Under review as a conference paper at ICLR 2024

APPENDIX

A DETAILS OF EXPERIMENTAL SETUP

A.1 DETAILS OF DATASETS

Table 5: Statistics of datasets (part 2).

AvgPassRatio Pass@1
Train Dev Test Train Dev Test

MBPP-Eval 0.2832 0.2571 0.2890 0.0674 0.0494 0.0760
APPS-Eval 03196 0.1814 0.1790 0.0315 0.0007 0.0011
HE-Eval - - 0.3022 - - 0.1499

Dataset

To construct each code evaluation dataset, we first follow primitive NL and reference code in each
corresponding base dataset. Then, for each paired NL and reference code in a code evaluation dataset,
we generate an average of 20+ codes (generated from various LLMs, including CodeGen 350M&16B
Nijkamp et al. (2022), InCoder 1B&6B |Fried et al.|(2022), and CodeX 13B&175B) Chen et al.|(2021)
according to NL and additionally build an average of 100+ correct test cases according to reference
code. To obtain these test cases, the following steps were implemented:

1) Infer the type of input from pre-existing test cases.
2) Enumerate a collection of inputs constrained by the type of input and task.

3) Feed the input into the original correct code and gets the output by execution (We assume that all
external dependencies including third-party libraries have been installed correctly).

Finally, we label each matched NL, reference code, and generated code by executing generated code
with all corresponding test cases to compute PassRatio via Eq. [2] Statistics of datasets are shown in
Table [5|and Fig. [5]

0.25 A —— MBPP-Eval
——— APPS-Eval
—— HE-Eval

0.20 A

0.15 A

0.10 A

0.05 A

0.00 A

0 20 40 60 80 100

Figure 5: PassRatio distribution of APPS-Eval, MBPP-Eval, and HE-Eval.

13

Under review as a conference paper at ICLR 2024

A.2 DETAILS OF BASELINES

We select typical match-based CEMs, LLM-based EMs, and execution-based CEMs as baselines. We
present each type of EMs as below.

Match-based CEMs include BLEU [Papineni et al.| (2002), Exact Matching Accuracy (Accuracy),
CodeBLEU Ren et al.[(2020), and CrystalBLEU [Eghbali and Pradel| (2022)).

BLEU Papineni et al. (2002) is calculated based on n-gram, and the fluency and correctness of
generated code are expressed by calculating the proportion of n consecutive tokens in the correct
code, where n is usually set to 4 (i.e., BLEU-4). Considering that shorter codes usually have higher
BLEU values, a penalty item is introduced to BLEU as:

BLEU = BP - exp (Z wWin logpm> :

m=1

Iy > 1,

L, >
BP = R
{e{l‘la}, ly <l

where BP represents the penalty item, [, represents the length of generated code, [, represents
the length of reference code, and w,,, and p,, represents the weighted coefficient and precision of
m-gram, respectively.

Accuracy indicates the percentage of exact matches between generated code and reference code.

CodeBLEU Ren et al. (2020) additionally takes into account the structure of code, which absorbs the
advantages of BLEU in n-gram matching, and further injects code syntax through abstract syntax tree
and code semantics through data flow.

CodeBLEU = « - BLEU +/5 - BLEU yyeight
+ 0 - Match, s + ¢ - Matchgy,

where o, 8,6 and ¢ are weights (usually set to 0.25, as well as in this paper), BLEU eign: is a
weighted BLEU with different weights for various tokens, Match,s; is syntactic AST matching,
which explores the syntactic information of the code, and Match is semantic dataflow matching,
which considers the semantic similarity between generated code and reference code.

CrystalBLEU |[Eghbali and Pradel| (2022) is a metric that calculates BLEU by reducing the noise
caused by trivially shared n-grams, such as ‘(" and *,".

LLM-based EMs contain BERTScore Zhang et al. (2020) and COMET [Rei et al.| (2020), which are
well-known and widely used.

BERTScore Zhang et al.|(2020) is an automatic evaluation metric for text generation, which computes
a similarity score for each token in the generated sentence with each token in the reference sentence
with contextual embeddings of BERT |Devlin et al.| (2019).

X;EX

1 . 1 N

RgrT = — E max x;rxj, PggrT = — g maxx?xj,

x| X %] A= xiex
X; €EX X;jEX

Foprr = 2 PERT - RBERT
Psrrr + RBERT

Following the setting in/Zhang et al. (2020), we compute BERTScore with inverse document frequency
computed from test sets.

COMET [Rei et al.| (2020) provides a text EM by learning human judgments of training data, which
leverages cross-lingual pre-trained language modeling to predict the quality of generated text more
accurately.

Execution-based CEMs as the gold standards consist of AvgPassRatio Hendrycks et al.|(2021) and
Pass@1 [Kulal et al.| (2019), which are computed via Eq. |14|and Eq. [L5] respectively.

Each of the preceding baselines except COMET is in the range of O to 1.

14

Under review as a conference paper at ICLR 2024

B EFFECT OF BINARY CODESCORE

In Table[6, we convert all EMs to binary EMs using thresholds picked in a similar way to binary
CodeScore, and we compare their correlation with Pass@1 on three code evaluation datasets. As
we can see, our Binary CodeScore still exhibits the best correlation with Ground Truth, compared
to binary match-based CEMs and LLLM-based EMs. Specifically, binary CodeScore is moderately
correlated with Ground Truth, while binary match-based CEMs and LLM-based EMs have weak or
extremely weak correlations with Ground Truth@. Moreover, the execution time of binary EMs does
not increase significantly and is almost equal to EMs. Thus, we do not report it additionally, and it
can refer to the execution time of EM in Table[2]and Table 3]

Table 6: Correlation comparison of functional correctness with binary EMs on code evaluation
datasets, where three correlation coefficients are equal (i.e., 7 = ry = rp) for two Bernoulli
distributed data.

Method (Binary) MBPP-Eval APPS-Eval HE-Eval
rs T rs T rs T

Match-based CEM

Binary BLEU 0.0928 0.0907 0.0887

Accuracy 0.0636 0.0369 0.0586

Binary CodeBLEU 0.2059 0.1666 0.2409

LLM-based EM

Binary BERTScore 0.0972 0.0851 0.0375

Binary COMET 0.2358 0.1897 0.1181

CodeScore

Binary CodeScore 0.4164 0.4176 0.4159

Table 7: Comparison of CodeScore (trained on APPS-Eval) and the SOTA reranking methods for
code generation, where PTC means filtering with a public test case after reranking. We use italics for
results reported from reference papers.

MBPP HumanEval
Model
Pass@1 1 Pass@1 (ET) 1 Reranking Time | Pass@1 1 Pass@1 (ET) 1 Reranking Time |
CodeX 175B|Chen et al.|(2021) 0.581 (0.576) 0.388 - 0.470 (0.445) 0.317 -
+ MBR-EXEC|Shi et al. (2022) 0.639 - 56.4 x 0.505 - 53.5 x
+ CodeT|Chen et al.[(2022) 0.677 0.451 123.1 x 0.658 0.517 116.6 x
_ +CodeScore 0627 0472 10X (342) 0516 0409 10X ((240s)
+ CodeScore + PTC 0.858 0.677 3.0 x 0.636 0.520 2.9 x

C CODESCORE FOR RERANKING

We compare CodeScore (trained on APPS-Eval) and the state-of-the-art (SOTA) reranking methods
of code generation, including MBR-EXEC [Shi et al.|(2022) and CodeT (Chen et al.|(2022), on two
code generation benchmark datasets using Pass@ 1. We first use Exec via Eq. [I]to filter codes that can
be executed successfully and then employ CodeScore to rank the remaining codes with NL-only input
format. In Table 7, reranking with CodeScore improves in all cases, although it is still lower than
CodeT in some cases. However, considering that CodeT is difficult to apply to practical scenarios
due to huge time and calculation overhead, our CodeScore takes advantage. Moreover, we find that
the public test case (PTC) can further cause a huge improvement, where PTC is randomly selected
from self-contained PTC or extended test cases and has no intersection with private original test
cases. Compared with Pass@1, Pass@1 (ET) on both datasets has a significant decline, indicating
that original test cases cannot adequately measure the functional correctness of generated code.
However, reranking methods with CodeScore significantly mitigate degradation compared to base
code generation model and ‘+ CodeT |Chen et al. (2022)’, which means that CodeScore has a more
comprehensive assessment of the code’s functional correctness.

15

Under review as a conference paper at ICLR 2024

D DETAILS OF HUMAN EVALUATION

We randomly select 100 generated codes and evaluations scored by the five EMs mentioned above on
these samples. Finally, we obtain 500 (100*5) paired generated code with reference code and NL and
its EM score for human evaluation. The evaluators are computer science Ph.D. students and are not
co-authors. They all have programming experience ranging from 3+ years. The 500 code snippets are
divided into 10 groups, with each questionnaire containing one group. We randomly list the generated
code with reference code and NL and the corresponding EM score on the questionnaire. Each group
is evaluated anonymously by one evaluator, and the final score is the average of all evaluators’ scores.
Evaluators are allowed to search the Internet for unfamiliar concepts.

Table 8: comparison of CodeScore and other EMs on APPS-Eval.

Method Value 71 rs T rp T MAE | Execution Time |
Match-based CEM
BLEU 0.0094 0.1055 0.1156 0.0959 0.1164 1.0 x (26.0s)
Accuracy 0.0001 0.0079 0.0095 0.0196 - 0.1 x
CodeBLEU 0.2337 0.1035 0.1533 0.1085 0.2005 7.8 x
CrystalBLEU 0.0242 0.0906 0.1347 0.0887 0.1709 0.3 x
LLM-based EM
BERTScore 0.8629 0.0916 0.1375 0.0718 0.6874 56.7 x
COMET 0.0165 0.0904 0.1126 0.1187 0.1751 84.0 x
CodeBertScore 0.7583 0.1219 0.1801 0.1323 0.5885 27.8 x
Execution-based CEM
AvgPassRatio 0.0978 0.3360 0.4108 0.4987 0.1327 1.5k x
Pass@1 0.0064 0.0894 0.1983 0.1598 - ’

" Pass@1 (ET) 0.0011 (] 82.8%) 0.0470 ~0.0569 0.1174 -~ 207k x
UniCE 0.1820 0.5275 0.7040 0.7210 0.1044 44.2 x

E COMPARISON WITH EXECUTION-BASED CEMS

In Table[8] we can find that computing execution-based CEMs for code evaluation with a small number
of original test cases is insufficient. They have a significant reduction in correlation coefficients
compared to using larger extended test cases. The value of Pass@1 (ET) is 82.8% lower than Pass@1,
meaning that 82.8% of correct codes under Pass@1 are misjudged on APPS. In cases where test cases
are rare or low-quality, such as on APPS-Eval, the correlation between our CodeScore and Ground
Truth even far exceeds that of AvgRassRatio. Therefore, the quality of AvgRassRatio’s evaluation
depends on the quality and quantity of test cases.

In conclusion, AvgPassPatio and Pass@1 are effective but costly, since computing AvgPassPatio and
Pass@1 not only requires adequate test samples but also dramatically increases the execution time.
Therefore, in the situation of insufficient test cases, our CodeScore is a suitable alternative to them
for quality and cost.

F ADDITIONAL CASE STUDY

As shown in[6, CodeBLEU tends to assign relatively low scores to generated code, even when the
code is functionally correct. Both BERTScore and CodeBERTScore tend to award relatively high
scores to generated code, even when the code is essentially flawed. Additionally, BERTScore often
assigns lower scores to the more functional correctness generated codes. For example, Generated
Code III.2 has a lower BERTScore than III.1. In contrast, CodeScore performs admirably in this
scenario. In summary, our proposed CodeScore aligns more closely with Ground Truth compared to
other EMs. This suggests that CodeScore is more effective in estimating the functional correctness of
generated code.

16

Under review as a conference paper at ICLR 2024

NL Write a python function to check whether the given two numbers have same number of digits or not.

def same_Length(A,B):
while (A > 0 and B > 0):

A=A/ 10;
Reference Code B =B/ 10;
if (A ==10 and B == 0):
return True;
return False;
Generated Code II.1 Generated Code I1.2
def same_Length(A,B):
if len(str(A))==len(str(B)):
return True
i Ground Truth: 0.1177 Ground Truth: 0.5686
def Length(iterable, : :
ef same_Length(iterable, n) CodeScore: 0.1272 else CodeScore: 0.5712

p = (n-1) xiterable
return p

try:
float(str(str(B)))

except ValueError:
return False

else:
return False

CodeBLEU: 0.1383
BERTScore: 0.8542
CodeBERTScore: 0.7021

CodeBLEU: 0.1744
BERTScore: 0.8454
CodeBERTScore: 0.7816

Figure 6: Case 111

G PRELIMINARY KNOWLEDGE

For a task p € P, let the test case set of p as C, = {(Zp.c, Op.c)}cec,. a set of paired test case
input 7, . and test case output O, .. Although the potential program space can be boundless, test
cases perm1t automatic evaluation of code generation capability. Thus, in contrast to most other text
generation tasks, human judgment is unnecessary for code generation. As the gold standards for code
evaluation, AvgPassRatio and Pass@ 1 mirror the performance of generated codes on test cases.

AvgPassRatio The average proportion of test cases that generated codes g;s pass:

|P| Z Z T{Eval (g, Zp.c) = Ope}, (14)

CEC

where | - | indicates the element number of a set, I(-) is an indicator function, which outputs 1 if the
condition is true and 0 otherwise, and Eval (g, Z,) represents an evaluation function that obtains
outputs of code g, by way of executing it with Z,, . as input.

Pass@1 The percentage of g;,s that pass all test cases of the corresponding p:

|P| Z H T{Eval (g, Zp.) = Op.c}. (15)

pEP cECp

Pass@1 is a more stringent CEM, which is a representative of the Pass@k family, also known as
Strict Accurracy. In this paper, we use original and extended test cases to compute Pass@1 and
Pass@1 (ET), respectively.

H TEST CASE GENERATION VIA CHATGPT

We randomly select 100 code generation tasks from the MBPP dataset and use the NL description
and reference code of tasks to generate test cases via ChatGPT |OpenAl, Fig. [/|shows an example of
ChatGPT generating test cases. ChatGPT generates an average of 1.53 test cases per task.

The results shown in Fig. [8 indicate that LLMs have the potential to judge the functional
correctness of most programs with appropriate guidance. Only 1.29% Generations consistent
with private test cases means that ChatGPT generates test cases by itself instead of copying private
test cases.

17

Under review as a conference paper at ICLR 2024

Write a python function to find the first repeated character in a given string.
def first_repeated_char(str1):
for index,c in enumerate(str1):
if stri[:index+1].count(c) > 1:
return c

test the function with some example inputs

assert first_repeated_char("abcdefg") == None
assert first_repeated_char("abcdabcd") == "a"

assert first_repeated_char("abcdcabcd") == "c"

Figure 7: Example of ChatGPT generating test cases.

m Proportion of Incorrect Generations

m Proportion of Correct Generations consistent with private (built-in) test cases
Proportion of Correct Generations inconsistent with private test cases

Figure 8: Test case generation via ChatGPT in zero-shot setting (details can be found in
Appendix [H).

18

	Introduction
	Methodology
	CodeScore
	UniCE
	Pooling Layer
	Unified Embedding
	Unified training

	Experiment Setup
	Datasets
	Baselines
	Correlation Evaluation
	Implementation Details

	Experimental Results
	Effect of CodeScore
	Effect of LUni
	Human Evaluation
	Case Study

	Discussion
	Related Work
	Conclusion and Future Work
	Details of Experimental Setup
	Details of Datasets
	Details of Baselines

	Effect of Binary CodeScore
	CodeScore for Reranking
	Details of Human Evaluation
	Comparison with Execution-based CEMs
	Additional Case Study
	Preliminary knowledge
	Test case generation via ChatGPT

