
A Proof for Theorem 1 and 2

A.1 Theoretical Proof

The following is proof for Theorem 1 and 2 on Upper Bound on Lipschitz Constant of a DNN with
Gaussian Distributed Weights, which is inspired by [67–69].

The Lipschitz constant upper bound of a n-layer DNN with 1-Lipschitz activation function (such as
ReLU used in WRN) is:

L(fθ) ≤
n∏

j=1

‖θj‖2 , (4)

where ‖θj‖2 is the spectral norms, i.e., the maximum singular values of the weight matrices θj .

Theorem 3 (Gaussian Random Matrix [67]). Let A be an (N × n) matrix whose elements are
independent standard normal random variables. Then,

√
N −

√
n ≤ E[λmin(A)] ≤ E[λmax(A)] ≤√

N+
√
n, where λmin and λmax denote the minimum and maximum singular values of A, respectively,

and E[·] represents the expected value.

Assuming each element in the weight matrix θ follows normal distribution N (0, σ2
θ), the expected

maximum singular value of the hj−1 × hj weight matrix θj for layer j is upper bounded:

E[‖θj‖2 = E[λmax(θj)] ≤ (
√
hj−1 +

√
hj) · σθ. (5)

Combining equation (4) with equation (5), we have:

L(fθ) ≤
n∏

j=1

(
√
hj−1 +

√
hj) · σθ. (6)

This can be extended to convolutional neural networks (CNN). Using doubly block circulant matrix the
convolution operation can be represented by matrix multiplication. Following [68], the convolutional
operation can be rewritten as following:

φconv
i (~x) = [V1,1 V1,2 ... V1,Wj−1]~x+~bi, (7)

where the inputs and biases have been serialised into vectors ~x and~bi, respectively, the Wj−1 is the
number of channels (feature maps) of the previous layer. Wj is known as the width of the convolution
layer. The complete transformation constructed Wj channels by adding additional rows to the block
matrix: V1,1 . . . V1,Wj−1

...
. . .

VWj ,1 VWj ,Wj−1

 (8)

where each matrix V the doubly block circulant matrix with m2 columns and (m− k + 1)2 rows,
where m is the spatial dimensions (height and width) of the input representation (for simplicity we
assume height and width are equal), the k is the size of convolution kernel. Note, the doubly block
circulant matrix is filled with kernel’s weight (θ) and 0, which conform the assumption on normally
distributed weights matrix N (0, σ2

θ). Thus, for convolution neural networks, the Lipschitz constant
upper bound is:

L(fθ) ≤
n∏

j=1

(mj

√
Wj−1 + (mj − kj + 1)

√
Wj) · σθ. (9)

This can also be extended to residual blocks (used in ResNet). Following [68], the Lipschitz constant
upper bound for the residual block with n layers of convolution operation is:

L(fres) ≤ 1 +

n∏
j=1

‖θj‖2 (10)

Therefore, a ResNet consists of n layers of residual blocks, the Lipschitz constant upper bound is:

L(fθ) ≤ n+

n∏
j=1

L(fres) (11)

15

A.2 Empirical Verification on Gaussian Distribution Weights.

0.4 0.2 0.0 0.2 0.4 0.6 0.80
5

10
15
20
25
30
35

De
ns

ity

Block-1
Block-5
Block-10

Figure 6: Kernel Density Estimation plot of the weight matrix for adversarially trained WRN-34-10.
The weight matrix of the first convolution kenerl for block-1, block-5 and block-10.

B More Detailed Experiment Setup

B.1 Training method

We train all networks (both the original and the optimized) using 4 adversarial training methods: Stan-
dard Adversarial Training (SAT) [15], TRADES [16], Misclassification Aware adveRsarial Training
(MART) [18] and Robust Self-Training (RST) with 500K additional data [23]. For SAT, TRADES
and MART, we apply their training strategies to train the networks for 100 epochs using Stochastic
Gradient Descent (SGD) with initial learning rate 0.1, momentum 0.9 and weight decay 2× 10−4.
The learning rate is divided by 10 at the 75-th and 90-th epochs. For RST, we set the weight decay to
5× 10−4, train for 400 epochs and use cosine learning rate scheduler [81] without restart. We train
the networks on both CIFAR-10 and CIFAR-100 with maximum adversarial perturbation ε = 8/255.
For all training methods, we use the PGD10 with step size α = 2/255 for its inner maximization. All
experiments are performed on NVIDIA Tesla P100 GPUs with PyTorch implementations. Code and
pre-trained weights avaliable on Github https://github.com/HanxunH/RobustWRN.

B.2 Network setup.

Table 3: Detailed configuration of the standard WRN. Di and Wi denote the depth and width for
the i-th stage, respectively. The total network depth is

∑N=3
i=1 Di plus 4 fixed layers. Within the

same stage, the same type of residual blocks having 2 convolution operations are used. The final
classification layer is omitted here. WRN-34-10: D1/2/3 = 5 and W1/2/3 = 10. WRN-34-12:
D1/2/3 = 5 and W1/2/3 = 12. WRN-34-R: D1/2/3 = 5, W1/2 = 20 and W3 = 8. Each residual
block has 2 convolution layers with 3× 3 kernels following the order of BN-ReLU-Conv (BN: batch
normalization [82]; ReLU: ReLU activation; Conv: convolution).

Group Name Output Size Block Details
Conv-1 32×32 [3×3, 16]

Stage-1 32×32
[

3×3, 16×W1
3×3, 16×W1

]
×D1

Stage-2 16×16
[

3×3, 32×W2
3×3, 32×W2

]
×D2

Stage-3 8×8
[

3×3, 64×W3
3×3, 64×W3

]
×D3

Avg-Pool 1×1 [8×8]

We consider VGG-11 [76], DenseNet-121 (DN-121) [77] and a network found by DARTS [78]
with 11 cells. VGG, DN and DARTS using similar stages design as WRN, VGG has 4 stages,
DN and DARTS contain 3 stages. Following our discovered w10-10-4 configuration, we reduce
the 512 channels of VGG-11 and DN-121 of its last stage to 205 channels (i.e., 0.4 ∗ 512). The
width configurations of each stages are [64, 128, 256, 205]. For DARTS, we use 11 cells and scale
the width of the original set up by 2, the last stage reduced to 116 channels (i.e., 0.4 ∗ 288), the

16

https://github.com/HanxunH/RobustWRN

width configuration is [108, 72, 144, 116]. We denote the optimized VGG-11, DN-121 and DARTS
networks as VGG-11-R, DN-121-R and DARTS-R, respectively. For a fair comparison between the
discovered WRN-34-R (scaled by γ = 2.0) and the standard WRN-34-10, we upscale WRN-34-10
to WRN-34-12 to make sure the two models have a similar amount of parameters.

C Empirical Understanding on Reduction in Stages 1 and 2.

d 9-5
-5

d 7-5
-5

d 5-5
-5

d 3-5
-5

d 1-5
-5

200

250

300

Em
pi

ric
al

 L
ip

sc
hi

tz

60

70

80

90

Pe
rc

en
ta

geEmpirical Lipschitz
Perturb Stablity
Clean Accuracy

(a) Reducing depth at Stage-1.
d 5-9

-5
d 5-7

-5
d 5-5

-5
d 5-3

-5
d 5-1

-5

200

250

300

Em
pi

ric
al

 L
ip

sc
hi

tz

60

70

80

90

Pe
rc

en
ta

geEmpirical Lipschitz
Perturb Stablity
Clean Accuracy

(b) Reducing depth at Stage-2.

w 10
-10

-10

w 8-1
0-1

0

w 6-1
0-1

0

w 4-1
0-1

0

w 2-1
0-1

0

200

250

300

Em
pi

ric
al

 L
ip

sc
hi

tz

60

70

80

90

Pe
rc

en
ta

geEmpirical Lipschitz
Perturb Stablity
Clean Accuracy

(c) Reducing width at Stage-1.
w 10

-10
-10

w 10
-8-

10

w 10
-6-

10

w 10
-4-

10

w 10
-2-

10

200

250

300
Em

pi
ric

al
 L

ip
sc

hi
tz

60

70

80

90

Pe
rc

en
ta

geEmpirical Lipschitz
Perturb Stablity
Clean Accuracy

(d) Reducing width at Stage-2.
Figure 7: The change of perturbation stability and empirical Lipschitz constant when (a) depth of
Stage-1 is reduced, (b) depth of Stage-2 is reduced (c) width of Stage-1 is reduced, or (d) width of
Stage-2 is reduced.
We apply the same analysis as in Section 4.5 for reducing depth or width in shallower stages (1 and 2).
Following the same procedure as in Figure 4, we plot the results for reducing the capacity using width
and depth for shallower stages. As shown in Figure 7, both clean accuracy and perturbation stability
decrease as width or depth is reduced. Therefore, it decreases the overall adversarial robustness. This
result highlighted that the trade-off between the capacity and Lipschitzness can only be effectively
mitigated by reducing the capacity of the last stage.

D Additional Robustness Evaluation

D.1 Black-box Robustness

We explore whether the robustness improvements are still valid in a black-box setting. Following
a standard black-box robustness evaluation setting [15, 16], here we apply FGSM, PGD20 and
CW∞ attacks on a naturally-trained surrogate model to craft test adversarial examples, then test
the robustness of adversarially-trained WRN-34-12 and WRN-34-R models on these adversarial
examples. We use ResNet-50 for the surrogate model, and train WRN-34-12 and WRN-34-R using
SAT, TRADES and MART. This experiment is conducted on CIFAR-10, and the results are reported
in Table 4.

Similar to the white-box results, the discovered robust reconfiguration can consistently improve the
black-box robustness of the networks, regardless of the methods used for adversarial training. This
verifies that the robustness can indeed be improved by simple architectural reconfiguration, either
white-box or black-box. Although there is still much room for improvement, we believe our findings
are useful for the community to better understand what type of architectural configurations can help
adversarial robustness.

17

Table 4: Black-box robustness results on CIFAR-10. A naturally-trained ResNet-50 surrogate model
is used to craft the black-box (transferred) attacks. The best results are in highlighted bold.

Model Method Clean
(%)

FGSM
(%)

PGD20

(%)
CW∞
(%)

WRN-34-12 SAT 87.09 85.03 85.15 86.30
WRN-34-R SAT 88.04 85.83 86.10 87.40
WRN-34-12 TRADES 84.67 82.83 82.97 83.80
WRN-34-R TRADES 85.36 83.28 83.40 84.71
WRN-34-12 MART 82.94 80.66 80.81 81.80
WRN-34-R MART 83.75 81.56 81.66 82.71

D.2 ImageNet

For ImageNet, we trained the models using FastAT [37], and followed its training/testing setting. We
used the code from the public available GitHub repository*. We followed the ε = 4/255 and PGD
adversary using 10 steps. The results are reported in Table 5. We reproduced the result for ResNet-50.
For ResNet-50-R, we applied our discovered configuration, i.e., reducing the width of the last stage
to 40% and scale-up the entire model to have the same amount of parameters as ResNet-50.

Table 5: Robustness (ε = 4/255) results for ResNet-50 on ImageNet.
Dataset Model Clean (%) PGD10(%)

ImageNet ResNet-50 55.45 30.48
ImageNet ResNet-50-R 56.63 31.14

E Additional Discussion

E.1 Performance of CW attack on CIFAR-100

On CIFAR-100, the robustness for discovered configurations is not as good as the baseline model.
This could be due to the CW∞ attack we used in Table 2 is the weaker version that has been commonly
used as a more efficient alternative to its original version for robustness evaluation. The margin-based
attacks may suffer from the imbalanced gradients problem on some defence models, as revealed in a
recent work [83]. In comparison, AutoAttack (AA) is stronger and more reliable than other attacks
as a robustness evaluation. The discovered architectural reconfiguration demonstrates consistent
improvement across multiple datasets, DNN architectures, and adversarial training methods as shown
in Table 2.

E.2 Auto-Attack leaderboards

Table 6: Auto-Attack leaderboards. Results are reported base on Auto-Attack’s GitHub Page with
models using additional data as in RST [23].

Venue/Year Method/Paper Model AutoAttack(%)
Arxiv-2020 Gowal et al. [80] WRN-70-16 65.88

NeurIPS-2021 Ours+EMA WRN-34-R 62.54
NeurIPS-2021 Ours WRN-34-R 61.56
NeurIPS-2021 Wu et al. [59] WRN-34-15 60.65
NeurIPS-2020 AWP [19] WRN-28-10 60.04
NeurIPS-2019 RST [23] WRN-28-10 59.53
NeurIPS-2020 Hydra [84] WRN-28-10 57.14

ICLR-2020 MART [18] WRN-28-10 56.29
The AutoAttack [30] is an ensemble attack method that is currently the most reliable and widely
acknowledged evaluation benchmark in Adversarial Defences. According to the leaderboards†,
there is significant use of ResNet/WRN with increasing model complexities (SOTA method uses
WRN-70-16). Our theoretical and experimental results show that there exists a trade-off between
Lipschitz constant upper bound and the model complexity. This provides a different insight into how

*FastAT GitHub
†AutoAttack GitHub

18

https://github.com/locuslab/fast_adversarial
https://github.com/fra31/auto-attack

the architectures of DNN affect adversarial robustness. Moreover, adversarial defence research is
now at the stage where even 1%-2% improvement on AA is significant enough to propose a new
defence method. Current SOTA defences use larger models [59, 80], where WRN-34-R has similarly
amount parameters with WRN-34-12, that can achieve 1% improvement over WRN-34-15 using
larger regularization strength [59]. In addition, [80] explored tricks in adversarial training, such as
reproduce additional data, weight averaging, and change activation functions.

Our results in Table 2 follows the original settings and hyperparameters described in the corresponding
papers. Here, we test if our discovered model can gain further robustness by incorporating the
exponential moving average (EMA) [80] which is adapted from Stochastic Weight Averaging [85].
Results show that with EMA, our discovered configuration for WRN can further gain additional
1% robustness on AA. This further demonstrated that this configuration can consistently improve
robustness on a wide range of adversarial training methods.

19

