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ABSTRACT

This paper is motivated by recent research in the d-dimensional stochas-
tic linear bandit literature, which has revealed an unsettling discrepancy:
algorithms like Thompson sampling and Greedy demonstrate promising
empirical performance, yet this contrasts with their pessimistic theoretical
regret bounds. The challenge arises from the fact that while these algo-
rithms may perform poorly in certain problem instances, they generally
excel in typical instances. To address this, we propose a new data-driven
technique that tracks the geometric properties of the uncertainty ellipsoid
around the main problem parameter. This methodology enables us to for-
mulate a data-driven frequentist regret bound, which incorporates the geo-
metric information, for a broad class of base algorithms, including Greedy,
OFUL, and Thompson sampling. This result allows us to identify and
“course-correct” problem instances in which the base algorithms perform
poorly. The course-corrected algorithms achieve the minimax optimal re-
gret of order O(dv/T) for a T-period decision-making scenario, effectively
maintaining the desirable attributes of the base algorithms, including their
empirical efficacy. We present simulation results to validate our findings
using synthetic and real data.

1 INTRODUCTION

Multi-armed bandits (MABs) have garnered significant attention as they provide well-
defined framework and techniques for investigating the trade off between experimentation
(learning) and rewards (earning) and in sequential decision-making problems. In MAB
problems, a decision-maker sequentially selects actions from a given set and observes corre-
sponding uncertain rewards. The MAB setting also extends to scenarios where the decision
rewards can be personalized by the presence of features or covariates, leading to contextual
bandits, as showcased in a large number of recent applications (Langford & Zhang) [2008;
Li et al.l 2010 [Tewari & Murphy], 2017; [Zhou et al. 2020} [Villar et al.| 2015; |[Bastani &
Bayati, 2020; |Cohen et al., |2020)). This paper focuses on a well-studied class of models
that captures both MABs and contextual bandits as special cases while being amenable to
theoretical analysis: the stochastic linear bandit (LB) problem. In this model, the problem
parameter 6* represents an unknown vector in R¢, while the actions, also vectors in R,
yield noisy rewards with a mean equal to the inner product of 8* and the chosen action.
The objective of a policy is to maximize the cumulative reward based on the observed data
up to the decision time. The policy’s performance is measured by the cumulative regret,
which quantifies the difference between the total expected rewards achieved by the policy
and the maximum achievable expected reward.

Achieving this objective necessitates striking a balance between exploration and exploita-
tion. In the context of LB, this entails selecting actions that aid in estimating the true
parameter 6* accurately while obtaining optimal rewards. Various algorithms based on the
optimism principle have been developed to address this challenge, wherein the optimal ac-
tion is chosen based on the upper confidence bound (UCB) (Lai & Robbins| |1985; |Auer,
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2002; Dani et al., [2008; Rusmevichientong & Tsitsiklis, [2010). Another popular strategy
is Thompson sampling (TS), a Bayesian heuristic introduced by Thompson| (1933) that
employs randomization to select actions according to the posterior distribution of reward
functions. Additionally, the Greedy policy that selects the myopically best action is shown
to be effective in contextual bandits (Kannan et al.l |2018; Raghavan et al.l [2018; Hao et al.
2020; Bastani et al., [2021)).

In the linear bandit setting, two types of regret are considered. The Bayesian regret is
applicable when the parameter 6* is treated as a random variable with a prior distribution.
In this case, the regret is averaged over three sources of randomness: the observation noise,
the randomized algorithm, and the random parameter 6*. Intuitively, the Bayesian regret
measures the expected performance of the algorithm over different realizations of the pa-
rameter 0*. Russo & Van Roy (2014) and Dong & Van Roy| (2018) establish an O(dv/T)
upper bound for the Bayesian regret of the Thompson Sampling (TS) heuristic, referred to
as LinTS, which matches the minimax optimal bound shown by Dani et al.| (2008). Here,

O refers to the asymptotic order, up to polylogarithmic factors.

On the other hand, the frequentist regret assumes a fixed, unknown parameter 6*, and the
expectation is taken only with respect to the randomness of the noise and the algorithm.
In this frequentist setting, the optimism-based algorithm proposed by |[Abbasi-Yadkori et al.
(2011), known as Optimism in the Face of Uncertainty Linear Bandit Algorithm (OFUL),

achieves a O(d\/T ) frequentist regret bound, which matches the minimax optimal Bayesian
bound. However, for a frequentist variant of LinTS, referred to as TS-Freq, which modifies
the posterior distribution by increasing its variance, |Agrawal & Goyal| (2013) and |Abeille
et al.| (2017) provide a O(dv/dT) upper bound for the frequentist regret. This regret bound
falls short of the optimal rate by a factor of v/d. Recent work by Hamidi & Bayati| (2020a))
confirms that this modification is necessary, and thus, the frequentist regret of LinTS cannot
be improved. For the Greedy algorithm in linear bandit problems, no general theoretical
guarantee exists (Lattimore & Szepesvaril [2017)), and hence both LinTS and Greedy might
perform suboptimally.

Despite the theoretical gaps in performance, LinTS has shown strong empirical performance
(Russo et al., 2018)), indicating that the inflation of the posterior distribution may be unnec-
essary in most problem instances, and unfavorable instances are unlikely to occur frequently.
Similarly, the Greedy algorithm works well in typical instances (Bietti et al., |2021). Ad-
ditionally, while optimism-based algorithms are computationally expensive (generally NP-
hard as discussed by [Dani et al.| (2008)); |Russo & Van Roy| (2014); |Agrawal| (2019)), LinTS
and Greedy are known for their computational efficiency. This unsettling disparity between
theoretical, computational, and empirical performance has motivated our investigation into
the following two questions: Is it possible to identify, in a data-driven fashion, problematic
instances where LinTS and Greedy could potentially fail and apply a “course-correction”
to ensure competitive frequentist regret bounds? And can this be achieved without com-
promising their impressive empirical performance and computational efficiency? In this
paper, we provide positive answers to both questions. Specifically, we make the following
contributions.

1. We develop a real-time geometric analysis technique for the d-dimensional confidence
ellipsoid surrounding #*. This method is crucial for maximizing the use of historical data,
advancing beyond methods that capture only limited information from the confidence ellip-
soid, such as a single numerical value. Consequently, this facilitates a more precise “course-
correction”.

2. We introduce a comprehensive family of algorithms, termed POFUL (encompassing
OFUL, LinTS, TS-Freq, and Greedy as specific instances), and derive a general, data-driven
frequentist regret bound for them. This bound is efficiently computable using data observed
from previous decision epochs.

3. We introduce course-corrected variants of LinTS and Greedy that achieve minimax
optimal frequentist regret. These adaptations maintain most of the desirable characteristics
of the original algorithms.
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The distinguishing feature of our study from the existing literature is the geometric analysis
of the d-dimensional confidence ellipsoid. Specifically, we conduct an analysis considering
the size, shape, position, and orientation of the confidence ellipsoid during the execution of
bandit algorithms. This enables real-time characterization of the set of potentially optimal
actions, leading to the establishment of a data-driven regret bound.

1.1 OTHER RELATED LITERATURE

Our work is closely related to three main research streams: methodological foundations of
linear bandits, bandit algorithms utilizing spectral properties, and data-driven exploration
techniques. While these works share some similarities with our approach, we highlight the
key differences and the unique aspects of our methodology.

From a methodological perspective, our regret analysis builds upon the foundations laid by
Abbasi-Yadkori et al.| (2011)), |Agrawal & Goyal (2013)), and |Abeille et al.| (2017)). However,
a key distinguishing factor is that our approach does not rely on optimistic samples, which
is a departure from previous methods. This means that the algorithms we study do not
always choose actions that are expected to perform better than the true optimal action. By
allowing non-optimistic samples, we avoid the need to inflate the posterior distribution, a
requirement in the works of |Agrawal & Goyal (2013) and |Abeille et al.| (2017)).

Our use of spectral information in bandit algorithms bears some resemblance to the study of
Spectral Bandits (Valko et al., 2014} [Kocak et al.l |2014; [Kocak et al., |2020; Kocak & Gariv-
ier, [2020). These works represent arm rewards as smooth functions on a graph, leveraging
low-rank structures to improve algorithmic performance and obtain regret guarantees inde-
pendent of the number of actions. In contrast, our approach exploits the spectral properties
of the action covariance matrix, which is distinct from graph spectral analysis. Moreover,
our research tackles the broader context of stochastic linear bandits without assuming any
low-rank structure.

Our work also shares conceptual similarities with research on exploration strategies (Russo
& Van Roy, [2016; [Kirschner & Krause, [2018) and data-driven exploration reduction (Bastani
et al 2021; |Pacchiano et al., [2020; Hamidi & Bayati, [2020a3b). However, our methodology
and data utilization differ significantly. For instance, [Bastani et al.| (2021]) focuses on the
minimum eigenvalue of the covariance matrix, a single-parameter summary of the observed
data, while |Hamidi & Bayati| (2020b) uses information from one-dimensional reward con-
fidence intervals. The work of Hamidi & Bayati| (2020a) is more closely related to ours,
as it employs spectral information to improve the performance of Thompson Sampling in
linear bandits. They use a single summary statistic called the thinness coefficient to de-
cide whether to inflate the posterior. In contrast, our approach leverages the full geometric
details of the d-dimensional confidence ellipsoid, harnessing richer geometric information.

2 SETUP AND PRELIMINARIES

Notations. We use ||-|| to denote the Euclidean 2-norm. For a symmetric positive definite

matrix A and a vector z of proper dimension, we let ||z||4 = VxT Az be the weighted 2-
norm (or the A-norm). We let (-,-) denote the inner product in Euclidean space such that
(z,y) = xTy. For a d-dimensional matrix V, we let Ay (V) > Xo(V) > --- > X\g(V) be the
eigenvalues of V arranged in decreasing order. We let B; denote the unit ball in R?, and
Si—1 = {x € R4 : ||z|| = 1} denote the unit hypersphere in R%. For an interger N > 1, we let
[N] denote the set {1,2,...,N}. We use the O(-) notation to suppress problem-dependent

constants, and the O(-) notation further suppresses polylog factors.

Problem formulation and assumptions. We consider the stochastic linear bandit
problem. Let 6* € RY be a fixed but unknown parameter. At each time t € [T], a pol-
icy m selects action x; from a set of action X; C R? according to the past observations
and receives a reward r; = (x4, 0*) + &;, where &; is mean-zero noise with a distribution
specified in Assumption [3] below. We measure the performance of 7 with the cumulative

expected regret R(T) = EtT:l(x;‘, 0*) — (x¢,0*), where x7 is the best action at time t, i.e.,
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x} = argmaxgcy, (z,0%) . Let F; be a o-algebra generated by the history (zy1,71,...,2¢,74)
and the prior knowledge, Fy. Therefore, {F;};>0 forms a filteration such that each Fj
encodes all the information up to the end of period t.

We make the following assumptions that are standard in the relevant literature.

Assumption 1 (Bounded parameter). The unknown parameter 8* is bounded as ||0*|| < S,
where S > 0 is known.

Assumption 2 (Bounded action sets). The action sets {X;} are uniformly bounded and
closed subsets of RY, such that ||z|| < X; for all z € X, and all t € [T], where X;’s are
known and sup;», { X} < oo.

Assumption 3 (Subgaussian reward noise). The noise sequence {ei}i>1 is condition-
ally mean-zero and R-subgaussian, where R is known. Formally, for all real valued ),
E [e***|F] < exp (A2R?/2). This condition implies that B [e,|F;] = 0 for all t > 1.

2.1 REGULARIZED LEAST SQUARE AND CONFIDENCE ELLIPSOID

In this subsection, we review the useful frequentist tools developed by |[Abbasi-Yadkori et al.
(2011) for estimating the unknown parameter 6* in linear bandit (LB) problems.

Consider an arbitrary sequence of actions (x1,...,x;) and their corresponding rewards
(r1,...,7¢). In LB problems, the parameter 6* is typically estimated using the regular-
ized least squares (RLS) estimator. Let A be a fixed regularization parameter. The sample

covariance matrix V; and the RLS estimate é\t are defined as follows:

t t
Vi=Aegla+ Y ez, O=V,'Y zor.. (1)
s=1

s=1

The following proposition from |Abbasi-Yadkori et al. (2011 establishes that the RLS esti-
mate 6; concentrates around the true parameter 6* with high probability.

Proposition 1 (Theorem 2 in [Abbasi-Yadkori et al| (2011)). Let 6 € (0,1) be a fized
confidence level. Then, with probability at least 1 — 0, it holds for all x € R? that

0 S
|0 < llzlly, - B,

RLS 5
VS Bi5 nme ’<9€7 0r — 6%)
t

where the confidence bound ﬁﬁ%}?m is defined as

Areg + )42 2y
BE5 =R\/ 210g 2 25 T g, 2)

Hereafter, we might omit the dependence of §; on ¢ if there is no ambiguity. Propostion
enables us to construct the following sequence of confidence ellipsoids.

Definition 1. Fiz § € (0,1). We define the RLS confidence ellipsoid as

ERLS(6) ={# e RL: |10 — 64|y, < 55{75@ .

The next proposition, known as the elliptical potential lemma, plays a central role in bound-

ing the regret. This proposition provides the key element in the work of [Abbasi-Yadkori

et al.| (2011)), showing that the cumulative prediction error incurred by the action sequence

used to estimate 6* is small.

Proposition 2 (Lemma 11 in [Abbasi-Yadkori et al.| (2011)). If Apey > 1, for an arbitrary
. t 2 det(Viq1) t

sequence (x1,...,x¢), it holds that Y | ||xs||V;1 < 2log 7(1;()\;*0}) < 2dlog (1 + m) .

3 POFUL ALGORITHMS

In this section, we introduce POFUL (Pivot OFUL), a generalized framework of OFUL.
This framework enables a unified analysis of frequentist regret for common algorithms.
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At a high level, POFUL is designed to encompass the exploration mechanism of OFUL
and LinTS. POFUL takes as input a sequence of inflation parameters {i;}.c[r, feasible

(randomized) pivots {gt}te[T] and optimism parameters {7; };c;7). The inflation parameters

are used to construct confidence ellipsoids that contain {&f}te[T] with high probability. This
is formalized in the next definition.

Definition 2. Fiz § € (0,1) and &' = 6/2T. Given the inflation parameters {vs}ieir), we
call random variables {at}tE[T] feasible pivots if for allt € [T], P [gt € E,EPVT(CS’)\FJ >1-0,

where we define the “pivot ellipsoid” as EFVT(5) == {0 eR: |0 - 51&”\/}, < Ltﬂiififg}.

At each time t, POFUL chooses the action that maximizes the optimistic reward

7  argmas < ) + Ttllzlvlﬂfﬁimg> | G
TEX: ¢ /

as shown in a pseudocode representation in Algorithm [I] and illustrated in Figure [Ta]

Recall OFUL encourages exploration by introducing the uncertainty term 7|z, -1 ﬁtRéL/S)\ .
t E) y/\re,

in the reward, while LinTS explores through random sampling within the confidence ellip-
soid. We let POFUL select an arbitrary pivot (which can be random) from £'V7 and max-
imize the optimistic reward to encompass arbitrary exploration mechanisms within V7.

Algorithm 1 POFUL

Require: T, 0, Areg, {tt}ierr), {7eteein
Initialize Vp < AL 65 < 0, 8’ < 6/2T
fort=0,1,..., T do
Sample a feasible pivot gt with respect to ¢; according to Definition

Ty 4+ argmax,c y, ((a:, 0:) + Tt||37Hv;1ﬁtl,%5L'fg>\mg)

Observe reward r;
~~T
Yt+1 — Vi + 2y

1 t ~
9t+1 <— ‘/tJrl Zs:l TgTs.
end for

We demonstrate that POFUL encompasses OFUL, LinTS, TS-Freq, and Greedy as special
cases, as illustrated in Figure

Example 1 (OFUL). For stochastic linear bandit problems, OFUL chooses actions by solv-
ing the optimization problem max,cx, (x,0:) + ||x||vflﬂ5§:9/\mg. Therefore, OFUL is a spe-
cially case of POFUL where 1y =0, 7z = 1 and §t = é\t, the center of the confidence ellipsoid,
for allt € [T).

Before describing how T'S can be derived as an instance of POFUL, we introduce a definition.

- - - - -POFUL
0;, )t ) 5 ,
Bro2) 273 ||, BEES (8") (01, x)yr = =TS
e - -OFUL ) .
- (O, x)= (O, )1 (04, x)=(0,, x)= — = Greedy
2L,H1¢H‘,,}45{?L5 (0") T
Parameter Reward
| space: R? space: R
o
(a) (b)

Figure 1: a) POFUL algorithms illustration. (b) Special cases: Greedy, TS, and OFUL.
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Definition 3. Let 6 € (0,1). We define DSA(8) as a distribution satisfying

Py psag) [IInl <1] =21 —4.

Example 2 (TS). Linear Thompson Sampling (LinTS) algorithm is a generic randomized

algorithm that samples from a distribution constructed from the RLS estimate at each step.
~ _1

At time t, LinTS samples as 0; = 0; + 115 BELS (6")V,” 20, where §' = §/2T, and 1I'% is an

inflation parameter controlling the scale of the sampling range, and n; is a random sample

from a normalized sampling distribution D34(8') that concentrates with high probability.
~ _1

LinTS is a special case of POFUL where 1, = 1%, 7, = 0 and 0; = 0, + . BELS (6)V, 2.

Setting the inflation parameter u = O(1) corresponds to the original LinTS algorithm. On

the other hand, setting 1, = O(v/d) corresponds to the frequentist variant of LinTS studied
in |Agrawal & Goyal (2013); |Abeille et al| (2017), namely TS-Freq. This means TS-Freq

inflates the posterior by a factor of order V/d.
Example 3 (Greedy). Greedy is a special case of POFUL with vy = 1, = 0, gt = é\t, Vt.

4 FREQUENTIST REGRET ANALYSIS OF POFUL

In this section, we present the frequentist regret analysis of POFUL algorithms. We defer
all proofs to Appendix [C] We first introduce useful concentration events that hold with
high-probability.

Definition 4. Fiz ¢ € (0,1) and 6’ = §/2T. We define ﬁfg{gm = 1, (8)BEES,  and

’
10" Areg

&::{Wgt:“@-@*

RLS 1. Mo _7n PVT
< ﬂt,af,w}, A, = {\fs <t:|p -0, < ﬂw,,w}.
t t

We also define A; = le\t N JZt .
Proposition 3. Under Assumptions[i} [4 and[3, we have P[Ar] > 1 — 6.

4.1 AN DATA-DRIVEN REGRET BOUND FOR POFUL

In the following, we condition on the event Ar which holds with probability 1 — §. The
following proposition bounds the instantaneous regret of POFUL.

Proposition 4. Suppose 0* € EELS(8') and 0, € EPVT(8'), it holds that

(@}, 07) = (@0,07) < (L v = m)llat - B35, + L+ ) @lly -1 B3, (4)

Note that this upper bound is different from what’s used in the optimism-based methods
(Abbasi-Yadkori et al., |2011; |Agrawal & Goyall [2013; Abeille et al., [2017), we reproduce
their upper bound and discuss the relationship of our method and theirs in Appendix

On the right-hand side of equation 4, since the oracle optimal action sequence {z} };c[r]

is unknown to the algorithm and is different from the action sequence {Z}.c[r) played by

POFUL, one cannot apply Proposition |2 to bound the summation Zil ||Et||%,_1 and get
t

an upperbound of the regret. To fix the problem due to this discrepancy, the key point is
connecting {Z }se(r] and {z} }iezy in terms of the V;~'-norm. This motivates the following
definition.

Definition 5. For eacht > 1, let x; and x respectively denote the action chosen by POFUL
and the optimal action. We define the uncertainty ratio at timet as oy = ||}y, —1/[|Z¢]|y -1
t t

We also define the (instantaneous) regret proxy at time t as pg == (14t —7¢) + 1+ 1+ 7.

Note that (z,0, — 6*) < ||x||v;1ﬂtRLS holds with high probability, we have that ||zl

essentially determines the length of the confidence interval of the reward (z,6*). Hence, oy
serves as the ratio of uncertainty degrees of the reward obtained by the optimal action x}
and the chosen action Z;.



Under review as a conference paper at ICLR 2025

The intuition behind the definition for p; is constructing a regret upper bound similar to that
of OFUL. Specifically, Proposition [4| indicates (z7, 6*) — (Z¢, 0*) < pe||Z¢|| -1 B, and we
t

can check that the instantaneous regret of OFUL satisfies (x], 0%)— (T, 0%) < 2||Z¢||}, -1 B7E5.
t

In this sense, u; is a proxy of the instantaneous regret incurred by POFUL at time t¢.
Moreover, OFUL can be regarded as a POFUL algorithm whose p; is fixed at 2, and we
could extend the definition of a; to OFUL by solving p: = (1 + ¢ — 1) + 1+ ¢+ + 7+ and
set ay = 1 for all ¢ € [T] for OFUL (recall that in OFUL, ¢y = 0 and 7 = 1 for all ¢ € [T7).

The following Theorem connects {is}ierr) and R(T'). It provides an oracle but general
frequentist regret upper bound for all POFUL algorithms.

Theorem 1 (Oracle frequentist regret bound for POFUL). Fiz ¢ € (0,1) and let 6’ = §/2T.
Under Assumptions[d] [ and[3, with probability 1 — 6, POFUL achieves a regret of

T
T
)< 2 (Yot s (1455 Yo ®
reg

t=1

Remark 1. We call Theorem |1 an oracle regret bound as {i}e[r) for general POFUL
depends on the unknown system parameter 0*. In general, they cannot be calculated by
the decision-maker. Nevertheless, when we have upper bounds for v; and 7+, as well as
computable upper bounds {Qt }+eir) for {ai}ieir) respectively, using pu? <202(1 4 — 1)+
2(1+u4+7¢)2, we could calculate upper bounds for {ut}rerr) as well. Consequently, Theorem
instantly turns into a data-driven regret bound for POFUL and could be utilized later for
course correction, which will be the aim of the next section. When we additionally know
that 1 + 1 — ¢ is non-negative, we would use the equality py = ap(1+ 1, — 1) + 1+ 10 + 7%
directly for the bound.

Remark 2. In the Discussion section of |Abeille et al| (2017), the authors introduce a
concept similar to the reciprocal of our ay. They suggest that the necessity of proving LinTS

samples are optimistic could be bypassed if for some a > 0 LinTS samples 0; such that
lz*(0) [y, —1 > alz*(07)||\,~1 with constant probability ,where x*(6;) and x*(0f) represent
t t

the optimal actions corresponding to 0, and 0F, respectively. They pose this as an open
question regarding the possibility of relaxing the requirement of inflating the posterior. In the
following section, we provide a positive answer to this question by studying the reciprocal of
their a using geometric arguments. This investigation offers an explanation for the empirical
success of LinTS without the need for posterior inflation.

5 A DATA-DRIVEN APPROACH

In this section, we present the main contribution of this work which provides a data-driven
approach to calibrating POFUL. Note that ¢; and 7; are parameters of POFUL that can
be controlled by a decision-maker, the essential point is to find a computable, non-trivial
upper bound @; for the uncertainty ratio oy, which turns into an upper bound i, for the
regret proxy p; that’s deeply related to the frequentist regret of POFUL.

Typically, we can check that a; is no less than one because when Z; = z}, we have a; =
H:L'?Hfol / ||%t||vf—1 = 1 and @; is an upper bound for ;. As a result, it holds that iy =
(I4+a)(I4+u)+ 1 —a)m < (I4+a)(1+), ie., setting 7 = 0 yields a valid upper bound
for f1;. Given this observation, we will focus on scenarios where 73 = 0 for all ¢ € [T]. Such
scenarios include LinTS and its variants like T'S-Freq as well as Greedy - all of which are
standard algorithms that still lack theoretical regret guarantee results.

In the subsequent analysis, we construct upper bounds {a};¢[r) for the continuous-action
scenario. Bounds for the discrete-action scenario are in Appendix

5.1 CONTINUOUS ACTION SPACE.

Our strategy capitalizes on geometric insights related to the properties of the confidence
ellipsoids, providing upper bounds that can be computed efficiently.
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For the sake of a better illustration, we consider X; = Sq_; for all ¢ € [T] for this scenario,
where Sg_1 = {# € R? : ||z = 1} is the unit hypersphere in R?.This is a standard example
of continuous action space, and is the same as the setting considered in |Abeille et al.| (2017)).
We remark that for this specific setting, the problem is still hard. This is because we don’t
have a closed-form solution for the set of potentially optimal actions.

In this setting, the optimal action x7(0) == argmax, ¢ y, (7, 0) takes the form z}(0) = 6/||6].
To upper bound «y, we consider respectively the smallest and largest value of th*(e)”v,‘l

for § in the confidence ellipsoids of §, namely, £ and EFVT. Specifically, we have
supgessrs 47 (O)lly,

nfyeervr 7 (0)y

Qi

(6)

As is illustrated in Figure [2] the set of potentially optimal actions C; is the projection of
the confidence ellipsoid & onto S;—1. It’s hard to get a closed-form expression for C;, so
we cannot directly calculate the range of V;*-norm of actions in C;. Nevertheless, we can
approximate the range by investigating the geometric properties of the ellipsoids.

The intuition here is that, when POFUL has implemented sufficient exploration so that &
is small enough, C; concentrates accordingly to a small cap on Sy_1. All actions within C;
point to similar directions and thus have similar V;-norm. (Note that for a unit vector z,
we have that ||z||y, can be written as a weighted summation of the eigenvalues of V;, where
the weights are determined by the direction of x.) Therefore, it is possible to estimate the
range of the V;-norm by employing geometric reasoning. Subsequently, this estimated range
will be utilized to ascertain the range of the V, *-norm.

\—,_ projection C;

LA =S

Figure 2: Illustration of potentially optimal actions set C; in R?. (a): C; is &’s projection
onto Sg—1. (b): As more data is collected, & shrinks (colors show exploration levels).
Potentially optimal actions point in similar directions, determining their V;-norm. This
suggests their V;-norm range could be estimated geometrically.

The main theorem (proved in Section derives an upper bound for a; based on this idea.
Theorem 2. Suppose X; = Sq—1 for allt € [T]. Define my = (”é\t”%/t —( tRLS)Z)/(Hé\tH +

RLS IN4(V2))?, My = ”@H%/f/(”at”%/f — (BPVT)?). Let k € [d] be the integer that satisfies
(V) < My < Mg (V). Define BPVT = 1,815 and

_ O AT V) = m AT VOA V)E,if [0l > R
A * (V0), if 16l < IS

_ O AL 0A) = M (VO (V))E,if 18l > 8PV
A (), if 10llv, < BV

Then for allt € [T], conditioned on .,Zl\t N jt, it holds for all s <t that ag < a5 = §s/Vs.

To better understand what Theorem [2] implies, we discuss some special cases in Appendix [G]
and provide empirical validations for them.
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6 A META-ALGORITHM FOR COURSE-CORRECTION

This section demonstrates how the data-driven regret bound can enhance standard bandit
algorithms. We propose a meta-algorithm that creates course-corrected variants of base
algorithms, achieving minimax-optimal frequentist regret guarantees while preserving most
original characteristics, including computational efficiency and typically low regret.

We take LinTS as an example of the base algorithm, and propose the algorithm Linear
Thompson Sampling with Maximum Regret (Proxy) (TS-MR). The idea is to measure the
performance of LinTS using fi; and avoid bad LinTS actions by switching to OFUL actions.
Specifically, at each time ¢, TS-MR calculates the upper bound fi; and compares it with a
preset threshold p. If @iy > p, LinTS might be problematic and TS-MR takes an OFUL
action to ensure a low instantaneous regret; if u; < p, TS-MR takes the LinTS action. We
remark that setting ¢; = 0 for all ¢ € [T] yields the corresponding Greedy-MR algorithm.
The pseudocode is presented in Algorithm [2] in Appendix [H]

By design, course-corrected algorithms maintain p;, < max{u,2} for all ¢ € [T]. Theorem
yields their optimal frequentist regret, up to a constant factor.

Corollary 1. TS-MR and Greedy-MR achieve a frequentist regret of (5(max{,u, 2}dV/T).

Proof. Note that p; < max{u,2}, by Theorem [1} we have

R(T) < \/2dT(maX{u, 2})2log (1 + T ) TE,{SI’?Areg = O(max{p, 2}dVT).

>\rcg
O

Remark 3. In practice, the choice of the threshold u depends on the problem settings. In
a high-risk setting where LinTS and Greedy fail with high probability, one can set a small
u so that TS-MR and Greedy-MR select more OFUL actions to guarantee the mecessary
amount of exploration. In a low-risk setting where original LinTS and Greedy algorithms
work well, one can set a large u and hence TS-MR and Greedy-MR select TS and greedy
actions respectively to avoid unnecessary exploration and save the computational cost.

7 SIMULATIONS
We aim to compare TS-MR, Greedy-MR, and key baseline algorithms, via simulation.

7.1 SYNTHETIC DATASETS

12000 80001 . Ts.MR [ e TS-MR
7000 Greedy-MR 20000 Greedy-MR
10000 5 — LinTs — LinTS
— TS-MR 560001 . 15Freq —— TS-Freq
80001 Greedy-MR | & 5000{ —— OFUL | —— oFuL
~— LinTS —

v .
6000 2 4000 Greedy ~ Greedy
—— TSFreq £
-~ OFUL S 3000
— Greedy

Cumulative Regret
Cumulative Regret
" S I
g 8 2
g 8 B
g 8 8

3 2000

R S 1000 S e y ﬂ
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Time Time Time

(a) example 1 (b) example 2 (c) example 3

Figure 3: Comparison of the cumulative regret incurred by TS-MR and Greedy-MR, versus
the baseline algorithms in Examples 1-3.

We conduct simulations on three representative synthetic examples. The detailed experi-
mental setups for these examples are presented in Appendix [F]

Example 1. Stochastic linear bandit with uniformly and independently dis-
tributed actions. This is a basic example of standard stochastic linear bandit problems
without any extra structure. TS-Freq shows pessimistic regret due to the inflation of the
posterior, while other algorithms in general perform well.
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Example 2. Contextual bandits embedded in the linear bandit problem (Abbasi-
Yadkori, 2013)). In this setting, Greedy performs suboptimally due to a lack of explo-
ration for some arms. Nevertheless, Greedy-MR outperforms both Greedy and OFUL by
adaptively choosing OFUL actions only when it detects large regret proxy fis.

Example 3. Prior mean mismatch (Hamidi & Bayati, 2020a). This is an example
in which LinTS is proven to incur linear Bayesian regret. We see both LinTS and Greedy
incur linear regrets as expected, while TS-MR and Greedy-MR, switch to OFUL adaptively
to tackle this hard problem and achieve sublinear regret.

7.2 REAL-WORLD DATASETS

We explore the performance of standard POFUL algorithms and the proposed TS-MR, and
Greedy-MR algorithms on real-world datasets. We consider three datasets for classification
tasks on the OPENML platform, Cardiotocography, JapaneseVowels and Segment. They
focus on healthcare, pattern recognition, and computer vision problems respectively.

Setup. We follow the approach in the literature (Bietti et all [2021; [Bastani et al.| [2021)
that converts classification tasks to contextual bandit problems, and then embeds it into
linear bandit problems in the same way as Example 2 in Section Specifically, we regard
each class as an action so that at each time, the decision-maker assigns a class to the
feature observed and receives a binary reward, namely 1 for assigning the correct class and
0 otherwise, plus a Gaussian noise.

We plot the cumulative regret (averaged over 100 runs) for all algorithms. Figure |4| shows
that for all real-world datasets: OFUL and TS-Freq perform poorly due to their conservative
exploration; LinTS and Greedy are achieving empirical success even though they don’t have
theoretical guarantees; TS-MR and Greedy-MR retain the desirable empirical performance
of LinTS and Greedy, while enjoying the minimax optimal frequentist regret bound.

= TS-MR
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- LinTS
—=— Ts-freq
~ OFUL
—+— Greedy

= TS-MR
Greedy-MR
-~ LinTS
—=— Ts-freq
+— OFUL
—— Greedy

14007
‘ 1200{ —— TS-MR
Greedy-MR

-~ LinTS

—=— TS-freq

+— OFUL

—— Greedy

1200

t
-
o
3
S

1000

800
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Cumulative Regret
Cumulative Regref

400‘ — = e ——
‘ - o
200 e 200 // 200
Ol o o o '/*/L
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200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
i Time

(a) Cardiotocography dataset.  (b) JapaneseVowels dataset. (c) Segment dataset.

Figure 4: Cumulative regret of all algorithms on real-world datasets.

8 (CONCLUSION

In this work, we propose a data-driven framework to analyze the frequentist regret of PO-
FUL, a family of algorithms that includes OFUL, LinTS, TS-Freq, and Greedy as special
cases. Our approach allows for the computation of a data-driven frequentist regret bound
for POFUL during implementation, which subsequently informs the course-correction of the
algorithm. Our technique conducts a novel real-time geometric analysis of the d-dimensional
confidence ellipsoid to fully leverage the historical information and might be of independent
interest. As applications, we propose TS-MR and Greedy-MR algorithms that enjoy prov-
able minimax optimal frequentist regret and demonstrate their ability to adaptively switch
to OFUL when necessary in hard problems where LinTS and Greedy fail. We hope this
work provides a steady step towards bridging the gap between theoretical guarantees and
empirical performance of bandit algorithms such as LinTS and Greedy.
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A SKETCH OF THE PROOF

In this section, we present the proof of Theorem [2| In the remaining part of this section, we
use a general confidence ellipsoid &;(0) = {9 € R |0 — Oy, < ﬁt(é)} to represent LS

and EFPVT | since the proof works for both of them.

First note that, when ||6;||v, < f, the bound in Theorem [2| becomes

ar < A F(V)/AT 2 (V) = VA (V) Aa(Ve).

This bound holds trivially using the fact that A\ (V;) < [lz[|§, < Xa(V;). This is the case
when the data is insufficient and the confidence interval is too large to get a non-trivial

upper bound for a;.

In the following, without loss of generality we assume ||6;|3, > 7. The proof decomposes
into three steps. In the first two steps, as is illustrated in R? in Figure|5l we cut out a special
hypersurface H; within & and show that for all # € H;, the corresponding optimal action
2*(6) has Vi-norm bounded from above and below. Note that the set of optimal actions
for 0 € H; coincides with that for € &;, we get upper and lower bounds for V;-norm of
all potential actions in the ellipsoid. Next, we show that upper and lower bounds for the
Vi-norm can be converted into upper and lower bounds for the Vt_l—norm by solving a linear
programming problem. Hence, we get an upper bound for a; by calculating the ratio of
the upper bound to the lower bound. We sketch the proof below and postpone the detailed
proof for all lemmas in this section to Appendix [B]

/
/
/

A N iy SN
! At s’

7 ,/\\?j{t/}’ggt N{o: 10llv, = ¢:}

’ 7SN

; {0 10l = ¢}

Figure 5: Illustration of Step 1 and 2 in R2. Orange dashed rays: rays starting from
the origin might have different numbers of intersections with &, indicating whether the
corresponding action lies in the projection of & onto Sz_1. Blue dashed curve: the ellipsoid
with fixed V;-norm {6 : ||0||v, = ¢+}. The intersection of this ellipsoid and &; has the same

projection as & onto Sy_1.

In the following, we let ¢; :== 4/ ||§f||%/t — B2, which is well-defined since we assume |||y, >

Bt. In geometry, one can show that for a ray starting from the origin and intersecting &;
only at one point, ¢; is the V;-norm of the intersection point.

Step 1. Upper Bounding the Vi;-norm of actions. Our first lemma investigates
such intersection and provides an upper bound for the Vi-norm for the optimal actions
corresponding to any 6 € &. The proof is based on investigating the condition for a ray
paralleling an action € S;_1 to intersect with &, which means x is in the projection of &
onto Sg—1 and might become the optimal action x*(0).

13
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Lemma 1. For any 6 € &, we have ||z*(0)|v, < ||§t||vf/¢t-

Step 2. Lower Bounding the V;-norm of actions. In order to lower bound the
Vi-norm, we define the hypersurface H; = & N {0 : ||0||v, = ¢:}, i.e., the intersection of
the interior of the confidence ellipsoid & and the ellipsoid {6 : ||0]|v, = ¢+}. H: consists of
0 € & whose Vi-norm is ¢;. One can check H; is non-empty since ¢:0:/||0:||v, € &, and the
projection of ‘H; onto S;_1 is the same as that of & by convexity. Hence, it suffices to only
consider # € H,; as the corresponding set of optimal actions coincides. A lower bound for
the Vi-norm is given by the following lemma.

Lemma 2. For any 0 € &, we have

bt

*(0 > — .
2" (0)llv, = B3 B/l

The proof is directly using the fact that for any 6 € H;, we have |0 < H§t|| + B/ Aa(Vy)
and [|0||y, = ¢¢. Also recall x*(0) = 6/]|0|| and hence ||z*(0)||v, = |0]]v,/]|0]]-

Step 3. Bounding the Vfl-norm of actions The following lemma determines the
range of action z’s Vfl-norm based on its Vi-norm range. It turns out that the two ranges
can be related using the spectral information of the sample covariance matrix V;, which is
related to the shape of the confidence ellipsoid.

Lemma 3. Let {A\1,A2,..., AN, } be the set of distinct eigenvalues of V' such that A\ >
A2 > - > AN, > 0. Let x € By satisfies 0 <m < ||1'||‘2/ < M. We have

i 1 7 M
D VD VA DV

1 1 m
<l < N + N g (7)

where k is such that A\ = max;cn,1{\s > M}.
The proof involves expressing the V- and V" !-norms as weighted sums of V’s eigenvalues,
then solving a linear programming (LP) problem constrained by the norm ranges.

By inserting the upper and lower bounds of the V;-norm from Lemmas[T]and [2]into Lemmal/|3]
we finalize the proof of Theorem

B PROOF OF LEMMAS FOR THEOREM [2]

B.1 PRroor oF LEMMma I

Proof. Let § = tx where z is any unit vector in R? and ¢t € RT is a scalar. Consider the
equation that characterizes the intersection {tz : t € R }N&;, namely (tz—6,) "V, (trx—0;) <
B7. Equivalently, we have t?||z||3, — 2tz V;0; 4+ ¢7 < 0. This quadratic inequality of ¢ has

at least one solution if the discriminant is non-negative, i.e. 4(;5—'—‘/}5)2 > 4||z||3,¢7. Then
by direct computation,

lllv: <

(2TVi8)? _ VaTay/B)TVIVB _ [1Bely
on N oy R

Note that 6 € & if and only if 6 is on a ray starting from the origin and intersects & at

one or more points. Namely, § = tz for some x that satisfies 4(:cTVt§)2 > d|z||}, o7, we
conclude the proof.

O
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B.2 PROOF OF LEMMA 2]

Proof. Note that for any 8§ € H; C &, it holds that [|0]| < [|f¢] + B:/Xa(V;). Also, by the
construction of H;, we have ||0||v, = ¢+. Then by direct computation, we have
Ollv, ¢
ot @)y = W > O
id 10:1] + Be/Aa (Vi)

To prove the same result for any 6 € &, we only need to show there exists 6’ € H; such that
x*(0) = z*(0'). To see this, let x = 0/||0|| and consider the intersection {tz : t € RT} N &,
which is non-empty by our choice of #. Similar to the proof of Lemma [I} the discriminant

is non-negative, i.e. 4(zV;0)% > A3, o7

Now consider the intersection {tz : t € R} N 0&, where we let 0& =
{0 ER: |0 —Oyly, = ﬁt(é)} be the border of the ellisoid. The intersection points are
characterized by the solution to

2|z, — 2tz Vi8; + ¢? = 0. (8)

If 4(:10—'—‘/;5)2 = 4|z}, #7 and there is only one intersection point, namely 6 itself, we have
0= 2[l2lf$, — 2tx Vil + 67 = *|2l|¥, — 2tlwllvi e + &F = (ltzllv; — d0)*.
Therefore, we have ||0]|v, = |[tz|v, = ¢¢, i-e. 0 € Hy.

If 4(zTV,0)% > 4|23, ¢7, it follows that 2TV, > ||z|lv,¢. This inference is valid given

that :Jvté > 0, which can be verified using Equation equation [§] and noting that ¢ > 0.
Consider the solutions to equation

TV, ) (@TViB)? — |23, 07 £V, 4\ (@TViB)? — a3, 07
2 ; ta= 2
ER E

We only need to show |tiz||v, < ¢¢ < ||t2z||v,, then by the continuity of || - ||y, and the
convexity of &, there exists t’ € (t1,t2) such that ||t'z||y, = ¢:. Then 6’ == t'x € H; is the
desired point. By direct computation,

t1 =

£Vl — /(@ TViB)? — |23, 67

[trllv, =
' v,

We only need to prove

2TVils — llallviér < \/(@TViB)? — ||, 47
Note that

(@ Vi, — |lzllv,80)? = (¢ Vi0)? — 22 Vil |||, + [lz]1}, 07
< (x"Vi)? = 2||z|I}, 07 + |23, 07

= (¢"V40)? — |l«ll3, 07

! =

where we have used the fact that = V;0 > lz|lv, ¢ in the ineuglity. Taking square root
for both sides yields the desired result, and hence [|t1z||y, < ¢:. Similarly, one can show
¢¢ < ||t2z|]v,. This concludes the proof.

O

B.3 ProoOF orF LEMMA B

Proof. Let {1, A2, ..., AN, } be the set of distinct eigenvalues of V. By the spectral theorem,
V can be decomposed as V = UAUT, where the columns of U consist of orthonormal
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eigenvectors of V', denoted by {11, .., Ulng, U21y- s Udngy -y UNy 1y -« - s UNy Ny, }, where

ny,...,ny, are the algebraic multiplicity of the eigenvalues respectively Since V is a

symmetric matrix, the eigenvectors for a basis of R? and we have Z 1mi = d. We can

write x as a linear combination x = Z 1 2y wijuij, where Z YN wy; = 1. Define

a; =35 LW by direct computation, we have ZZ 1a; =1 and ||z]|} = 2121 Aia; and
N

2} =322 A7

Now we study the range of ||z||3,_, when [z}, is bounded as m < [z[|} < M. First, let’s
focus on maximizing ||x||%/,1, it suffices to solve the LP problem

Ny Nv Ny Ny
rnaximizeZa,;)\i_1 s.t. Vi,a; >0, Zai =1, Zai)\,; >m, Zai)\i < M.
i=1 i=1 i=1

i=1

The Lagrangian is given by

Ny Ny Ny Ny Ny
i=1 i=1 i=1 i=1 i=1
The KKT conditions are given by
Vo, L =M1 —u+n)\ 7)\ + Ky = 0,4,
aZ>OVZlea1—1 leal)\ >mzllal)\-§M, )
n>0,v>0,k; >0,Vi,
n(vavl aidi —m)=0,v(M — ZZ 1aix) =0, ka0, = 0, Vi.

To satisfy the first condition above, k;’s can only be zero for at most two indices. Hence,
a; can only be non-zero for at most two distinct eigenvalues, denoted by A; and Aj;, where
i < jand A\; > A;. Namely, the solution to equation |§| lies in the subspace spanned by the
eigenvectors corresponding to A; and A;.

Let y = [|z[|3,, we have a;\i +a;A; = y and a;A; ' +a;A; " = [[z[|3,_,. Note that S g =
a; + a; = 1, by direct computation, the closed form of ||w||%/_1 is given by ||;10Hv_1 =
)\L""%_ﬁ_ FQys Ais Ag)-

Clearly, we have

f _ 1
A <?’
of 1/ 1

Then the maximum of ||J:HV , is obtained when \; = A, A; = An,,, y = m. Therefore, the
solution to the LP problem is any unit vector z},,, that lies in the subspace spanned by the
eigenvectors corresponding to A\; and Ay, . Moreover, we have

1 1 m

* 2 _ _
”xmaxHV*1 - A\ + /\NV )\1/\Nv :

Similarly, by investigating the KKT conditions for the LP problem that minimize
Z a;A;", the minimum of ||z||?_, is obtained when \; = A\, \; = M1, y = M,
where k is such that Ak = maX;e|n, ]{)\ > M}, and hence A\gy1 = mingepn,j{\i < M}. The
solution vector is any unit vector x};, that lies in the subspace spanned by the eigenvectors
corresponding to A\; and Agy1, and we have

1 1 M
||‘r:ninHV*1 = >\7k

Net1 A Abin
This concludes the proof.

16



Under review as a conference paper at ICLR 2025

C OTHER PROOFS

C.1 PROOF OF ProOPOSITION [3]

Proof. By Propostion [T} we have
P [«Z{T} =P [ﬂle {||9t 9*||Vt>ﬂtR§L/S reg}}

T
>1- 3 P10 - 0 v, .
t=1

>1-0
- 2

Similarly, by Definition [2] we have

P [Ar] = [, {Bger 617

1ye (Oi€5V ()1

t=1

J
>1——.
- 2
Combining the two inequalities above, we have P [Ar] > 1 — 4. O

C.2 PROOF OF PROPOSITION [4]
Proof. Since 0* € ERLS(¢') and 6, € EFVT(8'), it holds that

10" = B:llv, < BEES., 118 — Bullv, < BEVT(8) = uBEES, . (10)

xeé, xeé,

In the following, we drop the dependence on ¢’ and A,eq for notation simplicity. We have
(c7,0%) — (@, 0%) = (@16 = (a1.00)) + ((a7,00) = (@1.6))
+ (@000 — @0.00) + (@000 — (7,67 -
To bound the second term on the right hand side, recall by Equation equation [3]the POFUL
action z; satisfies
(@}, 00) + Tel| iy 755 < (@, 00) + Tl Eally -0 575,

1ﬁtRLS 15RLS.

Rearranging the ineuglity, we obtain (z7, ;) — (%, 8;) < Tt||5t||v; — 7ty ||v

The other three terms are bounded similarly using the Cauchy-Schwarz inequality, the tri-
angle ineuqlity of the V;”'-norm, and the concentration condition equation As a result,
we have

(@r,0%) = (27,00 < (1 + o)}y 75,

(Te,0r) — (@1, 0) < Lt||$t||v—1ﬂRLS7

(&1, 00) — (%,0%) < 1Zelly, -8
Combing all terms above, we have

(@f,0%) = (@,0") < (L o0 = )l lly -1 8755 + (14 ve + 1) 1Tl 8755
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C.3 PROOF OF THEOREM [1]

Proof. We formally prove Theorem (1| for completeness. The proof techniques are developed
in previous papers (Abbasi- Yadkori et al., |2011; |Agrawal & Goyal, 2013} |Abeille et al., |2017)).

Throughout the proof, we condition on the event A, which holds with probability 1 — 4§ by
Proposition [3} Applying Proposition [} we obtain

R(T) <) (a7, 07) — (@, 0)) I{A:}

&~
I
-

B

<) (Ut —m)llaflly-1 B, + e+ )@l B,

reg,

&~
Il
—

Recall sz”‘/f—l = Oét”it”‘/t—l and py = oq(1+ 1 — 7¢) + 1 4+ ¢4 + 7¢, we have

T

Z 1Zelly, -1 B

Applying the Cauchy-Schwarz inequality and Proposition 2} note that max;c(r) Bﬁ%ireg =

BRES Aveg? We ODtain

T 2 T
R(T) < | Y a2 Zﬂt( 1) < 2dlog<1 ) S 2Rk,
t=1 )

t=1

This concludes the proof. O

D REGRET DECOMPOSITION OF POFUL

To discuss the relationship between our method and those based on optimism (Abbasi-
Yadkori et al.| [2011; |Agrawal & Goyal, |2013; |Abeille et al., |2017)), we decompose the regret
of POFUL into three terms, and sketch how they are bounded separately.

Let 2} = argmax ¢ y, (z,0*) be the optimal action and #; be the action chosen by POFUL,
the regret decomposes as

T
R(T) = Y (a},6%) — (3,6%)

W
Il
-

M=

T T
(z7,0%) mtaat +Z 17t,9t $t"9t +Z It,et (@, 0%) .
t=1 t=1

~
Il

1

'RPE(T) RPVT(T) RRLS(T)

RELI(T) is the regret due to the estimation error of the RLS estimator. Note that Z;’s are
the action sequence used to construct the RLS estimate. By Proposition [2] their cumulative
V, '-norm is bounded by 2dlog(1 + t/\.g). Hence, the upper bound of RFS(T) is es-

sentially determined by the V;-distance between Ht and 6*, which, via the Cauchy-Schwarz
inequality, is characterized by the radius of the confidence ellipsoid ERLS . RPVT(T) corre-

sponds to the regret due to the exploration of POFUL by choosing the pivot parameter 6;
rather than using Ot as OFUL would. Similar to R*%%(T'), the upperbound for this term
is related to the V;-distance between 9t and Gt, which is controlled by construction and de-
pends on the inflation parameter t;. As a result, it can be shown that RELS(T') = O(dv/T)
and RPVT(T) = O(d(X]_, 12)/?) with probability 1 — §. Notably, RELS(T) = O(dvV/'T),
matching the known minimax lowerbound. For RFV7T(T) to match this lower bound as
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well, one way is to set ¢, = O(1) for all ¢ € [T]. However, it is known that, see for example
(Agrawal & Goyall |2013; |Abeille et al.l [2017; Hamidi & Bayati, 2020a)), such selection could
be problematic for bounding R*#(T).

REE(T) corresponds to the pessimism term. In the Bayesian analysis of LinTS, the expec-

tation of this term is 0, with respect to 8*, as long as gf and 0* are sampled from the same
distribution, which occurs when LinTS has access to the true prior distribution for *. In
the frequentist analysis, however, we need to control the pessimism term incurred by any

random sample 6;.

For OFUL, this term is bounded properly with high probability by the optimistic selection
of OFUL actionsﬂ For LinTS, the only known analysis due to |Agrawal & Goyal| (2013]) and
Abeille et al.| (2017) gives a bound of order (’S(d\/ﬁ ) using an optimism-based approach,
which is worse than the Bayesian regret by a factor of v/d. The key component of their
proof is introducing inflation to the posterior variance by setting ¢y = (’3(\/&) to enforce
exploration. For example, |Abeille et al. (2017) demonstrate that by using inflation, LinTS
samples optimistic 67t with a probability greater than a constant, which means that the
inequality (x},0%) < (T, [9}> holds with a constant probability.

For Greedy, there is no general theoretical guarantee for bounding the pessimism term
without imposing additional structural assumptions. Our approach to tackle this challenge
distinguishes us from methods based on optimism (Agrawal & Goyal, [2013; |Abeille et al.,
2017). Interestingly, |Abeille et al| (2017)) conjectured that non-optimistic samples may
provide beneficial exploration and help control the growth of regret.

By relaxing the requirement for optimistic samples, we avoid inflating the posterior, which
in turn prevents a v/d-gap in the regret. Instead, we introduce a measure of the “quality” of
POFUL actions with respect to the regret and develop a computable upper bound for this
quality using geometric information in the data. This approach yields a data-driven regret
bound for POFUL that matches the minimax optimal regret in some settings. Furthermore,
it allows for the construction of variants of LinTS and Greedy with a provable frequentist
regret bound that is minimax optimal up to only a constant factor.

E DISCRETE ACTION SPACE

This section introduces the method for establishing an upper bound on «a; in the context of
discrete action spaces. It turns out that the process involves comparing confidence interval
lengths across all potentially optimal actions.

To see this, recall for an arbitrary action x € X}, by Proposition [I} with high probability its
expected reward is bounded as

Li(w) = (2.8) — ullely - 875, < (@.0%) < (0.8 + ullely- 875, = Uil).

The confidence interval length is proportional to ||z||;,-1. Therefore, to characterize the
t
range of ||x}][, -1, we only need to identify the set of potentially optimal actions and calculate
t

the minimal V,”'-norm among all actions in that set.

Note that for an action x € A} to remain potentially optimal, it cannot be dominated by
another action. Le., we require U;(z) > maxycx, Li(y). Therefore, define

Ce(B) = {w € Xo: (2, 00) + |lally—+ > max {y,6:) = llylly -5},

the set of potentially optimal actions is given by Ci( ﬁ%ireg). Similarly, the set of actions

that might be chosen by POFUL is given by Cy( fg{gmg), where we let fFV7T == 1, RS, The
inflation parameter ¢; turns out to control the conservativeness when eliminating actions.

!The term is further split into two parts as shown in the first few lines of proof of Proposition
E| in Appendix with one term bounded by the optimism and the other term controlled by the

V., distance between 6* and ;.
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By comparing the range of V[l—norm for both sets, an upper bound @; for the uncertainty
ratio a is given by

N SUPzec. (BRLS, ) |\I||v;1

Q= = . (11)

infzect(ﬁfg/,i\reg) Hxnvfl

F  DETAILS OF SYNTHETIC ENVIRONMENTS

Example 1. Stochastic linear bandit with uniformly and independently dis-
tributed actions. We fix d = 50, and sample 6* ~ Unif({6 € R¢|||§|| = 10}) on a sphere
with fixed norm. At each time ¢, we generate 100 i.i.d. random actions sampled from
Unif(S4—1) to form X;. This is a basic example of standard stochastic linear bandit prob-
lems without any extra structure. We set the threshold p = 8 for TS-MR and Greedy-MR.
We average simulation results over 100 independent runs.

Example 2. Contextual bandits embedded in the linear bandit problem (Abbasi-
Yadkori, [2013). We fix d = 50, and sample §* ~ Unif({# € R?|||0| = 70}). At each time
t, we first generate a random vector u; ~ A(0,T5) and let Tt € R°° be the vector whose
i-th block of size 5 is a copy of u;, and other components are 0. Then X; = {x¢}iepo) is
an action set of size 10, sharing the same feature u; in different blocks. This problem is
equivalent to a 10-armed contextual bandit. We set y = 12 for TS-MR and Greedy-MR.
Again, we average simulation results over 100 independent runs.

Example 3. Prior mean mismatch (Hamidi & Bayati, 2020a). This is an example
in which LinTS is shown to incur linear Bayesian regret. We sample 6* ~ N (mlsg,34)

and fix the action set X; = {0,z4,2p} for all t € [T], where xz, = —Zle \/Eﬁ, Ty =

Z?in jé;d — Zle jﬁ It is shown in [Hamidi & Bayati| (2020a)) that, when LinTS takes
a wrong prior mean as input, it has a large probability to choose T5 = 0, conditioned on
T1 = x4. Note that choosing the zero action brings no information update to LinTS, it
suffers a linear Bayesian regret when trying to escape from the zero action. We let m = 10
and set d = 10, so the problem is a 30-dimensional linear bandit. We ser u = 12 for TS-MR
and Greedy-MR. We carried out 100 independent runs.

G EXAMPLE CASES AND EMPIRICAL VALIDATIONS OF THEOREM [2]
To better understand what Theorem [2]implies, we discuss some special cases in this section.

Case 1: a pure exploration regime. When the decision-maker doesn’t care about
the regret and adopts a pure exploration algorithm that plays actions in all directions
sequentially, we expect A\;(V;) = O(t) for all i = 1,...,d. Then a; < C for some constant
C > 0. Specifically, if V; = DI for some constant D > 0, we have Hx||vt71 = D7 Yz|| =Dt

for all x € S4_1 and hence a; =1 .

Case 2: linear structures. When the reward takes a linear form in the action, for
example, the stochastic linear bandits we study, it’s observed in practice that the estimate

HAt tends to align in the first eigenspace of the uncertainty structure V; (empirically validated
below). To see this, note that in order to maximize the reward in an online manner, bandit
algorithms tend to select actions towards the confidence ellipsoid centered at @, hence forcing
more exploration along the direction of 93, especially at the late stage of the algorithm when
the ellipsoid is small. The following proposition states that, as long as the center (9; of the
confidence ellipsoid &; tends to be aligned with the first eigenspace of V4, the corresponding
uncertainty ratio tends to 1, indicating a regret bound matching the minimax 6(d\/f ) rate
by Theorem [T} This provides a plausible explanation for the empirical success of LinTS and
Greedy.
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.
16.1%,

0012
(164 ]]

Proposition 5. Suppose lim;_, = M (V4), it holds that limy_,o ap = 1.

Proof. This corresponds to the case where m, M — A;(V;) in Lemma[3] Without loss of gen-
erality, we let M > Ao(V;). Then @, = (A7 (V2) + A1 (Vi) — mAT (Vo)A (VA) /(A (Vi) +
Nt (V) = MA (V)N (V) = AT (V) /AT (Vi) = 1. O

To empirically confirm that Case 2 is not merely theoretical, we examine the condition

o o . . 6112, /116:11 ~
outlined in Propos1t10n Our focus is on the ratio ¢; := % Notably, [|6;]|3, tends

to approximate )\1||§t||2 when 8, is proximate to the top eigenspace of V;. Consequently,
this ratio serves as a proxy of the alignment of 6; with the top eigenspace of V;. Specifically,
a (¢ value of 1 signifies that 6; is within the top eigenspace.

We resort to Example 1 from Section [7] which epitomizes the general linear bandit problem
in its standard form. The empirical sequence (; is depicted in Figure [6]

1.09 ® - -

0.9 A

0.8 A

0.7 A

&
0.6
0.5 —=— TS-MR
Greedy-MR

—— LinTS

041 —=— TS-Freq
—e— OFUL

0.3 A —¥— Greedy

0 500 1000 1500 2000 2500

Time
Figure 6: Evolution of the alignment proxy (; in Example 1.

Figure |§| reveals that for every bandit algorithm, the value of (; is notably high (exceeding
0.9) at the early stages of implementation and gradually converges towards 1. This ob-
servation validates the behavior outlined in Case 2. Furthermore, the consistency of this
phenomenon across all examined bandit algorithms suggests that such a tendency is likely
a characteristic of the online nature of these algorithms.

It is important to note that the initial sharp decline observed is attributed to the behavior of
the regularized least squares estimator in over-parameterized scenarios, when t is less than
the dimension d.
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H TS-MR AND GREEDY-MR ALGORITHMS

Algorithm 2 TS-MR (Greedy-MR)

Require: T, 0, {t¢ }e[r), 1
Initialize Vp < Al 61 < 0, &' « §/2T
fort=1,2,...,T do
Calculate a; using Theorem
/l}(—at(l—i—bt)—l—l—i—q
if /-/It < 1% then
Sample 7; ~ DS4(8’) (defined in Section
~ ~ 1
O < 0 + Ltﬂtlis%,sx Vi e
Ty < arg maXyex, (T, ;)
else _
Ty ¢ argMaXgyex, arg MaXgegrrs (g (T, Or)
end if
Observe reward r;
Yt+1 — ‘/;g + xtm;—

—1 t
0t+1 $— V;+1 Zs:l o
end for

reg

I FractioN oF OFUL ACTIONS

In this section, we show the fraction of OFUL actions used in Greedy-MR and TS-MR in
all experiments. Notabaly, the results show that OFUL actions are only frequently used at
certain beginning stage of the time horizon. This indicates that:

e The proposed Greedy-MR and TS-MR algorithms only implement OFUL actions
when necessary, and the fraction of OFUL remains low in most of the time horizon.
Hence, the computational cost remains relatively low.

e Limited amount of course-corrected exploration at the beginning efficiently fixed
TS and Greedy in the problematic instances.
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Figure 7: Fraction of OFUL actions of TS-MR and Greedy-MR on synthetic and real-world
data.
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J INFLUENCE OF p

In this section, we investigate the influence of p and discuss how to choose it. We vary
the value of p and conduct simulations on Example 2 and the Segment dataset as done in
Section E The former represents a scenario where course-correction is necessary (other-
wise LinT'S fails), while the latter represents a practical scenario where course-correction is
unnecessary. The results are shown in Figures [§ and [0

We have the following observations on the influence of p:

o In general, as p increases, the fraction of OFUL actions decreases. For a sufficiently
small p, the algorithms become OFUL (e.g., TS-MR in Figures and @ For
a large p, the algorithms are similar to the original algorithms (e.g., TS-MR and
Greedy-MR in Figures |8c¢|and .

e By optimizing the choice of pu, the performance of the corrected algorithm might
outperform both OFUL and the base algorithm (e.g., Greedy-MR in Figures and
. This demonstrates that TS/Greedy-MR are not merely naive interpolations
between TS/Greedy and OFUL, and that proper exploration in the initial stage
benefits the long-term performance of the algorithms.

e Aslong as pu isn’t too small, the performance of the course-corrected algorithm are
relatively robust to the choice of u. The simulations show p € [8,12] is a good
initial choice.

Tuning p. In practice, we recommend setting 1 to a moderate value, typically within the
range [8,12], as validated by our simulation results. The selection of p should be guided
by heuristics that ensure an appropriate proportion of course-corrected exploration during
the initial stage. A suitable p value is indicated when the fraction of OFUL actions is high
at the beginning and gradually decreases to and maintains a low level. If the fraction of
OFUL actions remains consistently high, increasing p can help reduce computational costs.
Conversely, if very few OFUL actions are executed during the initial stage, decreasing pu
may be beneficial. Finally, we note that since algorithmic performance remains robust
across moderate values of u, the precise selection of p is unlikely to be a significant practical
concern.
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Figure 8: Cumulative regret and fraction of OFUL actions of TS-MR and Greedy-MR. on
example 2.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1200{ —— TS-MR
— Greedy-MR

+ 1000} —— LinTs
5 —— TS-Freq
& 8001 . oruL
v —-

¢ o0 Greedy
s

g 400

5

o

200

0

1200] —— TS-MR
— Greedy-MR

4 1000] ——— (inTs

5 —— TS-Freq
& 8001 . opuL

@ —

¢ 600 Greedy
k5

g 400

5

o

200 _ -

0

1200{ —=— TS-MR
— Greedy-MR

4 10001 —— LinTs
5 —— TS-Freq
& 8001 . ofuL
] -

£ w0 Greedy
=

g 400

5

o

N
S
3

o

0 200 400 600 800 1000 1200 1400

(a) Segment dataset, p = 4

0 200 400 600 800 1000 1200 1400

(b) Segment dataset, u = 8

0 200 400 600 800 1000 1200 1400
Time

(c) Segment dataset, pn =12

1.0

I3
®

o
o

—— TS-MR
— Greedy-MR

o
S

Fraction of OFUL Actions
)
N

o
°

10 —— TSMR
— Greedy-MR

o e 4
* o ®

Fraction of OFUL Actions
e
o

4
°

1.0 —— TSMR
— Greedy-MR

o g e
» o ®

Fraction of OFUL Actions
e
o

" 0 e )

o4
°

0 200 400 600 800 1000 1200 1400

Time

(d) Segment dataset, =4

0 200 400 600 800 1000 1200 1400

Time

(e) Segment dataset, p =8

0 200 400 600 800 1000 1200 1400

(f) Segment dataset, p = 12

Figure 9: Cumulative regret and fraction of OFUL actions of TS-MR and Greedy-MR. on

Segment datasets.
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