
A Proofs

A.1 SPD can Be Used to Improve WL-Test

Figure 2: These two graphs cannot be distinguished by 1-WL-test. But the SPD sets, i.e.,
the SPD from each node to others, are different: The two types of nodes in the left graph
have SPD sets {0, 1, 1, 2, 2, 3} , {0, 1, 1, 1, 2, 2} while the nodes in the right graph have SPD sets
{0, 1, 1, 2, 3, 3} , {0, 1, 1, 1, 2, 2}.

1-WL-test fails in many cases [37, 31], thus classic message passing GNNs also fail to distinguish many pairs of
graphs. We show that SPD might help when 1-WL-test fails, for example, in Figure 2 where 1-WL-test fails, the
sets of SPD from all nodes to others successfully distinguish the two graphs.

A.2 Proof of Fact 1

MEAN AGGREGATE. We begin by showing that self-attention module with Spatial Encoding can
represent MEAN aggregation. This is achieved by in Eq. (6): 1) setting bϕ = 0 if ϕ = 1 and bϕ = −∞ otherwise
where ϕ is the SPD; 2) setting WQ = WK = 0 and WV to be the identity matrix. Then softmax (A)V gives
the average of representations of the neighbors.

SUM AGGREGATE. The SUM aggregation can be realized by first perform MEAN aggregation and then
multiply the node degrees. Specifically, the node degrees can be extracted from Centrality Encoding by an
additional head and be concatenated to the representations after MEAN aggregation. Then the FFN module in
Graphormer can represent the function of multiplying the degree to the dimensions of averaged representations
by the universal approximation theorem of FFN.

MAX AGGREGATE. Representing the MAX aggregation is harder than MEAN and SUM. For each
dimension t of the representation vector, we need one head to select the maximal value over t-th dimension
in the neighbor by in Eq. (6): 1) setting bϕ = 0 if ϕ = 1 and bϕ = −∞ otherwise where ϕ is the SPD; 2)
setting WK = et which is the t-th standard basis; WQ = 0 and the bias term (which is ignored in the previous
description for simplicity) of Q to be T1; and WV = et, where T is the temperature that can be chosen to be
large enough so that the softmax function can approximate hard max and 1 is the vector whose elements are all
1.

COMBINE. The COMBINE step takes the result of AGGREGATE and the previous representation of
current node as input. This can be achieved by the AGGREGATE operations described above together with
an additional head which outputs the features of present nodes, i.e., in Eq. (6): 1) setting bϕ = 0 if ϕ = 0 and
bϕ = −∞ otherwise where ϕ is the SPD; 2) setting WQ = WK = 0 and WV to be the identity matrix. Then
the FFN module can approximate any COMBINE function by the universal approximation theorem of FFN.

A.3 Proof of Fact 2

MEAN READOUT. This can be proved by setting WQ = WK = 0, the bias terms of Q,K to be T1, and
WV to be the identity matrix where T should be much larger than the scale of bϕ so that T 211⊤ dominates the
Spatial Encoding term.

B Experiment Details

B.1 Details of Datasets

We summarize the datasets used in this work in Table 6. PCQM4m-LSC is a quantum chemistry graph-level
prediction task in recent OGB Large-Scale Challenge, originally curated under the PubChemQC project [40].

13



Table 6: Statistics of the datasets.

Dataset Scale # Graphs # Nodes # Edges Task Type
PCQM4M-LSC Large 3,803,453 53,814,542 55,399,880 Regression

OGBG-MolPCBA Medium 437,929 11,386,154 12,305,805 Binary classification
OGBG-MolHIV Small 41,127 1,048,738 1,130,993 Binary classification
ZINC (sub-set) Small 12,000 277,920 597,960 Regression

The task of PCQM4M-LSC is to predict DFT(density functional theory)-calculated HOMO-LUMO energy gap
of molecules given their 2D molecular graphs, which is one of the most practically-relevant quantum chemical
properties of molecule science. PCQM4M-LSC is unprecedentedly large in scale comparing to other labeled
graph-level prediction datasets, which contains more than 3.8M graphs. Besides, we conduct experiments on two
molecular graph datasets in popular OGB leaderboards, i.e., OGBG-MolPCBA and OGBG-MolHIV. They are
two molecular property prediction datasets with different sizes. The pre-trained knowledge of molecular graph on
PCQM4M-LSC could be easily leveraged on these two datasets. We adopt official scaffold split on three datasets
following [20, 21]. In addition, we employ another popular leaderboard, i.e., benchmarking-gnn [14]. We use
the ZINC datasets, which is the most popular real-world molecular dataset to predict graph property regression
for contrained solubility, an important chemical property for designing generative GNNs for molecules. Different
from the scaffold spliting in OGB, uniform sampling is adopted in ZINC for data splitting.

B.2 Details of Training Strategies

B.2.1 PCQM4M-LSC

Table 7: Model Configurations and Hyper-parameters of Graphormer on PCQM4M-LSC.
GraphormerSMALL Graphormer

#Layers 6 12
Hidden Dimension d 512 768
FFN Inner-layer Dimension 512 768
#Attention Heads 32 32
Hidden Dimension of Each Head 16 24
FFN Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Embedding Dropout 0.0 0.0
Max Steps 1M 1M
Max Epochs 300 300
Peak Learning Rate 3e-4 2e-4
Batch Size 1024 1024
Warm-up Steps 60K 60K
Learning Rate Decay Linear Linear
Adam ϵ 1e-8 1e-8
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999)
Gradient Clip Norm 5.0 5.0
Weight Decay 0.0 0.0

We report the detailed hyper-parameter settings used for training Graphormer in Table 7. We reduce the FFN
inner-layer dimension of 4d in [47] to d, which does not appreciably hurt the performance but significantly
save the parameters. The embedding dropout ratio is set to 0.1 by default in many previous Transformer
works [11, 34]. However, we empirically find that a small embedding dropout ratio (e.g., 0.1) would lead to an
observable performance drop on validation set of PCQM4M-LSC. One possible reason is that the molecular
graph is relative small (i.e., the median of #atoms in each molecule is about 15), making graph property more
sensitive to the embeddings of each node. Therefore, we set embedding dropout ratio to 0 on this dataset.

B.2.2 OGBG-MolPCBA

Pre-training. We first report the model configurations and hyper-parameters of the pre-trained Graphormer
on PCQM4M-LSC. Empirically, we find that the performance on MolPCBA benefits from the large pre-training
model size. Therefore, we train a deep Graphormer with 18 Transformer layers on PCQM4M-LSC. The hidden
dimension and FFN inner-layer dimension are set to 1024. We set peak learning rate to 1e-4 for the deep

14



Table 8: Hyper-parameters for Graphormer on OGBG-MolPCBA, where the text in bold denotes the
hyper-parameters we eventually use.

Graphormer
Max Epochs {2, 5, 10}
Peak Learning Rate {2e-4, 3e-4}
Batch Size 256
Warm-up Ratio 0.06
Attention Dropout 0.3
m {1, 2,3,4}
α 0.001
ϵ 0.001

Graphormer. Besides, we enlarge the attention dropout ratio from 0.1 to 0.3 in both pre-training and fine-tuning
to prevent the model from over-fitting. The rest of hyper-parameters remain unchanged. The pre-trained
Graphormer used for MolPCBA achieves a valid MAE of 0.1253 on PCQM4M-LSC, which is slightly worse
than the reports in Table 1.

Fine-tuning. Table 8 summarizes the hyper-parameters used for fine-tuning Graphormer on OGBG-
MolPCBA. We conduct a grid search for several hyper-parameters to find the optimal configuration. The
experimental results are reported by the mean of 10 independent runs with random seeds. We use FLAG [26]
with minor modifications for graph data augmentation. In particular, except the step size α and the number
of steps m, we also employ a projection step in [60] with maximum perturbation ϵ. The performance of
Graphormer on MolPCBA is quite robust to the hyper-parameters of FLAG. The rest of hyper-parameters are the
same with the pre-training model.

B.2.3 OGBG-MolHIV

Table 9: Hyper-parameters for Graphormer on OGBG-MolHIV, where the text in bold denotes the
hyper-parameters we eventually use.

Graphormer
Max Epochs 8
Peak Learning Rate 2e-4
Batch Size 128
Warm-up Ratio 0.06
Dropout 0.1
Attention Dropout 0.1
m {1,2,3,4}
α {0.001, 0.01, 0.1, 0.2}
ϵ {0, 0.001, 0.01, 0.1}

Pre-training. We use the Graphormer reported in Table 1 as the pre-trained model for OGBG-MolHIV,
where the pre-training hyper-parameters are summarized in Table 7.

Fine-tuning. The hyper-parameters for fine-tuning Graphormer on OGBG-MolHIV are presented in Table
9. Empirically, we find that the different choices of hyper-parameters of FLAG (i.e., step size α, number of
steps m, and maximum perturbation ϵ) would greatly affect the performance of Graphormer on OGBG-MolHiv.
Therefore, we spend more effort to conduct grid search for hyper-parameters of FLAG. We report the best
hyper-parameters by the mean of 10 independent runs with random seeds.

B.2.4 ZINC

To keep the total parameters of Graphormer less than 500K per the request from benchmarking-GNN leader-
board [14], we train a slim 12-layer Graphormer with hidden dimension of 80, which is called GraphormerSLIM

in Table 4, and has about 489K learnable parameters. The number of attention heads is set to 8. Table 10
summarizes the detailed hyper-parameters on ZINC. We train 400K steps on this dataset, and employ a weight
decay of 0.01.

15



Table 10: Model Configurations and Hyper-parameters on ZINC(sub-set).
GraphormerSLIM

#Layers 12
Hidden Dimension 80
FFN Inner-Layer Hidden Dimension 80
#Attention Heads 8
Hidden Dimension of Each Head 10
FFN Dropout 0.1
Attention Dropout 0.1
Embedding Dropout 0.0
Max Steps 400K
Max Epochs 10K
Peak Learning Rate 2e-4
Batch Size 256
Warm-up Steps 40K
Learning Rate Decay Linear
Adam ϵ 1e-8
Adam (β1, β2) (0.9, 0.999)
Gradient Clip Norm 5.0
Weight Decay 0.01

Table 11: Hyper-parameters for fine-tuning GROVER on MolHIV and MolPCBA.
GROVER GROVERLARGE

Dropout {0.1, 0.5} {0.1, 0.5}
Max Epochs {10, 30, 50} {10, 30}
Learning Rate {5e-5, 1e-4, 5e-4, 1e-3} {5e-5, 1e-4, 5e-4, 1e-3}
Batch Size {64, 128} {64, 128}
Initial Learning Rate 1e-7 1e-7
End Learning Rate 1e-9 1e-9

B.3 Details of Hyper-parameters for Baseline Methods

In this section, we present the details of our re-implementation of the baseline methods.

B.3.1 PCQM4M-LSC

The official Github repository of OGB-LSC6 provides hyper-parameters and codes to reproduce the results on
leaderboard. These hyper-parameters work well on almost all popular GNN variants, except the DeeperGCN-VN,
which results in a training divergence. Therefore, for DeeperGCN-VN, we follow the official hyper-parameter
setting7 provided by the authors [29]. For a fair comparison to Graphormer, we train a 12-layer DeeperGCN.
The hidden dimension is set to 600. The batch size is set to 256. The learning rate is set to 1e-3, and a step
learning rate scheduler is employed with the decaying step size and the decaying factor γ as 30 epochs and 0.25.
The model is trained for 100 epochs.

The default dimension of laplacian PE of GT [13] is set to 8. However, it will cause 2.91% small molecules
(less than 8 atoms) to be filtered out. Therefore, for GT and GT-Wide, we set the dimension of laplacian PE to
4, which results in only 0.08% filtering out. We adopt the default hyper-parameter settings described in [13],
except that we decrease the learning rate to 1e-4, which leads to a better convergence on PCQM4M-LSC.

B.3.2 OGBG-MolPCBA

To fine-tune the pre-trained GIN-VN on MolPCBA, we follow the hyper-parameter settings provided in the
original OGB paper [21]. To be more concrete, we load the pre-trained checkpoint reported in Table 1 and
fine-tune it on OGBG-MolPCBA dataset. We use the grid search on the hyper-parameters for better fine-tuning

6https://github.com/snap-stanford/ogb/tree/master/examples/lsc/pcqm4m
7https://github.com/lightaime/deep_gcns_torch/tree/master/examples/ogb/ogbg_mol#

train

16

https://github.com/snap-stanford/ogb/tree/master/examples/lsc/pcqm4m
https://github.com/lightaime/deep_gcns_torch/tree/master/examples/ogb/ogbg_mol#train
https://github.com/lightaime/deep_gcns_torch/tree/master/examples/ogb/ogbg_mol#train


Table 12: Comparison to pre-trained Transformer-based GNN on MolHIV. * indicates that additional
features for molecule are used.

method #param. AUC (%)
Morgan Finger Prints + Random Forest* 230K 80.60±0.10

GROVER*[44] 48.8M 79.33±0.09
GROVERLARGE*[44] 107.7M 80.32±0.14

Graphormer-FLAG 47.0M 80.51±0.53

Table 13: Comparison to pre-trained Transformer-based GNN on MolPCBA. * indicates that
additional features for molecule are used.

method #param. AP (%)
GROVER*[44] 48.8M 16.77±0.36

GROVERLARGE*[44] 107.7M 13.05±0.18
Graphormer-FLAG 47.0M 31.39±0.32

performance. In particular, the learning rate is selected from {1e − 5, 1e − 4, 1e − 3}; the dropout ratio is
selected from {0.0, 0.1, 0.5}; the batch size is selected from {32, 64}.

B.3.3 OGBG-MolHIV

Similarly, we fine-tune the pre-trained GIN-VN on MolHIV by following the hyper-parameter settings provided
in the original OGB paper [21]. We also conduct the grid search to look for optimal hyper-parameters. The
ranges for each hyper-parameter of grid search are the same as the previous subsection.

C More Experiments

As described in the related work, GROVER is a Transformer-based GNN, which has 100 million parameters and
pre-trained on 10 million unlabelled molecules using 250 Nvidia V100 GPUs. In this section, we report the
fine-tuning scores of GROVER on MolHIV and MolPCBA, and compare with proposed Graphormer.

We download the pre-trained GROVER models from its official Github webpage8, follow the official instructions9

and fine-tune the provided pre-trained checkpoints with careful search of hyper-parameters (in Table 11). We
find that GROVER could achieve competitive performance on MolHIV only if employing additional molecular
features, i.e., morgan molecular finger prints and 2D features10. Therefore, we report the scores of GROVER
by taking these two additional molecular features. Please note that, from the leaderboard11, we can know such
additional molecular features are very effective on MolHIV dataset.

Table 12 and 13 summarize the performance of GROVER and GROVERLARGE comparing with Graphormer on
MolHIV and MolPCBA. From the tables, we observe that Graphormer could consistently outperform GROVER
even without any additional molecular features.

D Discussion & Future Work

Complexity. Similar to regular Transformer, the attention mechanism in Graphormer scales quadratically
with the number of nodes n in the input graph, which may be prohibitively expensive for large n and precludes its
usage in settings with limited computational resources. Recently, many solutions have been proposed to address
this problem in Transformer [24, 50, 55, 36]. This issue would be greatly benefit from the future development of
efficient Graphormer.

Choice of centrality and ϕ. In Graphormer, there are multiple choices for the network centrality and the
spatial encoding function ϕ(vi, vj). For example, one can leverage the L2 distance in 3D structure between two
atoms in a molecule. In this paper, we mainly evaluate general centrality and distance metric in graph theory, i.e.,
the degree centrality and the shortest path. Performance improvement could be expected by leveraging domain
knowledge powered encodings on particular graph dataset.

8https://github.com/tencent-ailab/grover
9https://github.com/tencent-ailab/grover/blob/main/README.md#

finetuning-with-existing-data
10https://github.com/tencent-ailab/grover#optional-molecular-feature-extraction-1
11https://ogb.stanford.edu/docs/leader_graphprop/

17

https://github.com/tencent-ailab/grover
https://github.com/tencent-ailab/grover/blob/main/README.md#finetuning-with-existing-data
https://github.com/tencent-ailab/grover/blob/main/README.md#finetuning-with-existing-data
https://github.com/tencent-ailab/grover# optional-molecular-feature-extraction-1
https://ogb.stanford.edu/docs/leader_graphprop/


Node Representation. There is a wide range of node representation tasks on graph structured data, such as
finance, social network, and temporal prediction. Graphormer could be naturally used for node representation
extraction with an applicable graph sampling strategy. We leave it for future work.

18


