
A Proof of Theoretical Results

A.1 Proof of Proposition 1

Proposition 1 follows directly from the DP guarantee of the works of [1] and [47] (e.g., Theorem
1 of [1]). Therefore, to prove the validity of Proposition 1, we only need to show that the joint
subsampled Gaussian mechanism we apply in every iteration (Sec. 3.3) is the same as the one adopted
by [1] and [47]. Therefore, we demonstrate here that the interpretation of our privacy-preserving
transformations as a single subsampled Gaussian mechanism, which we have described in Sec. 3.3, is
equivalent to the transformations adopted by the work of [47].

Firstly, our subsampling step (step 6 of Algo. 1) is the same as the one adopted by [47] since we both
use the same subsampling technique, i.e., select every agent with a fixed probability q. Secondly,
we both clip the (joint) vector from every selected agent (step 9 of Algo. 1) to ensure that its L2

norm is bounded:
∥∥∥ω̂joint

n,t

∥∥∥
2
≤ NϕmaxS, ∀n ∈ St. Thirdly, we have adopted one of the two weighted-

average estimators proposed by [47], i.e., the unbiased estimator. Specifically, we set the weight (we
follow [47] and denote the weight of agent An by ωn here) of every agent to be ωn = 1,∀n ∈ [N].
As a result, the unbiased estimator leads to: ωjoint

t = 1
q
∑N

n=1 ωn

∑
n∈St ωnω̂

joint
n,t = 1

qN

∑
n∈St ω̂

joint
n,t .

Lastly, we have calculated the sensitivity (which determines the variance of the Gaussian noise) in the
same way as [47], i.e., using Lemma 1 of [47]. In particular, note that our clipping step has ensured
that

∥∥∥ωnω̂joint
n,t

∥∥∥
2
≤ NϕmaxS,∀n ∈ St; according to Lemma 1 of [47], we have that the sensitivity

can be upper-bounded by: S ≤ NϕmaxS

q
∑N

n=1 ωn
= ϕmaxS/q, which leads to the standard deviation of the

Gaussian noise we have added (step 11 of Algo. 1): zS = zϕmaxS/q.

To conclude, the single joint subsampled Gaussian mechanism performed by our DP-FTS-DE
algorithm in every iteration is the same as the one adopted by [47]. Therefore, the DP guarantee
of [47] and [1] is also valid for our DP-FTS-DE algorithm, hence justifying the validity of our
Proposition 1.

A.2 Proof of Theorem 1

In this section, we prove Theorem 1, which gives an upper bound on the cumulative regret of agentA1

running our DP-FTS-DE algorithm. The proof of Theorem 1 makes use of the proof of [12], and the
main technical challenge is how to take into account the impacts of (a) our modification to the original
FTS algorithm by incorporating a central server and an aggregation through weighted averaging (first
paragraph of Sec. 3.1), (b) the privacy-preserving transformations (lines 5-11 of Algo. 1), and (c)
distributed exploration (DE) (Sec. 3.2). Since we are mainly interested in the asymptotic regret upper
bound, we ignore the impact of the initialization period. Considering initialization would only add a
constant term 2BNinit to the upper bound on the cumulative regret in Theorem 1 (Ninit is the number
of initial inputs selected during initialization), and hence would not affect the asymptotic no-regret
property of our algorithm.

Note that as we have mentioned in Sections 2 and 4, we prove here an upper bound on the cumulative
regret of agent A1, i.e., R1

T ,
∑T
t=1(f1(x1,∗) − f1(x1

t)). To simplify notations, we drop the
superscript 1 in the subsequent analysis, i.e., we use f to denote f1, ft to denote f1t , xt to denote
x1
t , x∗ to denote x1,∗, etc. Similarly, we use µt−1 and σt−1 to represent the GP posterior mean and

standard deviation of A1 at iteration t.

A.2.1 Definitions and Supporting Lemmas

We firstly define some notations we use to represent the privacy-preserving transformations, which
are consistent with those in the main text. In iteration t, we use ωn,t to denote the vector the central
server receives from agent An. For a given set of agents C ∈ {1, . . . , N}, define ϕ̃(i)

C ,
∑
n∈C ϕ

(i)
n ,

i.e., the total weight of those agents in the set C for the sub-region Xi. Next, we define N indicator
(Bernoulli) random variables In,∀n ∈ [N], where P(In = 1) = q,∀n ∈ [N]. These indicator
random variables will be used to account for the subsampling step (i.e., step 6 of Algo. 1). Denote by
ω̂n,t the resulting vector after ωn,t is clipped to have a maximum L2 norm of S/

√
P (i.e., step 9 of

16

Algo. 1):
ω̂n,t ,

ωn,t

max(1,
‖ωn,t‖

2

S/
√
P

)

.

An immediate consequence is that ∀x ∈ X :

|φ(x)>ω̂n,t| = |φ(x)>
ωn,t

max(1,
‖ωn,t‖

2

S/
√
P

)

| = |φ(x)>ωn,t|
1

max(1,
‖ωn,t‖

2

S/
√
P

)

≤ |φ(x)>ωn,t|. (3)

Denote by η the added Gaussian noise vector (i.e., step 11 of Algo. 1): η ∼ N
(
0, (zϕmaxS/q)

2I
)
.

Next, define

ω
(i)
t ,

∑N
n=1 Inϕ

(i)
n ω̂n,t

q
+ η. (4)

As a result, for agent A1 at iteration t > 1, with probability 1− pt, the query x1
t is selected using

the ω(i)
t ’s: x1

t = arg maxx∈X φ(x)>ω
(i[x])
t , where i[x] represents the sub-region x is assigned to.

This corresponds to line 8 of Algo. 2. Note that to simplify the notations in the subsequent analyses,

we have slightly deviated from the indexing from Algo. 2 by using ω(i[x])
t instead of ω(i[x])

t−1 . To be

consistent with Algo. 2, we can simply replace all appearances of ω(i[x])
t by ω(i[x])

t−1 in our proof.

Let δ ∈ (0, 1), recall that we have defined in Theorem 1 that βt , B + σ
√

2(γt−1 + 1 + log(4/δ)

and define ct , βt(1+
√

2 log(|X |t2)) for all t ∈ Z+. Denote by At the event that agentA1 chooses
x1
t by maximizing a sampled function from its own GP posterior belief (i.e., x1

t = arg maxx∈X f
1
t (x),

as in line 6 of Algo. 2), which happens with probability pt; denote by Bt the event that A1 chooses

x1
t using the information received from the central server: x1

t = arg maxx∈X φ(x)>ω
(i[x])
t (line 8

of Algo. 2), which happens with probability (1− pt).

Next, we denote as Ft the filtration which includes the history of selected inputs and observed outputs
of agent A1 until (including) iteration t. Now we define two events that are Ft−1-measurable.
Lemma 1 (Lemma 1 of [12]). Let δ ∈ (0, 1). Define Ef (t) as the event that |µt−1(x) − f(x)| ≤
βtσt−1(x) for all x ∈ X . We have that P

[
Ef (t)

]
≥ 1− δ/4 for all t ≥ 1.

Lemma 2 (Lemma 2 of [12]). Define Eft(t) as the event that |ft(x) − µt−1(x)| ≤
βt
√

2 log(|X |t2)σt−1(x). We have that P
[
Eft(t)|Ft−1

]
≥ 1 − 1/t2 for any possible filtration

Ft−1.

Note that conditioned on both events Ef (t) and Eft(t), we have that for all x ∈ X and all t ≥ 1:

|f(x)− ft(x)| ≤ |f(x)− µt−1(x)|+ |µt−1(x)− ft(x)|

= βtσt−1(x) + βt
√

2 log(|X |t2)σt−1(x) = ctσt−1(x).
(5)

Next, at every iteration t, we define a set of saturated points, i.e., the set of “bad” inputs at iteration t.
Intuitively, these inputs are considered as “bad” because their corresponding function values have
relatively large differences from the value of the global maximum of f .
Definition 2. At iteration t, define the set of saturated points as

St = {x ∈ X : ∆(x) > ctσt−1(x)}

in which ∆(x) , f(x∗)− f(x) and x∗ ∈ arg maxx∈X f(x).

Note that ∆(x∗) , f(x∗) − f(x∗) = 0 < ctσt−1(x∗) for all t ≥ 1. Therefore, x∗ is always
unsaturated for all t ≥ 1. St is Ft−1-measurable.

Consistent with the main text, we define f̃nt (x) , φ(x)>ωn,t,∀x ∈ X , i.e., f̃nt is the sampled
function from agent An’s GP posterior with RFFs approximation at iteration t.
Lemma 3 (Lemma 4 of [12]). Given any δ ∈ (0, 1). We have that for all agents An,∀n = 1, . . . , N ,
all x ∈ X and all t ≥ 1, with probability of at least 1− δ/2,

|f̃nt (x)− fn(x)| ≤ ∆̃n,t,

17

where β′t = B + σ
√

2(γt−1 + 1 + log(8N/δ), and

∆̃n,t , ε
(t+ 1)2

λ

B +

√
2 log

(
4π2t2N

3δ

)+ β′t+1 +

√
2 log

2π2t2N

3δ
+M.

Note that a difference between our Lemma 3 above and Lemma 4 of [12] is that in their proof,
they assumed that the number of observations from agent An is a constant tn; in contrast, we have
made use of the fact that in the setting of our DP-FTS-DE algorithm, the number of observations
from the other agents are growing with t because all agents are running DP-FTS-DE concurrently.
Furthermore, we define

∆̃
(i)
t ,

N∑
n=1

ϕ(i)
n ∆̃n,t. (6)

The next lemma gives a uniform upper bound on the difference between the sampled function ft
from agent A1 and a weighted combination of the sampled function from all agents, which holds
throughout all sub-regions Xi,∀i ∈ [P].

Lemma 4. Denote by ε an upper bound on the approximation error of RFFs approximation (Sec. 2):
supx,x′∈X |k(x,x′)−φ(x)>φ(x′)| ≤ ε. At iteration t, conditioned on the events Ef (t) and Eft(t),
we have that for all x ∈ X and all i ∈ [P], with probability ≥ 1− δ/2,

|
N∑
n=1

ϕ(i)
n f̃nt (x)− ft(x)| ≤ ∆

(i)
t ,

in which ∆
(i)
t ,

∑N
n=1 ϕ

(i)
n ∆n,t, and

∆n,t , ∆̃n,t + dn + ct

= ε
(t+ 1)2

λ

B +

√
2 log

(
4π2t2N

3δ

)+ β′t+1 +

√
2 log

2π2t2N

3δ
+M + dn + ct

= Õ(εBt2 +B +
√
M + dn +

√
γt).

(7)

Proof.

|
N∑
n=1

ϕ(i)
n f̃nt (x)− ft(x)| = |

N∑
n=1

ϕ(i)
n f̃nt (x)−

N∑
n=1

ϕ(i)
n ft(x)| ≤

N∑
n=1

ϕ(i)
n |f̃nt (x)− ft(x)|

≤
N∑
n=1

ϕ(i)
n ∆n,t,

(8)

where the last inequality results from Lemma 5 of [12].

Note that Lemma 4 above takes into account our modifications to the original FTS algorithm [12]
by including a central server and using an aggregation (i.e., weighted average) of the vectors from
all agents (first paragraph of Sec. 3.1). Next, define ∆t ,

∑N
n=1 ∆n,t. Note that ∆̃

(i)
t ≤ ∆

(i)
t ≤

∆t,∀i ∈ [P], and that
N∑
n=1

∆̃n,t ≤
N∑
n=1

∆n,t = ∆t, (9)

which will be useful in subsequent proofs.

A.2.2 Main Proof

The following lemma lower-bounds the probability that the selected input xt is unsaturated.

18

Lemma 5 (Lemma 7 of [12]). For any filtration Ft−1, conditioned on the event Ef (t), we have that
with probability ≥ 1− δ/2,

P
(
xt ∈ X \ St|Ft−1

)
≥ Pt,

in which Pt , pt(p− 1/t2) and p = 1
4e
√
π

.

Proof. Firstly, we have that

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
xt ∈ X \ St|Ft−1, At

)
P(At) = P

(
xt ∈ X \ St|Ft−1, At

)
pt. (10)

Next, we can lower-bound the probability P
(
xt ∈ X \ St|Ft−1, At

)
following Lemma 7 of [12],

which leads to P
(
xt ∈ X \ St|Ft−1, At

)
≥ (p− 1/t2) and completes the proof.

Next, we derive an upper bound on the expected instantaneous regret of our DP-FTS-DE algorithm.

Lemma 6. For any filtration Ft−1, conditioned on the event Ef (t), we have that with probability of
≥ 1− 5δ/8

E[rt|Ft−1] ≤ ct
(

1 +
10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2
,

in which rt is the instantaneous regret: rt , f(x∗)− f(xt), ϑt , (1− pt)
∑P
i=1 ϕ̃

(i)
Ct , and

ψt , (1− pt)P

[(
ϕmax + 2

q
+ 6

)
∆t +B

(
2

q
+
Nϕmax

q

)
+

2zSϕmax

q

√
2M log

8M

δ

]
.

Proof. Firstly, we define xt as the unsaturated input at iteration t with the smallest posterior standard
deviation according to agent A1’s own GP posterior:

xt , arg minx∈X\St
σt−1(x). (11)

Following this definition, for any Ft−1 such that Ef (t) is true, we have that

E
[
σt−1(xt)|Ft−1

]
≥ E

[
σt−1(xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σt−1(xt)Pt,

(12)

in which the last inequality follows from the definition of xt and Lemma 5.

Next, conditioned on both events Ef (t) and Eft(t), we have that

rt = ∆(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + ft(xt) + ctσt−1(xt)− ft(xt) + ctσt−1(xt)

(b)

≤ ctσt−1(xt) + ctσt−1(xt) + ctσt−1(xt) + ft(xt)− ft(xt)
= ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt),

(13)

in which (a) follows from the definition of ∆(x) and equation (5), and (b) results from the fact that
xt is unsaturated. Denote by i the sub-region to which xt belongs given Ft−1. Next, we analyze the

19

expected value of the underlined term given Ft−1:

E
[
ft(xt)− ft(xt)|Ft−1

]
(a)
= P (At)E

[
ft(xt)− ft(xt)|Ft−1, At

]
+ P (Bt)E

[
ft(xt)− ft(xt)|Ft−1, Bt

]
(b)

≤ P (Bt)E
[
ft(xt)− ft(xt)|Ft−1, Bt

]
(c)

≤ P (Bt)

P∑
i=1

P [xt ∈ Xi]E
[
ft(xt)− ft(xt)|Ft−1, Bt,xt ∈ Xi

]
≤ P (Bt)

P∑
i=1

E
[
ft(xt)− ft(xt)|Ft−1, Bt,xt ∈ Xi

]
(d)

≤ P (Bt)

P∑
i=1

E

 N∑
n=1

ϕ(i)
n f̃nt (xt) + ∆

(i)
t −

N∑
n=1

ϕ(i)
n f̃nt (xt) + ∆

(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi

(e)

≤ P (Bt)

P∑
i=1

E

[φ(xt)
> − φ(xt)

>
] N∑
n=1

ϕ(i)
n ωn,t + 2∆

(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi
 ,

(14)

in which (a) and (c) result from the tower rule of expectation; (b) follows since conditioned on
the event At, i.e., xt = arg maxx∈X ft(x), we have that ft(xt) − ft(xt) ≤ 0; (d) results from
Lemma 4 and hence holds with probability ≥ 1− δ/2; (e) is a consequence of the definition of f̃nt :
f̃nt (x) = φ(x)>ωn,t,∀x ∈ X . Next, we further decompose the underlined term

∑N
n=1 ϕ

(i)
n ωn,t by:

N∑
n=1

ϕ(i)
n ωn,t =

∑N
n=1 qϕ

(i)
n ωn,t

q
=

∑N
n=1 EIn [In]ϕ

(i)
n ωn,t

q
= EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q

]

= EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q
− η +

∑N
n=1 Inϕ

(i)
n ω̂n,t

q
+ η

]
= EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q
− η + ω

(i)
t

]
,

(15)

where in the last equality we have made use of the definition of ω(i)
t (4). Next, we plug (15) back

into (14):

E
[
ft(xt)− ft(xt)|Ft−1

]
≤ P (Bt)

P∑
i=1

E

[[
φ(xt)

> − φ(xt)
>
]
EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q
− η

]
+

[
φ(xt)

>EI1:n [ω
(i)
t]− φ(xt)

>EI1:n [ω
(i)
t]
]

+ 2∆
(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi
]

≤ P (Bt)

P∑
i=1

E

[[
φ(xt)

> − φ(xt)
>
]
EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q

]
︸ ︷︷ ︸

A1

+

[
φ(xt)

>EI1:n [ω
(i)
t]− φ(xt)

>ω
(i)
t︸ ︷︷ ︸

A2

+φ(xt)
>ω

(i)
t − φ(xt)

>ω
(i)
t︸ ︷︷ ︸

A3

+φ(xt)
>ω

(i)
t − φ(xt)

>ω
(i)
t︸ ︷︷ ︸

A4

+

φ(xt)
>ω

(i)
t − φ(xt)

>EI1:n [ω
(i)
t]︸ ︷︷ ︸

A5

]
−
[
φ(xt)

> − φ(xt)
>
]
η︸ ︷︷ ︸

A6

+2∆
(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi
]

(16)

20

Next, we separately upper-bound the terms A1 to A6. Firstly, we bound the term A1. Define
Ct , {n ∈ [N]

∣∣∣∥∥ωn,t∥∥2 > S/
√
P}, which is the same as the definition in Theorem 1. That is,

Ct contains the indices of those agents whose vector of ωn,t has a larger L2 norm than S/
√
P in

iteration t. A1 can thus be analyzed as:

∣∣∣∣ [φ(xt)
> − φ(xt)

>
]
EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q

]∣∣∣∣
(a)
=

∣∣∣∣ [φ(xt)
> − φ(xt)

>
] N∑
n=1

ϕ(i)
n (ωn,t − ω̂n,t)

∣∣∣∣
(b)
=

∣∣∣∣ [φ(xt)
> − φ(xt)

>
] ∑
n∈Ct

ϕ(i)
n (ωn,t − ω̂n,t)

∣∣∣∣
=

∣∣∣∣ ∑
n∈Ct

ϕ(i)
n

[
φ(xt)

> − φ(xt)
>
] [
ωn,t − ω̂n,t

] ∣∣∣∣
=

∣∣∣∣ ∑
n∈Ct

ϕ(i)
n

[
φ(xt)

>ωn,t + φ(xt)
>ω̂n,t − φ(xt)

>ω̂n,t − φ(xt)
>ωn,t

] ∣∣∣∣
≤
∑
n∈Ct

ϕ(i)
n

[∣∣φ(xt)
>ωn,t

∣∣+
∣∣φ(xt)

>ω̂n,t
∣∣+
∣∣φ(xt)

>ω̂n,t
∣∣+
∣∣φ(xt)

>ωn,t
∣∣]

≤
∑
n∈Ct

ϕ(i)
n

[∣∣φ(xt)
>ωn,t

∣∣+
∣∣φ(xt)

>ωn,t
∣∣+
∣∣φ(xt)

>ωn,t
∣∣+
∣∣φ(xt)

>ωn,t
∣∣]

≤ 2
∑
n∈Ct

ϕ(i)
n

[∣∣f̃nt (xt)
∣∣+
∣∣f̃nt (x)

∣∣]
(c)

≤ 2
∑
n∈Ct

ϕ(i)
n (∆̃n,t +B + ∆̃n,t +B)

= 4
∑
n∈Ct

ϕ(i)
n ∆̃n,t + 4

∑
n∈Ct

ϕ(i)
n B

(d)

≤ 4

N∑
n=1

ϕ(i)
n ∆̃n,t + 4Bϕ̃

(i)
Ct

(e)
= 4

(
∆̃

(i)
t +Bϕ̃

(i)
Ct

)
,

(17)

in which (a) follows since En[In] = q,∀n ∈ [N]; (b) follows since for those agents n 6∈ Ct,
ωn,t − ω̂n,t = 0 because the vector ωn,t is not clipped; (c) results from Lemma 3 and that
|fn(x)| ≤ B, ∀x ∈ X , n ∈ [N] (this is because of our assumption that ‖fn‖k ≤ B, ∀n ∈ [N],
Sec. 2); (d) follows from the definition of ϕ̃(i)

Ct ,
∑
n∈Ct ϕ

(i)
n ; (e) results from the definition of

∆̃
(i)
t (6).

21

Subsequently, we upper-bound the terms A2 and A5. For any x ∈ X , we have that∣∣∣φ(x)>EI1:n [ω
(i)
t]− φ(x)>ω

(i)
t

∣∣∣ =
∣∣∣φ(x)>

EI1:n

[∑N
n=1 Inϕ

(i)
n ω̂n,t

q

]
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q

∣∣∣
=
∣∣∣φ(x)>

(∑N
n=1 qϕ

(i)
n ω̂n,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q

)∣∣∣
=
∣∣∣φ(x)>

1

q

N∑
n=1

(q − In)ϕ(i)
n ω̂n,t

∣∣∣ ≤ 1

q

N∑
n=1

∣∣∣(q − In)ϕ(i)
n φ(x)>ω̂n,t

∣∣∣
(a)

≤ 1

q

N∑
n=1

ϕ(i)
n

∣∣φ(x)>ω̂n,t
∣∣ (b)≤ 1

q

N∑
n=1

ϕ(i)
n

∣∣φ(x)>ωn,t
∣∣

=
1

q

N∑
n=1

ϕ(i)
n

∣∣f̃nt (x)
∣∣ =

1

q

N∑
n=1

ϕ(i)
n

∣∣f̃nt (x)− fn(x) + fn(x)
∣∣

≤ 1

q

N∑
n=1

ϕ(i)
n

(
|f̃nt (x)− fn(x)|+ |fn(x)|

)
(c)

≤ 1

q

N∑
n=1

ϕ(i)
n

(
∆̃n,t +B

)
(d)
=

1

q

(
∆̃

(i)
t +B

)
,

(18)

in which (a) follows since |q − In| ≤ 1; (b) results from (3); (c) results from Lemma 3 and that
|fn(x)| ≤ B, ∀x ∈ X , n ∈ [N]; (d) results from the definition of ∆̃

(i)
t (6).

Next, we upper-bound the term A3, which arises because the sub-regions i and i may be different.
We have that for any x ∈ X ,∣∣∣φ(x)>ω

(i)
t − φ(x)>ω

(i)
t

∣∣∣ =
∣∣∣φ(x)>

(
ω

(i)
t − ω

(i)
t

) ∣∣∣
=
∣∣∣φ(x)>

∑N
n=1 Inϕ

(i)
n ω̂n,t

q
−
∑N
n=1 Inϕ

(i)
n ω̂n,t

q

∣∣∣
≤ 1

q

N∑
n=1

In
∣∣∣ϕ(i)
n − ϕ(i)

n

∣∣∣∣∣∣φ(x)>ω̂n,t

∣∣∣
≤ 1

q

N∑
n=1

ϕmax

∣∣∣φ(x)>ω̂n,t

∣∣∣
(a)

≤ 1

q

N∑
n=1

ϕmax

∣∣∣φ(x)>ωn,t

∣∣∣
(b)

≤ 1

q

N∑
n=1

ϕmax

(
∆̃n,t +B

)
(c)

≤ ϕmax

q
(∆t +NB) ,

(19)

(a) follows because of (3); (b) results from Lemma 3 and that |fn(x)| ≤ B, ∀x ∈ X , n ∈ [N]; (c)
follows from (9).

Next, regarding A4, note that conditioned on the event Bt, xt is selected by: xt =

arg maxx∈X φ(x)>ω
(i[x])
t in which i[x] represents the sub-region x belongs to. Therefore, be-

22

cause xt ∈ Xi and xt ∈ Xi (since we are conditioning on this event), we have that φ(xt)
>ω

(i)
t −

φ(xt)
>ω

(i)
t ≤ 0. In other words, A4 ≤ 0.

Finally, The term A6 can be upper-bounded using standard Gaussian concentration inequality:∣∣∣ [φ(xt)
> − φ(xt)

>
]
η
∣∣∣ ≤∥∥φ(xt)− φ(xt)

∥∥
2
‖η‖2

≤
(∥∥φ(xt)

∥∥
2

+
∥∥φ(xt)

∥∥
2

)
‖η‖2

(a)

≤ 2‖η‖2
(b)

≤ 2zSϕmax

q

√
2M log

8M

δ
,

(20)

where (a) follows since the random features have been constructed such that
∥∥φ(x)

∥∥2
2

= σ2
0 ≤ 1 [12],

and (b) follows from standard Gaussian concentration inequality and hence holds with probability
> 1− δ/8.

Now we can exploit the upper bounds on the terms A1 to A6 we have derived above (equa-
tions (17), (18), (19), (20)), and continue to upper-bound E

[
ft(xt)− ft(xt)|Ft−1

]
following (16):

E[ft(xt)− ft(xt)|Ft−1] ≤ P(Bt)

P∑
i=1

E

[
4
(

∆̃
(i)
t +Bϕ̃

(i)
Ct

)
︸ ︷︷ ︸

A1

+
2

q

(
∆̃

(i)
t +B

)
︸ ︷︷ ︸

A2+A5

+

ϕmax

q
(∆t +NB)︸ ︷︷ ︸
A3

+
2zSϕmax

q

√
2M log

8M

δ︸ ︷︷ ︸
A6

+2∆
(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi
]

= (1− pt)
P∑
i=1

[
4

(
∆̃

(i)
t +BE

[
ϕ̃
(i)
Ct |Ft−1

])
+

2

q

(
∆̃

(i)
t +B

)
+

ϕmax

q
(∆t +NB) +

2zSϕmax

q

√
2M log

8M

δ
+ 2∆

(i)
t

]

= (1− pt)
P∑
i=1

[
4BE

[
ϕ̃
(i)
Ct |Ft−1

]
+

(
2

q
+ 4

)
∆̃

(i)
t + 2∆

(i)
t +

ϕmax

q
∆t+

B

(
2

q
+
Nϕmax

q

)
+

2zSϕmax

q

√
2M log

8M

δ

]
(a)

≤ (1− pt)
P∑
i=1

[
4BE

[
ϕ̃
(i)
Ct |Ft−1

]
+

(
2

q
+ 6 +

ϕmax

q

)
∆t+

B

(
2

q
+
Nϕmax

q

)
+

2zSϕmax

q

√
2M log

8M

δ

]

= 4BE

(1− pt)
P∑
i=1

ϕ̃
(i)
Ct |Ft−1

+ (1− pt)

[
P

(
2

q
+ 6 +

ϕmax

q

)
∆t+

PB

(
2

q
+
Nϕmax

q

)
+ P

2zSϕmax

q

√
2M log

8M

δ

]
= 4BE

[
ϑt|Ft−1

]
+ ψt,

(21)

where (a) follows because ∆̃
(i)
t ≤ ∆

(i)
t ≤ ∆t,∀i ∈ [P]. In the last equality, we have made use of

the definitions of ϑt and ψt. Note that since we have made use of Lemma 4 (14) which holds with
probability ≥ 1 − δ/2, and Gaussian concentration inequality (20) which holds with probability
≥ 1− δ/8, equation (21) holds with probability ≥ 1− δ/2− δ/8 = 1− 5δ/8.

23

Finally, we plug (21) back into (13):

E
[
rt|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt))|Ft−1

]
+ E

[
ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
(a)

≤ 2ct
Pt

E
[
σt−1(xt)|Ft−1

]
+ ctE

[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2

≤ ct
(

1 +
2

Pt

)
E
[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2

(b)

≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2
,

(22)

in which (a) follows from (12) and (21), and (b) follows since:

2

Pt
=

2

pt(p− 1
t2)
≤ 10

ppt
≤ 10

pp1
, (23)

which was valid because 1/(p− 1/t2) ≤ 5/p and pt ≥ p1 for all t ≥ 1.

Note that since the proof of (22) makes use of (21), therefore, (22), as well as Lemma 6, also holds
with probability of ≥ 1− 5δ/8.

Lemma 7. Given δ ∈ (0, 1), then with probability of at least 1− δ,

RT ≤cT
(

1 +
10

pp1

)
O(
√
TγT) +

T∑
t=1

ψt +
Bπ2

3
+ 4B

T∑
t=1

ϑt+[
cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 + 4B

]√
2T log

8

δ
,

in which γT is the maximum information gain about f obtained from any set of T observations.

Proof. The proof resembles the that of Lemma 11 of [12], and is hence omitted. A difference from
Lemma 11 of [12] is that an error probability of δ/8 has been used in the Azuma-Hoeffding Inequality
in the proof here.

Finally, we are ready to prove Theorem 1. Recall that ct = O
((

B +
√
γt + log(1/δ)

)√
log t

)
.

Therefore,

RT = O

(
1

p1

(
B +

√
γT + log

1

δ

)√
log T

√
TγT +

T∑
t=1

ψt +B

T∑
t=1

ϑt+(
B +

1

p1

)(
B +

√
γT + log

1

δ

)√
log T

√
T log

1

δ

)

= O

(B +
1

p1

)√
T log TγT log

1

δ

(
γT + log

1

δ

)
+

T∑
t=1

ψt +B

T∑
t=1

ϑt

= Õ

(B +
1

p1

)
γT
√
T +

T∑
t=1

ψt +B

T∑
t=1

ϑt

 ,

(24)

which finally completes the proof.

24

B Experiments

As we have mentioned in the main text (last paragraph of Sec. 3.2), we choose the weights for
sub-region i to be ϕ(i)

n =
exp((aI(i)n +1)/T)∑N

n=1 exp((aI(i)n +1)/T)
, where I(i)n is an indicator variable that equals 1 if

agent n is assigned to explore Xi and equals 0 otherwise. We set a = 15 in all our experiments, and
gradually increase the temperature T from 1 to +∞. Specifically, for the synthetic experiments, we
choose the temperature T as Tt = a/(at−1),∀t ≥ 1; we set at = a+1 = 16 for the first 5 iterations
(t ≤ 5), decay the value of at linearly to 1 in the next 5 iterations (i.e., at = 16, 12.25, 8.5, 4.75, 1 for
t = 6, . . . , 10), and fix at = 1,∀t > 10. Note that when at = 1, Tt = +∞ (i.e., after 10 iterations)
and the distribution becomes uniform among all agents. Similarly, for all real-world experiments, we
use the same softmax weighting scheme except that we fix at = a+ 1 = 16 for the first 10 iterations,
decay the value of at linearly to 1 in the next 30 iterations, and fix at = 1 afterwards. That is, the
distribution becomes uniform among all agents after 40 iterations. All our experiments are performed
on a computing cluster where each device has one NVIDIA Tesla T4 GPU and 48 cores of Xeon
Silver 4116 (2.1Ghz) processors.

B.1 Synthetic Experiments

B.1.1 Detailed Experimental Setting

Our synthetic experiments involve N = 200 agents. We define the domain of the synthetic functions
to be 1-dimensional and discrete, i.e., an equally spaced grid on the 1-dimensional interval [0, 1] with
a domain size of |X | = 1000. To generate the objective functions for the N = 200 different agents,
we firstly sample a function f from a GP with the SE kernel and a length scale of 0.03, and normalize
the function values into the range [0, 1]. Next, for every agent An,∀n ∈ [N], we go through all
|X | = 1000 inputs in the entire domain, and for each input x, we derive the function value for agent
An as fn(x) = f(x) +d, in which d = 0.02 or = −0.02 with equal probability (i.e., a probability of
0.5 each). In this way, the objective functions of all agents are related to each other. When observing
a function value, we add a Gaussian noise ζ ∼ N (0, σ2) with a variance of σ2 = 0.01 (Sec. 2).

To construct the P sub-regions to be used for distributed exploration (DE), we simply need to divide
the interval [0, 1] into P disjoint hyper-rectangles with equal volumes. For example, when P = 2,
the two sub-regions contain the inputs in the sub-regions [0, 0.5) and [0.5, 1] respectively; when
P = 3, the three sub-regions include the inputs in the sub-regions [0, 1/3), [1/3, 2/3) and [2/3, 1]
respectively.

B.1.2 More Experimental Results

Comparison between DP-FTS-DE and DP-FTS. We have shown in the main text (Fig. 2a) that
FTS-DE significantly outperforms FTS without DE. Here, we demonstrate in Fig. 4 that after DP is
integrated, DP-FTS-DE still yields a significantly better utility than DP-FTS for the same level of
privacy guarantee (loss). These results justify the practical benefit of the technique of DE (Sec. 3.2).
Note that for a fair comparison, we have used a smaller value of S for DP-FTS without DE such that
a similar percentage of vectors are clipped for both DP-FTS-DE and DP-FTS.

Investigation of DE. We also investigate the importance of both of the major components of the DE
technique (Sec. 3.2): (a) assigning every agent to explore only a local sub-region instead of the entire
domain, and (b) giving more weights to those agents exploring the particular sub-region. In Fig. 5, the
orange curve is obtained by removing component (b) (i.e., in every iteration and for each sub-region,
we give equal weights to all agents), the purple curve is derived by removing component (a) (i.e.,
letting every agent explore the entire domain at initialization instead of a smaller local sub-region).
As the figure shows, the performances of both the orange and purple curves are significantly worse
than our FTS-DE algorithm (red curve), which verifies that both of these components are critical for
the practical performance of FTS-DE.

Trade-off Induced by P . As we have discussed at the end of Sec. 4, the value of P (i.e., the number
of sub-regions) induces a trade-off about the practical performance of our DP-FTS-DE algorithm.
Here we empirically verify this trade-off in Fig. 6. As shown in the figure, for the same values of q, z
and S, a smaller value of P (i.e., larger local sub-regions) may deteriorate the performance (orange
curve) since larger sub-regions are harder for the GP surrogate to model, however, a larger value of P

25

0 10 20 30 40
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Si
m

pl
e

Re
gr

et

TS
FTS-DE
DP-FTS (q= 0.15)
DP-FTS-DE (q= 0.15)
DP-FTS (q= 0.25)
DP-FTS-DE (q= 0.25)
DP-FTS (q= 0.50)
DP-FTS-DE (q= 0.50)

Figure 4: Comparisons of the performances of DP-FTS (without DE) and DP-FTS-DE. For a fair
comparison, we have used S = 8 and S = 11 for DP-FTS and DP-FTS-DE respective, such that a
similarly small percentage vectors are clipped for both algorithms (0.31% for DP-FTS and 0.80% for
DP-FTS-DE). We have used z = 1.0 for both algorithms.

0 10 20 30 40
Iterations

0.0

0.1

0.2

0.3

0.4

Si
m

pl
e

Re
gr

et

TS
FTS
FTS-DE
FTS-DE (uniform weights)
FTS-DE (no local exploration)

Figure 5: Investigating the importance of both major components of the technique of distributed
exploration (DE). The orange curve is obtained by giving equal weights to all agent for every sub-
region, and the purple curve is derived by letting every agent explore the entire domain at initialization
instead of a local sub-region.

may also result in a worse performance (yellow curve) since it causes the vectors from more agents
to be clipped (Sec. 4). These observations verify our discussions in the last paragraph of Sec. 4.

Robustness Against Heterogeneous Agents. We use another experiment to explore the robustness
of our algorithm against agent heterogeneity, i.e., how our algorithm performs when the objective
functions of different agents are significantly different. To begin with, we sample a function fbase
from a GP (the detailed setups such as the domain and the SE kernel are the same as those used
in App. B.1.1). Next, for every agent i = 1, . . . , 50, we independently sample another function f i
and then use f i ← αf i + (1− α)fbase as the objective function for agent i in which α ∈ [0, 1]. As
a result, the parameter α controls the difference between the objective functions f i’s of different

0 10 20 30 40
Iterations

0.0

0.1

0.2

0.3

0.4

Si
m

pl
e

Re
gr

et

TS
FTS-DE
DP-FTS-DE (P= 1)
DP-FTS-DE (P= 2)
DP-FTS-DE (P= 3)

Figure 6: Trade-off induced by P regarding the practical performance of our DP-FTS-DE algorithm.
Note that a larger P reduces the size of every local sub-region and hence leads to a better modeling
by the GP surrogates, yet also negatively impacts the performance by causing more vectors to be
clipped. Here we have used q = 0.25, z = 1.0, S = 11.0 for all values of P .

26

0 10 20 30 40
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Si
m

pl
e

Re
gr

et

TS
FTS-DE (α= 0.7, 1 − pt = 1/√ t)

0 10 20 30 40
Iterations

0.00

0.05

0.10

0.15

0.20

Si
m

pl
e

Re
gr

et

TS
FTS-DE (α= 1, 1 − pt = 1/√ t)
FTS-DE (α= 1, 1 − pt = 1/t4)

(a) (b)

Figure 7: Results when the agents are heterogeneous, i.e., when the objective functions of different
agents are significantly different. (a) and (b) correspond to α = 0.7 and α = 1.0, respectively.

agents such that a larger α means that the f i’s are more different. Fig. 7a shows the performances
of standard TS and our FTS-DE when α = 0.7, in which FTS-DE is still able to outperform TS
although the performance improvement is significantly smaller than that observed in Fig. 2. Fig. 7b
plots the results when the objective functions f i’s are extremely heterogeneous, i.e., when α = 1.0
which implies that the f i’s are independent. The figure shows that in this adverse scenario, when
1 − pt = 1/

√
t, FTS-DE (green curve) performs worse than standard TS (blue curve) due to the

extremely high degree of heterogeneity among the agents. However, as shown by the orange curve,
we can improve the performance of FTS-DE to make it comparable with standard TS by letting 1−pt
decrease faster such that the impact of the other agents are diminished faster.

B.2 Real-world Experiments

B.2.1 More Experimental Details

In all real-world experiments, when generating the random features for the RFFs approximation, we
use the SE kernel with a length scale of 0.01 and a variance of σ2 = 10−6 for the observation noise.
Refer to [12] and [53] for more details on how the random features are generated and how they are
shared among all agents.

As we have mentioned in the main text, we use P = 4 sub-regions in all three real-world experiments,
and divide the entire domain into P = 4 hyper-rectangles (i.e., sub-regions) with equal volumes.
Following the common practice in BO, we assume that the domain X ∈ RD is a D-dimensional
hyper-rectangle, and w.l.o.g., assume that every dimension of the domain is normalized into the
range [0, 1]. That is, the domain can be represented as [0, 1]D = {[0, 1], [0, 1], . . . , [0, 1]}. Note that
every domain which is a hyper-rectangle can be normalized into this form. As a result, when the
input dimension is D = 2 (i.e., the landmine detection experiment), we construct the P = 4 hyper-
rectangles such that X1 = {[0, 0.5), [0, 0.5)}, X2 = {[0, 0.5), [0.5, 1.0]}, X3 = {[0.5, 1.0], [0, 0.5)}
and X4 = {[0.5, 1.0], [0.5, 1.0]}. Similarly, when the input dimension D = 3 (i.e., the human
activity recognition and EMNIST experiments), we construct the P = 4 hyper-rectangles such that
X1 = {[0, 0.5), [0, 0.5), [0, 1]}, X2 = {[0, 0.5), [0.5, 1.0], [0, 1]}, X3 = {[0.5, 1.0], [0, 0.5), [0, 1]}
and X4 = {[0.5, 1.0], [0.5, 1.0], [0, 1]}.
The landmine detection dataset15 used in this experiment has also been used by the works of [12, 60]
which focus on FBO and FL respectively. This dataset consists of the landmine detection data from
N = 29 landmine fields (agents), and the task of every agent is to use a support vector machine (SVM)
to detect (classify) whether a location in its landmine field contains landmines or not (i.e., binary
classification). We tune two hyperparameters of SVM, i.e., the RBF kernel parameter ([0.01, 10.0])
and the penalty parameter ([10−4, 10.0]). For every landmine field, we use half of its dataset as the
training set and the remaining half as the validation set. In this experiment, we report the area under
the receiver operating curve (AUC) as the performance metric, instead of validation error, because this
dataset is significantly imbalanced, i.e., the vast majority of the locations do not contain landmines.
No data is excluded. Refer to [66] for more details on this dataset. The dataset is publicly available,
and contains no personally identifiable information or offensive content.

15http://www.ee.duke.edu/~lcarin/LandmineData.zip.

27

http://www.ee.duke.edu/~lcarin/LandmineData.zip

0 10 20 30 40 50 60
Iterations

0.05

0.10

0.15

0.20

0.25

Va
lid

at
io

n
Er

ro
r

TS
FTS-DE
DP-FTS-DE (q= 0.35, z= 1.0)
DP-FTS (q= 0.35, z= 1.0)

0 10 20 30 40 50 60
Iterations

0.05

0.10

0.15

0.20

0.25

Va
lid

at
io

n
Er

ro
r

TS
FTS-DE
DP-FTS-DE (q= 0.35, z= 2.0)
DP-FTS (q= 0.35, z= 2.0)

0 10 20 30 40 50 60
Iterations

0.05

0.10

0.15

0.20

0.25

Va
lid

at
io

n
Er

ro
r

TS
FTS-DE
DP-FTS-DE (q= 0.25, z= 1.0)
DP-FTS (q= 0.25, z= 1.0)

(a) (b) (c)

Figure 8: Comparison between DP-FTS and DP-FTS-DE for the same level of privacy guarantee
(the human activity recognition experiment). We have used S = 22 and S = 11 for DP-FTS-DE and
DP-FTS (without DE) respectively, such that a similar percentage of vectors are clipped in both cases:
1.02% for DP-FTS-DE and 1.09% for DP-FTS.

The human activity recognition dataset16 was originally introduced by the work of [2] and has also
been adopted by the works of [12, 60]. The licensing requirement for this dataset requires that
the use of this dataset in publications must be acknowledged by referencing the paper of [2]. This
dataset consists of the data collected using mobile phone sensors when N = 30 subjects (agents) are
performing six different activities. The task of every agent (subject) is to use the dataset generated
by the subject to perform activity recognition, i.e., to predict which one of the six activities the
subject is performing using logistic regression (LR). We tune three hyperparameters of LR: the
batch size ([128, 512]), L2 regularization parameter ([10−6, 10]) and learning rate ([10−6, 1]). For
every subject, we again use half of its data as the training set and the other half as the validation
set, and the validation error is reported as the performance metric. The inputs for every agent are
standardized by removing the mean and dividing by the standard deviation of its training set, which
is a common pre-processing step for LR. No data is excluded. Refer to [2] for more details on
this dataset. The dataset is publicly available as described above, and does not contain personally
identifiable information or offensive content.

EMNIST17 is a dataset of images of handwritten characters from different persons, and is a widely
used benchmark in FL [29]. The EMNIST dataset is under the CC0 License. Here we use the images
from the first N = 50 subjects (agents) which can be accessed from the TensorFlow Federated
library18. Every subject (agent) uses a convolutional neural network (CNN) to learn to classify an
image into one of the ten classes corresponding to the digits 0− 9. Here the task for every agent is to
tune three CNN hyperparameters: learning rate, learning rate decay and L2 regularization parameter,
all in the range of [10−7, 0.02]. We follow the standard training/validation split offered by the
TensorFlow Federated library for every agent, and again use the validation error as the performance
metric. All images are pre-processed by normalizing all pixel values into the range of [0, 1], and no
data is excluded. Refer to [8] for more details on this dataset. The dataset is publicly available, and
contains no personally identifiable information or offensive content.

B.2.2 Comparison between DP-FTS-DE and DP-FTS

We have shown in the main text (Figs. 3a,b,c) that FTS-DE significantly outperforms FTS without DE.
Here we further verify in Fig. 8 the importance of the technique of DE after DP is integrated, using
the human activity recognition experiment. Specifically, the figures show that after the incorporation
of DP, DP-FTS-DE (green curves in all three figures) still achieves a better utility than DP-FTS
(purple curves) for the same level of privacy guarantee (loss). Note that same as Fig. 4, to facilitate
a fair comparison, we have used a smaller value of S for DP-FTS without DE such that a similar
percentage of vectors are clipped for both DP-FTS-DE and DP-FTS.

16https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+
Smartphones.

17https://www.nist.gov/itl/products-and-services/emnist-dataset.
18https://www.tensorflow.org/federated.

28

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.tensorflow.org/federated

� �� �� �� �� �� ��
�����������������������������

����

����

����

����

����
����������������������

��

�����������������

��������������������

�����������������

��������������������

�����������������

��������������������

� �� �� �� �� �� ��
�����������������������������

����

����

����

����

����
�������������������������

��

�����������������

��������������������

�����������������

��������������������

�����������������

��������������������

(a) (b)

Figure 9: Robustness of our FTS-DE and DP-FTS-DE algorithms against the choice of weights.

� �� �� �� �� �� ��
�����������������������������

����

����

����

����

����
����������������

��

���������� ��

���������������

���������� ��

���������������

���������� ��

���������������

� �� �� �� �� �� ��
�����������������������������

����

����

����

����

����
�������������������

��

������������

���������������

������������

���������������

������������

���������������

(a) (b)

Figure 10: Robustness of our FTS-DE and DP-FTS-DE algorithms against the number P of sub-
regions.

B.2.3 Robustness against the Choice of Weights and Number of Sub-regions

In this section, we evaluate the robustness of our experimental results against the choice of the weights
assigned to different agents and the number P of sub-regions, using the human activity recognition
and EMNIST experiments.

Here we test three other methods for designing the weights: (1) We use the same softmax weighting
scheme with a different parameter a = 9 instead of a = 15 ("weights 1" in Fig. 9). (2) For a
sub-region Xi, we assign a weight ∝ a to those agents exploring Xi and ∝ b to the other agents, and
similarly gradually decay the value of a = 1, 000 to b = 1 ("weights 2" in Fig. 9). (3) For a sub-region
Xi, we assign a weight ∝ a2 to those agents exploring Xi and ∝ b to the other agents, and similarly
gradually decay the value of a = 40 to b = 1 ("weights 3" in Fig. 9). Moreover, in addition to the
results using P = 4 sub-regions reported in the main text, here we also evaluate the performance
of FTS-DE and DP-FTS-DE with P = 2, 3, 6 sub-regions (Fig. 10). All DP-FTS-DE methods in
Fig. 9 and Fig. 10 correspond to q = 0.35, z = 1.0. The results demonstrate the robustness of our
experimental results against the choice of the weights and the number P of sub-regions.

B.2.4 Rényi DP

Fig. 11 shows the privacy-utility trade-off in the landmine detection experiment using Rényi DP [63].
The results demonstrate that Rényi DP, despite requiring modifications to our theoretical analysis (i.e.,
proof of Theorem 1), leads to slightly better privacy losses (compared with Fig. 3a) with comparable
utilities.

B.2.5 Adaptive Weights vs. Non-adaptive Weights

As we have discussed in the last paragraph of Sec. 3.2, we have designed the set of weights for every
sub-region to be adaptive such that they gradually become uniform among all agents as t becomes
large. Here we explore the performance of our algorithm if the weights are non-adaptive, i.e., for
every sub-region Xi, we fix the set of weights {ϕ(i)

n ,∀n ∈ [N]} for all t ∈ [T]. In particular, we

29

2.5 5.0 7.5 10.0 12.5
Privacy loss

0.233

0.234

0.235

0.236

1
- A

UC

Figure 11: Results for the landmine detection experiment using Rényi DP [63].

0 10 20 30 40
Iterations

0.00

0.05

0.10

0.15

0.20

Si
m

pl
e

Re
gr

et

TS
FTS-DE
DP-FTS-DE (adaptive weights)
DP-FTS-DE (non-adaptive weights)

0 10 20 30 40 50 60
Iterations

0.05

0.10

0.15

0.20

0.25

Va
lid

at
io

n
Er

ro
r

TS
FTS-DE
DP-FTS-DE (adaptive weights)
DP-FTS-DE (non-adaptive weights)

(a) (b)

Figure 12: Comparison between DP-FTS-DE with adaptive weights and non-adaptive weights, using
(a) the synthetic experiment and (b) human activity recognition experiment.

adopt the same softmax weighting scheme as described in the first paragraph of App. B, but fix the
temperature Tt = 1,∀t ≥ 1 such that the same set of weights is used for all t ≥ 1. That is, for every
sub-region Xi, we assign more weights to those agents exploring Xi throughout all iterations t ≥ 1.

Fig. 12 shows the comparisons between adaptive and non-adaptive weights using (a) the synthetic
experiment and (b) human activity recognition experiment. Both figures show that although in the
initial stage, DP-FTS-DE with non-adaptive weights performs similarly to DP-FTS-DE with adaptive
weights, however, as t becomes large, adaptive weights (red curves) lead to better performances than
non-adaptive weights (green curves). This can be attributed to the fact that as t becomes large, every
agent is likely to have explored (and become informative about) more sub-regions in addition to the
sub-region that it is assigned to explore at initialization. Therefore, if the weights are non-adaptive,
i.e., for a sub-region Xi, if after t has become large, most weights are still given to those agents that
are assigned to explore Xi at initialization, then the information from the other agents who are likely
to have become informative about Xi (i.e., have collected some observations in Xi) is not utilized.
This under-utilization of information might explain the performance deficit caused by the use of
non-adaptive weights. However, note that despite being outperformed by DP-FTS-DE with adaptive
weights, DP-FTS-DE with non-adaptive weights (green curve) is still able to consistently outperform
standard TS (blue curves).

B.2.6 Computational Cost

When maximizing the acquisition function to select the next query (lines 6 and 8 of Algo. 2), firstly,
we uniformly randomly sample a large number (i.e., 1000) of points from the entire domain; next, we
use the L-BFGS-B method with 20 random restarts to refine the optimization.

For the central server, the integration of DP and DE (in expectation) incurs an additional computational
cost of O(PNq). However, these additional computations are negligible since they only involve
simple vector additions/multiplications (lines 5-11 of Algo. 1). For agents, the incorporation of DP
brings no additional computational cost to them. Meanwhile, the addition of DE, which affects line 8
of Algo. 2, only incurs minimal additional computations. For example, in the landmine detection
experiment, line 7 takes on average 14.47s and 17.96s to compute for P = 1 and P = 4, respectively.

30

