
SketchGen: Generating Constrained CAD Sketches
Supplementary Material

Wamiq Reyaz Para1 Shariq Farooq Bhat 1 Paul Guerrero2

Tom Kelly3 Niloy Mitra2,4 Leonidas Guibas5 Peter Wonka1

1 KAUST 2 Adobe Research 3 University of Leeds
4 University College London 5 Stanford University

Abstract

In this document we provide additional details and experiments. We give a descrip-
tion of the primitives and constraints used, define the full grammar of our sequences
and the key notation used in the paper. A description of the complete experimental
setup and the metrics used to measure the quality of different sampling strategies is
also provided. Additionally, we provide more quantitative and qualitative results
for our sampled sketches and provide a few examples of failure cases. We also
include additional experiments with conditional versions of our model, that are
conditioned on sketch images.

1 Primitives and Constraints

When designing a sketch in a CAD package, a user is typically given access to a set of primitives
from which they can create complex shapes. While this set of primitives may differ from package to
package, certain primitives are ubiquitous - points, lines, circles, and arcs. Most people are familiar
with their properties and can manipulate them easily and intuitively. These packages then create more
complex but commonly used building blocks - rectangles, rounded rectangles, etc, from these simpler
primitives.

In addition to primitives, constraints are often used in CAD packages to define geometric relationships
between primitives that should be maintained during the design exploration process, for example
coincident constraints on line endpoints to form a longer polyline. These constraints may refer to
either to sub-parts of a primitive, as in the polyline example above, or the whole primitive, like a
vertical constraint on a line.

A complete list of primitive types and constraint types we use in our experiments are shown in
Tables 1, 2, and 3. For primitives, we provide all sub-parts that can be target of a constraint, all
parameters and an example use case in Table 1. For constraints, we provide all parameters, a short
description and an example use case in Tables 2 and 3.

In addition to the primitives we use, CAD packages often include additional primitives like splines.
In the SketchGraphs dataset [7], splines only occur in a small percentage (< 3%) of the sketches,
making it hard to accurately learn them from data. For this reason, we defer them to future work.

2 Complete Grammar

In the interest of space, we only included part of the grammar in the main paper. The complete
grammar we use is shown in Figure 1.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Table 1: A list of primitives that we support and a visualization to describe their semantics. We use
the parameterization used in OnShape [1], where primitives are often over-parameterized to facilitate
editing operations. A line, is defined by a point x, y, a direction u, v from that point, and an interval
a, b, describing the length of the line segment in the positive and negative direction u, v, starting
from the point. An arc is defined by its center x, y, a radius r, a direction u, v, and an interval a, b
describing the angular extent of the arc in the clockwise/counterclockwise direction, starting from
u, v. The parameter c is an indicator used to flip the direction of a, b. A circle is defined in the same
way, but without the interval a, b, which is implicitly assumed to cover the whole circle.

Primitive Sub-references Parameters Visualization

point Whole x, y
x

y

line
Start
End

Whole
x, y, u, v, a, b Start

End

Whole
(x, y) + a(u, v)

(x, y)

(x, y) + b(u, v)

arc

Start
End

Center
Whole

x, y, u, v, r, c, a, b Whole
Start

Center
End

a
b

r

(u, v)

circle Center
Whole x, y, u, v, r, c Center

Whole

(x, y)

r

Table 2: A list of constraints that we support and a visualization to describe their semantics. A point
is parameterized by its coordinates (x, y). A line is parameterized by a point on the line (x, y) (that
doesn’t have to be the midpoint), a direction (u, v) and two scalar parameters (a, b) to describe how
far the two end points are from the midpoint along the given direction. (Continued in Table 3.)

Constraint Parameters Description Visualization

coincident λ1, µ1, λ2, µ2
Makes two points coincident.
The points can be sub-references of primitives.

Line1, Start, Line2, End

Arc1, Start, Line1, End

horizontal λ1, µ1, λ2, µ2
Imposes a horizontal constraint
on one/two primitives.

Line1, Whole, Line1, Whole

Line1, Start, Line2, End

2

Table 3: (Continued) A list of supported constraints and a visualization to describe their semantics.
Constraint Parameters Description Visualization

vertical λ1, µ1, λ2, µ2
Imposes a vertical constraint
on one/two primitives.

Line1, Whole, Line1, Whole

Line1, Start, Line2, End

parallel λ1, λ2 Constrains two lines to be parallel.

Line1, Line2

Line1, Line2

perpendicular λ1, λ2 Constrains two lines to be perpendicular..

Line1, Line2

Line1, Line2

midpoint λ1, µ1, λ2
Makes one primitive’s sub-reference
the midpoint of another.

Circle, Center, Line1

Point1, Whole, Line1

equal λ1, λ2 Makes one primitive’s parameters equal to another’s.

Line1, Line2

Arc1, Arc2

tangent λ1, λ2
Constrains a line and a
circle/arc to be tangential.

Line1, Circle1

Arc1, Line1

3

Figure 1: Full CAD sketch language grammar. Each sentence represents a syntactically valid sketch.

S = P, C

P = Λ, P, {Λ, P}, Ω
P = point | line | circle | arc

point = τ point, κ, location
line = τ line, κ, location, direction, range

circle = τ circle, κ, location, direction, radius, rotation
arc = τ arc, κ, location, direction, radius, rotation, range

location = x, y
direction = u, v

range = a, b
radius = r

rotation = c

C = Λ, C, {Λ, C}, Ω
C = coincident | parallel | equal

| horizontal | vertical | midpoint
| perpendicular | tangential

coincident = νcoincident, ref, sub, ref, sub
parallel = νparallel, ref, ref

equal = νequal, ref, ref
horizontal = νhorizontal, ref, sub, ref, sub

vertical = νvertical, ref, sub, ref, sub
midpoint = νmidpoint, ref, sub, ref

perpendicular = νperpendicular, ref, ref
tangential = ν tangential, ref, ref

ref = λ
sub = µ

3 Notation

The full list of key notation in our paper is given in Table 4.

Table 4: Summary of key notation used in the paper.
Symbol Description

Q The sequence of tokens representing our sketches.

Qx The sequence of tokens from level x of the syntax tree.

Q3 The sequence of tokens describing the primitive type (line, point, . . .) for each token inQ

Q4 The sequence of tokens describing the parameter type (location, ref, . . .) for each token inQ

Λ Token marking the start of a new primitive in the sequenceQ.

Ω Token marking the end of the primitive and constraint sub-sequences ofQ.

τ
Token describing the type of primitive.
All following tokens up to the next Λ are considered part of the primitive.

ν
Token describing the type of constraint.
All following tokens up to the next Λ are considered part of the constraint.

κ Token indicating if a primitive is a construction aid.

λ Token corresponding to a reference (and index) into a list of primitives.

µ Token describing the sub-reference type (Start, End, Center, Whole)

gP (·) The primitive model. Modeled as a masked Transformer decoder.

e(·, ·) (Constraint model). The primitive encoder of the constraint model.
Modeled as an unmasked Transformer encoder

gC(·) (Constraint model). The pointer generator for the constraint model.
Modeled as a masked Transformer decoder

ξ Learnable embedding

f/h Features for primitives/constraints.

4

4 Detailed Experimental Setup

4.1 Architecture

Our architectural building blocks are Transformer [9] blocks with self-attention [2], stacked in mul-
tiple layers. We used GPT-2 [5] style blocks with code based on the HuggingFace [11] library as
the starting point. The primitive model is then a standard Transformer decoder with autoregressive
masking. The constraint model is a Pointer-Network [10] with the pointer model masked autoregres-
sively and an unmasked encoder. We add support for our embedding strategy and our additional input
sequences.

4.2 Training

For training all our models, we used a constant learning schedule, with no weight decay. We used
Dropout [8] with a probability of 0.2 after calculating all embeddings, and within each attention head.
The constraint model was trained with gradient clipping to a norm of 1.0 to improve training stability.
We trained the Primitive Model for 40 epochs, and the constraint model for 80 epochs. The primitive
model took about 30 hours to train, while the constraint model took about 16 hours. For both models,
we use early stopping on the validation dataset, using the model with the best performance on the
validation set.

4.3 Setup for the SketchGraphs Baseline

We re-train the SketchGraphs [7] baseline on our subset of the SketchGraphs dataset using code
obtained from the author’s GitHub repository1. We try to follow their training scheme as closely as
possible and make only a few changes to improve training times - for the complete generative model,
SG-sketch, we double the batch size from 8192 to 16384 and use 4 GPUs instead of 3.

We use the same subset of constraints that we use in our method to train the autoconstraint model,
SG-constraint. For the complete generative model SG-sketch however, we need to use all constraints
that are available in the dataset for a fair comparison. The SketchGraphs baseline does not directly
generate primitive parameters, it only generates a set of constraints on the parameters, that need to
be solved to obtain the actual primitive parameters. Without the full set of constraints, the primitive
parameters would be underdetermined, i.e. not well-defined after solving the constraints.

4.4 Setup for the DeepSVG Baseline

DeepSVG is designed to be a generative model for SVGs. Consequently it models only primitives,
not constraints. SVGs are composed of mulitple paths each of which itself is composed of multiple
commands. In order to train DeepSVG with our encoding, we map a single primitive to a single
path, and each path then only consists of a single command describing the primitive. We obtain code
from the official repository2, and train on 4 Nvidia RTX Titan GPUs with a batch size of 256, and a
learning rate of 4 × 10−3. We set the maximum number of paths to 16, the number of arguments
to 9 and the number of commands to be 6, including 4 commands for our primitive types, and 2
commands for the special <SOS> and <EOS> tokens that are needed by DeepSVG. Please refer to
DeepSVG [3] for details on their encoding scheme. For all other hyperparameters, we use the original
values set by the authors.

In order to report the NLL, we use the strategy used by DeepSVG and add up the log-likelihood
contributions from the visibility logits, command logits and the argument logits. DeepSVG uses a
fixed length sequence for arguments. This can lead to many arguments being unused for a given
command. In such cases, we do not consider the contribution of unused arguments to the NLL, and
mask those arguments out. The same procedure is applied during training, as is default for DeepSVG.

5 Metrics: Esyntax and Estat

We describe the two metrics Esyntax and Estat in more detail.

1https://github.com/PrincetonLIPS/SketchGraphs
2https://github.com/alexandre01/deepsvg

5

https://github.com/PrincetonLIPS/SketchGraphs
https://github.com/alexandre01/deepsvg

Esyntax is a measure of how well our model respects our grammar. The grammar gives us the length
of the subsequence that describes a single primitive or constraint. As an example, a point is described
by a subsequence of length 3: τpoint, x, y. The Λ token separates primitive subsequences, so if the
model makes an error in the length of any given subsequence, it will not correctly predict the position
of the Λ token that marks the start of a new subsequence. At inference time, our grammar allows us
to infer the correct position of the Λ tokens, so we can correct these errors by forcing the network to
produce a Λ at the correct position. Esyntax measures how often we need to intervene and force a Λ
token where the network would have sampled a different token, as a percentage of the total number
of Λ tokens in a sequence:

Esyntax =
#(correctly sampled Λ tokens)

#(Λ tokens expected from grammar)
× 100 (1)

Estat compares statistics of generated sketches to statistics of ground truth sketches.

We sample a large number of sketches, and record the distributions of various sketch properties like
line lengths, and number of primitives/constraints per instance. After normalizing the domain of
these distributions to the unit interval [0, 1], we can compare the distributions for generated sketches
to the distributions for ground truth sketches using the Earth Mover’s Distance3 (EMD) [6].

We record statistics over several different groups of sketch properties. For primitives, we record the
following groups:

• Cardinality: the distribution of primitive counts per instance for each type of primitive.

• Position: the distribution of x, y parameter values for each type of primitive.

• Size: the distribution of line lengths, arc lengths, and circle radii.

We average the EMDs of all statistics inside a group to get a statistical error per group, and then
average these errors across groups to get the statistical error for primitives EPstat. For constraints, we
record:

• Cardinality: the distribution of constraint counts per instance for each type of constraint.

• Tangent: the distribution of absolute radius differences between circle or arc primitives that
are connected by a tangent constraint.

• Perpendicular: the distribution of absolute length differences between line primitives that
are connected by a perpendicular constraint.

• Horizontal: the distribution of absolute length differences between line primitives that are
connected by a horizontal constraint.

• Vertical: the distribution of absolute length differences between line primitives that are
connected by a vertical constraint.

• Coincident: the distribution of absolute length differences between line primitives that are
connected by a coincident constraint.

Similar to the primitive statistics, we first average the EMDs inside a group and then across groups to
get the statistical error for constraints ECstat. The full statistical error Estat is the sum of the primitive
and constraint errors: Estat = EPstat + ECstat.

Note that this is only a sample of all possible statistics over primitive parameters, and pairwise
relationships between primitives, but as we see in Tables 1 (b) and 2 (b) of the main paper, they
correspond well to expected behavior - nucleus sampling with p = 1.0 samples well from the tail
of the distribution and both EPstat and ECstat are correspondingly lower when compared to nucleus
sampling with p = 0.9.

6 Additional Quantitative Results

We show additional examples of the statistics we use to compute our metrics Estat.

3We use the implementation in scipy.stats.wasserstein_distance

6

2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ili

ty

point

data

ours (p = 0.9)

ours (p = 1.0)

2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ili

ty

line

2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ili

ty

circle

2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ili

ty

arc

Figure 2: Sketch statistics for primitives: we compare the the distribution of primitive counts per
sketch in generated and data sketches.

In Figure 2, we show the distribution of the number of primitives per instance for all primitive types,
and in Figure 3, we show the distribution of the number of constraints per instance, for all constraint
types. Note that our model infers constraints similar to the dataset, which in turn comes from human
designers.

0 10 20 30 40 50 60

count per instance

0.00

0.01

0.02

0.03

0.04

0.05

pr
ob

ab
ili

ty

DoF removed

data

ours

Constraints can be used to limit the degrees of freedom (DoF) of a sketch,
for example to expose only DoF that are useful for a given editing task.
In the inset figure, we examine how many DoF our constraints remove
per sketch, and compare to the number of DoF removed by the ground
truth constraints. We see that our model is in very close agreement with the constraints imposed by a
human designer.

0 2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ili

ty

coincident

data

ours (p = 0.9)

ours (p = 1.0)

0 2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ili

ty

horizontal

0 2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ili

ty
vertical

0 2 4 6 8 10 12 14

count per instance

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

parallel

0 2 4 6 8 10 12 14

count per instance

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

perpendicular

0 2 4 6 8 10 12 14

count per instance

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

midpoint

0 2 4 6 8 10 12 14

count per instance

0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

equal

0 2 4 6 8 10 12 14

count per instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ili

ty

tangent

Figure 3: Sketch statistics for constraints: we compare the the distribution of constraint counts per
sketch in generated and data sketches.

7 Comparison to Hand-crafted Rules for Constraints

Some CAD packages have rule-based systems to suggest constraints to the user. As an example, the
package might ‘snap’ line endpoints by imposing a coincident constraint on line endpoints that are in
close proximity, or a parallel constraint may be suggested for lines that are approximately parallel.

5 10 15 20 25 30 35

count per instance

10−5

10−4

10−3

10−2

10−1

pr
ob

ab
ili

ty

coincident

data

ours

snapping (ε = 0.03)

snapping (ε = 0.01)

We compare our approach to a baseline where coincidence constraints are
created for any pair of points or line endpoints that are within a distance
ε of each other. In the inset figure, we compare the number of coincident
constraints created by this baseline to our method and to the ground
truth. We see that the snapping baseline over-estimates the number of
coincidences significantly with a snapping threshold of ε = 0.03 and
ε = 0.1, since the lack of context-dependent reasoning results in several

false positives.

8 Additional Qualitative Results

8.1 Primitive Generation

In Figure 4, we show primitives generated by our primitive model. Notice that our quantization
introduces inaccuracies in the primitive parameters. For example, line endpoints that intuitively

7

seem like they should be coincident are not fully coincident, or Line-Circle pairs which should be
tangential are not. These inaccuracies can be corrected using the generated constraints. Apart from
these inaccuracies, the primitives tend to form plausible sketches that also often exhibit symmetries,
right angles, parallel lines, etc. as we would expect in a real sketch.

Figure 4: Primitive Generation. We show examples of generated primitive samples. Different colors
denote different primitives.

8.2 Full Sketch Generation

Generating constraints in addition to primitives allows us to optimize the primitives to satisfy the
generated constraints (we use the solver provided by OnShape [1]). Additionally, these constraints
can be useful for down-stream tasks, for example they remove unwanted degrees of freedom when
exploring variations of a sketch. In Figure 5, we show generated sketches before and after optimization
to satisfy the generated primitives. Notice that in many cases errors introduced by quantization or
inaccuracies of the primitive generator can be corrected through this optimization.

8

Figure 5: Full sketch generation. We show examples of generated sketches before (gray background)
and after optimization to satisfy the generated constraints.

Figure 6: Auto-constraining sketches. We show examples of perturbed test set sketches before (gray
background) and after optimization to satisfy generated constraints. The last example shows where
constraints might sometimes fail to recover the original sketch - the tangency is maintained on the
pink line, but the final tangent lies on the wrong side.

8.3 Auto-constraining Sketches

We can also generate constraints for existing sketches, effectively inferring the plausible degrees of
freedom for a given sketch. We perturb sketches from our test set and infer constraints using our
constraint generator. Examples are shown in Figure 6. Notice that in many cases, the generated
constraints allow us to improve the alignment of the perturbed primitives.

8.4 Failure Cases

We have different kinds of failure modes - the primitive model itself may generate samples that are
out-of-distribution with errant lines or arcs that do not terminate at another arc or line, a second failure
mode is the constraint model generating unsatisfiable constraints like a line end being coincident
with two distinct points, finally there may also be cases where the constraints are satisfiable, but do
not match the primitives well, resulting in an out-of-distribution sketch. Examples of each case are

9

(A1)

(A2)

(B1)

(B2)

(C1)

(C2)

Figure 7: Failure cases. Generated primitives may be out-of-distribution (left), for example the sketch
may be missing primitives (A1), or have redundant lines (A2). Generated constraints may be missing
(center); the small circles, for example, should be constrained to the corners of the big rectangle (B1).
Generated constraints may not match the primitives (right); the small arcs, for example, are missing
tangent constraints, which is why they join at unnatural angles (C2). Grey background indicates
sketches before optimization

shown in Figure 7. All of these cases are failures of either the primitive- or the constraint generator
and could be improved, for example, by (i) improving the performance of these generators, through
architecture improvements or a larger dataset where all primitive and constraint types are represented
more evenly, or (ii) introducing additional syntactic or semantic validity checks at inference time,
which could be facilitated by our grammar.

9 Conditional Models

We also perform experiments with a conditional model. The conditional model predicts a constrained
CAD sketch given an image of the sketch, effectively parsing the image by converting it into its
constituent primitives. It can also be viewed as a translation task from an image of the sketch to a
parametric description of the sketch.

Our conditional model is equipped with a ViT-like [4] encoder which takes in 128x128 images of
sketches rendered to emulate a hand-drawn style. A few examples of our style are shown in Figure 8.
We use a Conv-GELU structure to convert the image into a sequence I that is 64 elements long. This
is achieved by setting the stride and kernel size of the convolution to 16 and the number of output
channels to the transformer dimensions. We add a learnable position embedding . This is followed
by 8 layers of unmasked GPT-2 blocks. In our primitive model, we add a cross-attention layer that
attends to the sequence I. In our constraint model, this cross-attention is performed in the primitive
encoder.

9.1 Qualitative Results

In Figure 9, we show a few results from our conditional primitive model, applied to test set sketches
rendered to an image in a hand-drawn style, as shown in the left-most column. The ground truth
primitives are shown in the right-most column. The middle columns show different samples generated
by our model for the given sketches. We show multiple different samples per sketch, since the same
sketch image can sometimes be achieved with different primitive sequences. For example, a circle
may be represented by two arcs or a single circle, and some ambiguity may also arise from the
order of primitives in the sequence. In the results we see that our model is able to discover most of
the primitives that were used to generate the image with high accuracy. Primitives that function as
construction aids are rendered with dotted lines and are correctly identified as construction aids by
our conditional model.

10

Figure 8: A few representative examples of our rendered sketches. These are used as condition for
the conditional model. Construction aids are rendered with dotted lines.

Table 5: Quantitative evaluation on the conditional model.

NLL ↓ in bits per seq.

unconditional conditional

Primitive model 79.94 52.59
Constraint model 8.28 7.72

9.2 Quantitative Results

We measure the effect of adding the image conditioning by recomputing the NLL for the conditional
model. The results are shown in Table 5. Using additional supervision in the form of an image
reduces the NLL of the model over the dataset. This means that the model is less uncertain about
the sequences given an image of the target sketch. This is makes sense intuitively, since an image
provides information about the target primitives and their parameters. The effect is weaker for the
conditional constraint model. We hypothesize that the constraint model receives a lot less information
from the image of the sketch, since constraints are not shown explicitly in the image. This gives
the conditional constraint model little additional information over the primitive configuration that it
already has access to in the unconditional setting.

References
[1] Onshape. https://www.onshape.com/. Accessed: 2021-05-28.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. In International Conference on Learning Representations, ICLR, 2015.

[3] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical
generative network for vector graphics animation. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 16351–16361.
Curran Associates, Inc., 2020.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

[5] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. 2019.

[6] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions with applications to image
databases. In International Conference on Computer Vision, 1998.

[7] Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P. Adams. SketchGraphs: A large-scale dataset for
modeling relational geometry in computer-aided design. In ICML 2020 Workshop on Object-Oriented
Learning, 2020.

11

https://www.onshape.com/

Condition Ground Truth Samples

Figure 9: Results from our conditional primitive model. The sketch image used as condition is shown
in the leftmost column. The ground truth is shown in the next column. The other two columns show
samples generated by our conditional primitive model. While the model might sometimes fail to
parse the images faithfully, the overall results are of high quality.

[8] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

[10] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, 2015.

[11] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

12

and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, 2020.

13

	Primitives and Constraints
	Complete Grammar
	Notation
	Detailed Experimental Setup
	Architecture
	Training
	Setup for the SketchGraphs Baseline
	Setup for the DeepSVG Baseline

	Metrics: Esyntax and Estat
	Additional Quantitative Results
	Comparison to Hand-crafted Rules for Constraints
	Additional Qualitative Results
	Primitive Generation
	Full Sketch Generation
	Auto-constraining Sketches
	Failure Cases

	Conditional Models
	Qualitative Results
	Quantitative Results

