

Energy-based Models
TEA 94.06% 88.06% 3.83% 90.67% 2.68% 74.18% 63.66% 7.68% 67.93% 6.33% 57.17% 39.96% 13.84% 45.08% 12.24%
CRETTA (Ours) 94.43% 88.30% 4.15% 91.01% 2.88% 75.26% 64.52% 7.99% 69.05% 6.82% 58.23% 40.30% 13.52% 45.75% 11.85%

A.2 ADDITIONAL EXPERIMENTS AND ANALYSIS

A.2.1 DETAILED PERFORMANCE COMPARISON

Detailed Performance Comparison on Accuracy Table 8 reports accuracy on the highest severity
level 5, the average across severity levels (1-5), and performance on the clean dataset (i.e., without
corruption) for CIFAR10-C, CIFAR100-C, and TinyImageNet-C. This table extends the results of
Table 1 by additionally reporting accuracy on the clean dataset, providing a more complete view of
model performance.

While CRETTA achieves the second-best accuracy on clean data among all methods, with the PL
method performing the best. However, this can lead to overfitting and significant degradation in
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Table 9: Comparison of expected calibration error (ECE #) on TinyImageNet-C datasets across all
corruptions at the average across severity level 1-5. (Values are reported to one decimal place for
space efficiency.)

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg

Source 12.5% 11.6% 13.1% 10.8% 13.3% 10.8% 10.5% 14.7% 14.6% 18.4% 13.9% 25.9% 11.0% 10.1% 10.6% 13.5%

BN Adapt 12.1% 11.9% 12.4% 11.0% 11.9% 11.0% 10.3% 13.1% 12.7% 14.0% 12.1% 16.7% 10.9% 10.7% 10.9% 12.1%

PL 20.9% 19.5% 26.7% 18.4% 20.4% 18.1% 17.7% 22.8% 20.6% 38.4% 19.7% 54.7% 18.3% 17.6% 18.2% 23.5%
SHOT 12.2% 12.1% 12.5% 11.1% 12.1% 11.2% 10.5% 13.2% 12.8% 14.2% 12.2% 16.9% 11.0% 10.7% 11.0% 12.2%

TENT 12.2% 12.1% 12.5% 11.1% 12.1% 11.1% 10.5% 13.2% 12.8% 14.2% 12.2% 16.9% 11.0% 10.8% 11.0% 12.2%
ETA 12.1% 12.0% 12.5% 11.1% 12.0% 11.1% 10.4% 13.1% 12.7% 14.1% 12.2% 16.7% 10.9% 10.7% 10.9% 12.2%
EATA 12.1% 12.0% 12.4% 11.1% 12.0% 11.1% 10.4% 13.2% 12.7% 14.1% 12.2% 16.8% 10.9% 10.7% 10.9% 12.2%
SAR 12.1% 12.0% 12.5% 11.1% 12.0% 11.1% 10.4% 13.2% 12.7% 14.1% 12.2% 16.8% 10.9% 10.7% 10.9% 12.2%
AEA 12.2% 12.1% 12.5% 11.2% 12.1% 11.2% 10.4% 13.3% 12.8% 14.2% 12.2% 16.9% 11.0% 10.8% 11.0% 12.3%

TEA 12.1% 12.0% 12.6% 11.2% 12.1% 11.1% 10.5% 13.2% 12.7% 14.1% 12.2% 16.9% 11.0% 10.8% 11.0% 12.2%
CRETTA 12.0% 11.7% 12.4% 10.7% 11.9% 10.5% 10.0% 12.7% 12.1% 13.6% 11.9% 16.6% 10.7% 10.3% 10.6% 11.9%

performance under severe corruptions. Notably, while PL exhibits substantial drops in performance
under corruption, CRETTA remains robust and effective across both clean and corrupted settings,
demonstrating its reliability in both distributions.
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Figure 4: Comparison of Expected Calibration Error (ECE#) on the CIFAR10-C dataset across
different corruption severity levels.
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Figure 5: Comparison of Expected Calibration Error (ECE#) on the CIFAR100-C dataset across
different corruption severity levels.

Figure 6: Comparison of Expected Calibration Error (ECE#) on the TinyImageNet-C dataset across
different corruption severity levels.
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Figure 7: Comparison of Expected Comparison of Expected Calibration Error (ECE #) on ImageNet-
C across various corruption types, with results averaged over severities 1–5..

Detailed Performance Comparison on Calibration Error In this section, we provide a detailed
analysis of the Expected Calibration Error (ECE) for CIFAR10-C and CIFAR100-C. This expands
upon the results shown in Table 1.

As seen in Figure 4 and Figure 5, energy-based methods such as TEA and CRETTA consistently
outperform baseline approaches like TENT, which suffers from overconfidence issues. Furthermore,
our method maintains computational advantage over TEA, making it more efficient while achieving
comparable or superior performance.

On TinyImageNet-C dataset, shown in Figure 6, CRETTA outperforms all competing methods across
all severity levels. This consistent superiority over all baseline methods demonstrates the robustness
and adaptability of our approach in high-complexity datasets.

Table 10: Comparison of computational cost (GFLOPs), Memory Cost (Peak Memory Usage), and
performance metrics (ECE and Acc) for baselines on the CIFAR10-C

GFLOPs(#) Memory Cost(#) Acc(") ECE(#)

Source 131.53 443.98 MB 88.82% 5.45%
BN Adapt 131.53 452.61 MB 89.12% 3.15%
TENT 132.59 1546.05 MB 90.74% 3.89%
TEA 4335.82 3464.78 MB 90.67% 2.68%
Ours 527.40 2651.83 MB 91.01% 2.88%

Table 11: Comparison of computational cost (GFLOPs), Memory Cost (Peak Memory Usage), and
performance metrics (ECE and Acc) for baselines on the CIFAR100-C

GFLOPs(#) Memory Cost(#) Acc(") ECE(#)

Source 131.53 443.03 MB 64.11% 11.73%
BN Adapt 131.53 452.70 MB 65.83% 6.88%
TENT 132.59 1546.21 MB 68.73% 7.47%
TEA 4335.82 3465.00 MB 67.93% 6.33%
Ours 527.40 2651.85 MB 69.05% 6.82%

Detailed Performance Comparison on Computational Efficiency To further demonstrate the
computational advantages of our proposed method, we present a comprehensive comparison of com-
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Table 12: Comparison of classification accuracy (Acc ") and expected calibration error (ECE #) on
the ImageNet-C dataset.

Severity L5 Severity Avg
Method Acc " ECE # Acc " ECE #

TENT 37.39% 7.75% 43.78% 4.85%
TEA 31.60% 8.39% 38.72% 7.21%
CRETTA 37.05% 4.43% 43.54% 2.69%

putational cost (GFLOPs), peak GPU memory usage (MB) with performance metrics (Accuracy and
ECE) across CIFAR10-C, CIFAR100-C, and TinyImageNet-C, as summarized in Table 10,Table 11.
Compared to TEA, which incurs substantial computational overhead due to SGLD-based sampling,
CRETTA reduces GFLOPs by more than sevenfold across datasets. Furthermore, despite incorporat-
ing a source buffer, CRETTA maintains a modest peak GPU memory usage, significantly lower than
TEA. The peak GPU memory usage is measured as the maximum allocated GPU memory during
adaptation. Consequently, CRETTA offers a practical balance between performance, computational
cost, and memory efficiency, making it well-suited for deployment in real-world, resource-constrained
environments.

Scalability In this section, we provide a detailed results on ImageNet-C.

As shown in Table 12, CRETTA achieves performance by a significant margin, outperforming the
entropy-based method TENT and the existing energy-based method TEA in ECE.

Entropy minimizations’s overconfidence and MLE-based approach’s approximation error introduced
when estimating its normalization constant term leads to poor calibration which is inappropriate in
real-wold TTA scenarios. In contrast, CRETTA generalizes well to large-scale datasets, achieving
strong predictive performance with superior calibration.

Table 13: Comparison of classification accuracy on CIFAR10(-C), CIFAR100(-C) under gradual
distribution shift

CIFAR10 CIFAR100

Domain OURS TEA TENT OURS TEA TENT

Source (Q) 93.46 93.45 93.43 73.97 73.88 73.57
1 92.88 92.80 92.77 71.90 71.41 71.70
2 92.03 91.92 91.92 71.57 70.40 71.36
3 91.63 91.29 91.35 69.99 67.71 70.04
4 90.25 89.81 90.03 67.99 65.23 68.28

5 (P) 89.47 88.78 88.58 65.47 60.26 65.23

Detailed Performance Comparison Under Gradual Shift scenario In subsection 4.3, we demon-
strated that our contrastive residual energy-based learning shows superior performance over CD
MLE-based adaptation method TEA. This tendency was consistently observed under the gradual
distribution shift setting in Table 13, and here we additionally report comparisons with TENT.

For CIFAR10-C, CRETTA maintains the best performance throughtout the shift. For CIFAR100-C,
CRETTA shows clear gains under stronger shifts. At severity 5, it achieves 65.47%, notably higher
than TEA(60.26%) and TENT (65.23%). While TENT is compertitive at mid-level severities, it
degrades more under severe shifts. Overall, CRETTA provides robust adaptation across gradual
shifts while preventing forgetting, outperforming both TEA and TENT.
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Table 14: Test-time adaptation in dynamic scenar-
ios using CIFAR100-C at severity 5. Our method
demonstrates higher robustness compared to base-
lines across varying the allocation ratio �.

Method � = 10 � = 1 � = 0.1 � = 0.01 Avg Acc.

BN Adapt 61.44% 61.11% 59.02% 45.61% 56.79%

PL 44.03% 37.27% 39.06% 43.38% 40.93%
SHOT 63.94% 63.60% 61.20% 46.54% 58.82%

TENT 63.91% 63.56% 61.20% 46.72% 58.85%
ETA 62.31% 62.04% 59.89% 46.04% 57.57%

EATA 62.35% 62.04% 59.84% 46.04% 57.57%
SAR 61.54% 61.22% 59.12% 45.66% 56.89%

TEA 62.58% 62.29% 60.08% 46.22% 57.79%

Ours 66.20% 65.95% 63.47% 48.33% 60.99%

Test-time Adaptation for Non-IID Settings
Our previous experiments are conducted under
the assumption of i.i.d. test samples which is a
widely adopted setting in prior work. Nonethe-
less, real-world applications can also encounter
non-i.i.d. samples (Gong et al., 2022; Yuan
et al., 2023; Wang et al., 2022). To further ex-
amine the robustness and generalizability of
our method beyond the i.i.d. assumption, we
constructed a non-i.i.d. test-time adaptation sce-
nario. Specifically, we simulated non i.i.d. data
stream by leveraging a Dirichlet distribution to
control the class allocation ratio within batch,
denoted as �. A higher � value brings the distri-
bution closer to i.i.d., whereas a lower � value
results in a more non-i.i.d. distribution, where a specific class might dominate the batch. We
conducted our experiment on CIFAR100-C using the WRN-28-10 backbone.

As Table 14 shows, our method consistently outperforms entropy minimization and instance selection
approaches across all � values. Specifically, CRETTA achieves the highest average accuracy of
60.99%, surpassing TENT’s 58.85% by 2.14%p. Also, even at the most imbalanced setting where
� = 0.01, our method achieves a competitive accuracy of 48.33%. These findings demonstrate that
our method not only excels in i.i.d. scenarios but also is effective in dynamic real-world environments.

A.3 ABLATION STUDY

A.3.1 DETAILED ABLATION STUDY

Table 15: Comparison of classification accuracy(Acc) and expected calibration error(ECE) on
benchmark datasets between CRETTA(Default) and CRETTA(Loss Term without Source Model) at
severity level 5.

Method CIFAR10-C CIFAR100-C TinyImageNet-C

Acc(") ECE(#) Acc(") ECE(#) Acc(") ECE(#)

CRETTA 88.30 4.15 64.52 7.99 40.30 13.52
w.o Source Model Term 88.09 4.66 60.02 5.93 37.46 14.55

Loss Ablation We observed that eliminating the source model consistently degraded both accuracy
and calibration (ECE) in most cases across our benchmark datasets. These results collectively
demonstrate that incorporating source model related terms into our contrastive residual learning is
essential for stable adaptation.

Table 16: Effect of Gradient Coefficient

Method CIFAR10-C CIFAR100-C TinyImageNet-C

Acc ECE Acc ECE Acc ECE

Ours 88.30 4.15 64.52 7.99 40.30 13.52
Uniform 87.47 4.13 61.66 8.03 38.33 15.13

Gradient Ablation The gradient coeffcient w(xt, xs)
is the key mechanism that turns relative energy into stable
updates. To verify this role, we conducted an ablation
study that disrupts the proposed weighting scheme by
replacing w(xt, xs) with values randomly sampled from
a uniform distribution [0, 1). As shown in Table 16, this replacement lead to lower accuracy and
higher calibration error, confirming that gradient coefficient is critical for stable optimization and
robust adaptation under noisy target data.
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Table 17: Comparison of classification accuracy(Acc) and expected calibration error(ECE) on
benchmark datasets between CRETTA(Default) and CRETTA(Single Source Sample in Buffer) at
severity level 5.

Method CIFAR10-C CIFAR100-C TinyImageNet-C

Acc(") ECE(#) Acc(") ECE(#) Acc(") ECE(#)

CRETTA 88.30 4.15 64.52 7.99 40.30 13.52
CRETTA with single source sample 87.62 5.39 62.67 8.93 40.30 14.13

Extended Buffer Ablation While the specific content of the buffer has less impact on performance,
as shown in Table 5, this does not imply that the source buffer itself plays a trivial role. To further
verify this, we additionally conducted an experiment where the buffer consists of only a single source
sample. As shown in Table 17, accuracy dropped by up to 1.7% and ECE increased by up to 1.2%
across datasets.
Table 18: Effectiveness of preference pair size on CIFAR10-C, CIFAR100-C, and TinyImageNet-C.

CIFAR10-C CIFAR100-C TinyImageNet-C

CRETTA wo/ CP 88.30% 64.52% 40.30%
CRETTA w/ CP 88.24% 64.69% 40.44%

Pair Size Ablation In CRETTA, we assume that the samples in a test batch represent the target
distribution, while the source replay buffer represents the source distribution. The loss is computed
by forming pairs between target and source samples within each batch, enabling a direct comparison
between the two distributions.

To demonstrate the assumption is valid, we examined the impact of increasing the number of pair
combinations using a Cartesian Product (CP) to generate all possible combinations of target and
source data within each batch. For example, we use 200 pairs for each adaptation in CIFAR10-C,
while the Cartesian Product results in 200×200 pairs.

Our results across three datasets summarized in Table 18 indicate that generating more pairs does not
necessarily lead to performance gain. With only a few pairs, CRETTA can efficiently adapt to the
target distribution.

Figure 8: Ablation on varying � values on CIFAR10-C and CIFAR100-C at severity 1-5.
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Figure 9: Ablation on varying values of �.

Hyperparameter � Ablation The hyperparame-
ter � in Equation 3 controls the deviation from the
pretrained source model, serving as a scaling param-
eter. To evaluate the robustness of our method, we
experiment its performance across varying values
of �, assessing both accuracy and expected calibra-
tion error (ECE) on CIFAR10-C, CIFAR100-C and
TinyImageNet-C. As shown in Figure 8, our method
consistently demonstrates stable performance across
all corruption severity levels (1-5), validating its ro-
bustness.

In addition, we further examine the effectiveness of
CRETTA across varying values of the hyperparameter � on TinyImageNet-C, averaging results over
severity levels 1 to 5, and compare its performance against competitive baselines (see Figure 9). These
results confirm that the strong adaptation performance of CRETTA is not reliant on a specific setting
of the temperature parameter �, but rather stems from our contrastive residual learning objective
itself.

A.3.2 DETAILED SETTING OF CRETTA

Table 19: Detailed hyperparameters settings for each dataset.

Dataset LR � Batch Size Transformation Type (probability)

CIFAR10-C 1e-3 1.0 200 rotate(1.0)
CIFAR100-C 2e-3 2.0 200 flip, rotate, affine, perspective, crop(0.2)
TinyImageNet-C 1e-3 2.0 1000 None

Hyperparameters This section details the hyperparameter settings for CRETTA. To optimize
performance, minimal hyperparameter tuning was conducted, focusing solely on learning rate, �
and type and probability of random transformations for source buffer. With only slight adjustments,
CRETTA achieved significantly better performance than the current state-of-the-art (SOTA). The
batch sizes were aligned with the default settings used in TENT and TEA, which are 200 for CIFAR10-
C and CIFAR100-C, 1000 for TinyImageNet-C. For ImageNet-C we follow TENT default settings,
using a batch size of 64 and learning rate of 2.5e�4. These settings ensured consistency across
experiments while highlighting the robustness and effectiveness of CRETTA. For the PACS domain-
generalization task, we used a learning rate of 1e�3, a batch size of 100, applying source-sample
augmentation in the same way as for CIFAR100-C. All experiments were conducted using a single
NVIDIA RTX A6000 GPU (48GB).

Evaluation Metrics Expected Calibration Error (ECE) (Guo et al., 2017) is a metric used to
measure the calibration quality of a probabilistic model. Calibration refers to how closely the
predicted probabilities of a model match the actual probabilities. ECE quantifies the discrepancy
between predicted confidence and actual accuracy. ECE is calculated as shown in Equation 7:

ECE =
MX

m=1

|binm|
N

· |confidencem � accuracym| (7)

where M is the number of bins, N is the total number of data points, binm is the number of predictions
in m-th bin, and confidencem and accuracym are the confidence and accuracy of bin m, respectively.
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Figure 10: The overconfidence problem of entropy minimization in test-time adaptation on CIFAR10-
C. TENT tends to increase a model’s confidence in uncertain predictions as adaptation progresses,
often leading to worse calibration due to overconfidence. In contrast, CRETTA (Ours) stabilizes the
adaptation process by gradually reducing the expected calibration error.

Figure 11: The overconfidence problem of entropy minimization in test-time adaptation on CIFAR100-
C.

Figure 12: The overconfidence problem of entropy minimization in test-time adaptation on
TinyImageNet-C.

A.3.3 DETAILED RESULTS FOR OVERCONFIDENCE PROBLEM OF ENTROPY MINIMIZATION

The overconfidence issue inherent in entropy minimization has been thoroughly investigated in prior
works (Liu et al., 2020; Hendrycks & Gimpel, 2016; Guo et al., 2017). Building on this, we explored
that increasing a model’s prediction confidence especially when the label information is unavailable
can lead to bad calibration as shown in Figure 4. The trend consistently appears in other benchmark
datasets including CIFAR100-C and TinyImageNet-C as illustrated in Figure 11 and Figure 12.
Entropy minimization raises the model’s confidence across all severity levels, with the rate of increase
becoming steeper as corruption severity intensifies, thereby exacerbating error accumulation.

On the other hand, CRETTA maintains stable confidence managing uncertainty during test-time
adaptation and even reduces calibration error as adaptation progresses. These results suggest that
maximizing the marginal likelihood of target samples provides a safer and more effective strategy
compared to relying on uncertain predicted probabilities p✓(ŷ|x) in the test-time learning objective.

B NOISE CONTRASTIVE ESTIMATION

We first define a reward function r(·) to properly compare samples from two different sets or
distributions.

r(x; ✓,�) = logP✓(x)� logP�(x)

10
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where P✓ is the target distribution and P� is the source distribution.

B.1 NON-RESIDUAL

If we define energy functions for each of them by utilizing gibbs distribution,

E✓(x) = � logP✓(x)� logZ(✓)

E�(x) = � logP�(x)� logZ(�)

Then the reward function becomes

r(x; ✓,�) = �(E✓(x)� E�(x)) + C

Then the loss function becomes

L(✓;�) = �Ext [log �(r(x; ✓,�))]� Exs [log(1� �(r(x; ✓,�)))]

B.2 RESIDUAL

If we define a residual energy function,

p✓(x) =
1

Z
q�(x)exp(� 1

�
Ẽ✓(x))

Then the reward function becomes

r(x; ✓,�) = log p✓(x)� log q�(x) = � 1

�
Ẽ✓(x) + c

Then the loss function becomes

L(✓;�) = �Ext [log �(r(x; ✓,�))]� Exs [log(1� �(r(x; ✓,�)))]

C PAIR-WISE CONTRASTIVE ESTIMATION

We first define a reward function r(·) to properly compare samples from two different sets or
distributions.

r(xt, xs) = r̃(xt)� r̃(xs)

where r̃ is a reward function that assigns higher values to target samples than source samples

C.1 NON-RESIDUAL

If we define energy functions for each of them,

E✓(x) = � logP✓(x)� logZ(✓)

Then the reward function becomes

r(xt, xs) = logP✓(xt)� logP✓(xs) = �(E✓(xt)� E✓(xs))

Then the loss function becomes

L(✓;�) = �Ext,xs [log �(r(xt, xs))]

= �Ext,xs [log �(�(E✓(xt)� E✓(xs)))]

The gradient becomes

r✓L(✓;�) = �Ext,xs [�(�r(xt, xs))r✓r(xt, xs)]

= Ext [�(E✓(xt)� E✓(xs)) (r✓E✓(xt)�r✓E✓(xs))]

11
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D USE OF LLMS

We used a large language model (ChatGPT) only as a general purpose assistive tool for minor editing
tasks such as polishing sentences, correcting grammar and spelling and making small LaTeX table
formatting adjustments. The LLM was not involved in research ideation, experimental design, data
analysis, or substantive writing. All technical decisions, interpretations, and the writing of the core
content were carried out entirely by the authors, who take full responsibility for the originality of the
manuscript.
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