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A Appendix

A.1 Compact Notations and Useful Lemmas

We simplify the presentation of the proof by using the following matrix notations. Let the local average of
the parameters be denoted by W; := [w], w5, ... ,QMT € RV*4 where wj, € R? is the parameter vector
at node k. The Aggregation step of Algorithm [I| can be compactly written in matrix form as

r+1 r,T _ r+1 _ r,T
w, = Pk Wy, = El = PW"", (7)
1€EN

where Ny, := {i : py; > 0}, and the symbol = means “equivalent to". Further, we define the global average
as

N
wh= =Y wp = W= QW 8)

where Q := %llT. Now, let us represent the gradients compactly in the matrix form as

A . 1 r 1 r 1 T
0b (W)= |3 3 Gy Gy X0 GRT 9)

jeB]? jeBY* jeEBY!

where Gl(;?t) =V ; (wlr’t). The mixing matrix P also preserves the average, and hence QP = P. In the
following subsection, we provide a Lemma that relates the local average with the drift. Next, we present two
Lemmas that will be used in proving the convergence result of Decentralized FedAvg algorithm, in particular,
while bounding the global drift.

Lemma 4. (See (Horn & Johnson, 2012)) For any matrices A € CN*N and B € CN*9, we have
||AB||§; < HA||(2)p HB||%, where [|Al|,, denotes the operator norm of A.

Lemma 5. (See Lemma 1 in (Sun et all [2021)) Suppose Assumption@ holds, then for any m € N,
the mizing matriz P satisfies ||P™ — QHOP < MDY, where Ay is the second largest eigenvalue of the

mixing matriz P, and Q := %IIT.

The above Lemmas are standard which come in handy while bounding the consensus error (Koloskova et al.,
2020; Liu et al.l [2022b; [Wang & Joshil [2021)). See|Liu et al.| (2022b)); [Wang & Joshil (2021); |Sun et al.| (2021)
for the detailed proofs.

B Proof of Theorem 1l

In this section, we will prove the main theorem by proving Lemmas [I| and [2l The proof mainly consists of
two intermediate steps, namely bounding i) the local loss (see Lemma using Ly smoothness (see Definition
and local PL inequality to show that the loss at local parameter is bounded in terms of the loss at the
global average parameter and the drift and ii) the global drift (see Lemma [2)).

B.1 Useful Lemma to Prove Theorem [I]

Lemma 1. The expected local loss function @y (w'") satisfies the following bound

T QLEnax r 2
E[® (w,")] < —"E|w; —w'|; + —

min min

E |V, (w")], (10)

where fmin = minge v {pr}-
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Proof: Using Assumption [I} we have

By (w] )<(I>k( rr— 1) <V(I)k< o 1) Wl — Wl 1> ‘ Wl 1Hj (11)

We know from Step 7 of the Algorithm I that w," — wl’;T_l =12 eprm1 VO ('w;;’T_l). Using this
k
in equation [T}, we get

oy (wp) < @y (wpTh) - <vq>k( rT= 1)% > Vo (wpT 1)>+”22L’“Gk(r,r).

<
m
oo}
5
3
\/

_ <I>zc(w27 1) <V<I>k( 77—1)7% Z Vq)kj w' 1

2 2 2
n Lk r,7—1 n Lk r7—1 r,7—1
+ g o |90 (w7, + g (90 (w7 Ve (w7
jeBp™ ! J#3’
S (I)k< rT— 1) <V<I>k< rT— 1) Z vq)kj 7"7' 1 >
]eBrr 1
2 2 2
n Lmaz r,7—1 n Lm : r7—1 r7—1
o 2 HW’“ ( >H2 o 2 <vq)’“' (“’k ),v<1>,w«, (“’k' )><12)
JEBY 1 J#5’
2
where G (r,7) 1= H Z jeBp ! Vo ;i (w ( o 1) H , and Ly,q. := maxy L. Taking expectation of the above
2
leads to
r 1 1 1 772L =1\ |2
r,T < T,T— rT— r,T— mazx ) rT—
15 5[ ()5 )50 (05 s o)
2
et v (wi )
_ (O .
* 2b2 v 2

Applying smoothness assumption of each sample, i.e.,

2
(w2’771> H < 2l ;P (wZ’Tﬁl), we have

Bln ) < B[ () n[we (wpr ) [ Phmettg, ()
o PO g ()]
< o) <ol o) e ()
+ W[@k( rT— 1)}7 (13)

where l,,4, := maxy L. From the local PL inequality (see deﬁnition, it follows that HV@k < o 1) H

MominPr (sz 1) for k = {1,2,..., N}, where fi;in := mingeni{pr}. Using this in equation results in

E (@) (wy7)] < [1 — Nhtmin +17° (l’”“f’"” Lgm“l;(f — ”ﬂ E o (wp)].

lmazLmaz | L2 apbb=1)
b b2

By setting n < Bonin the above can be further bounded as
d I

Bl (o)< (1= 25 ) B o (w77)]
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Since w,rc’0 = wj, the above can be written as
T Nlmin \ 7 r
E[@x (wp7)] < (1- 22 ) B (@ (wp)]- (14)

Using the local PL inequality, i.e., &5 (w},) < Mm% |V (QZ)Hg in equation (14} we have

B0 ()] < (1= 22) 5 |V, w),. (15)

min

Now, adding and subtracting the term V®;, (w") in the above, and using the fact that ||la + b]|* < 2|al|* +
2([b]%, we get

2

B (0 (wp 7)) < (1 22) =g (90 (wh) — VO (w)]3 + [V (w)]3)

min

Using Ly, smoothness assumption (see Assumption , we have

T NMlmin \7 2L2 r r2 2 N2
B ()] < (1- ) 5 (25 g - w4 2 Ve w)3).

2

Choosing 1 < and using the fact that L., = maxy Ly, we get

Hmin
T 2L72naz r T2 2 (2
E[®) (w,")] < —"=E[w; —w'[; + —E VO (w")[".

O

Using smoothness condition, the above leads to the following corollary. The below result comes in handy
while proving the main result.

Corollary 1. The function ®j (w,") satisfies local PL inequality and can be bounded in terms of global
average parameter i.e., @y (w") as follows

r,T 2L$na1: T 2 4Lm0«1 T
E[®y (w,")] < —2E|wy —w'|; + ——E[®x (w")], (16)
where fiyin = mingenj{pr} and Lpay = maxy Ly.
B.2 Proof of Lemmalll
From L-smoothness assumption (see (1)) of ® (w), we have
L
) (QT,tJrl) < P (Qr,t) 4 <v@(wr,t)7wr,t+l _ Qr,t> 4 E ||wr,t+1 _ Qr,tHQ ) (17)
Using step 7 of Algorithm 2, we have w]"' " = w]"* — T2 eprt Vi (w:t) Multiplying both sides by
Pk,; and summing over i € N, we get
rt+l rt 7N ] (Tt
Qk — Qk - b Z DPk,i Z V‘I)z,] ('LUI ) . (18)
€N jeB?
Averaging on both sides over k € [N], we get
. N
rt+1 T 7t
Wit = Qt—mz vy, (wy")
k=1jeB;*
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mt+l _ ™t from the above udpate in equation |17, we get

1 & , Lo
¢ (w") < @ (w) -7 <V<I> (w™). 55 22 D Vo (wk’t)> + g 19711

k=1jeB)"

Substituting for w

where g™t := Ziv_l > jenrt VO (w)"). Taking expectation conditioning on wy* and past, we get
= k

2

Z Vo ; (wkt)

. rt
JEB;,

2l )] < Blofw) o Vot g Yovn i) )5 (D
k=1

k=1

=A, =y

kK’ ]EBrt zeBrt

=As
First, consider the second term above, i.e., As

1N
Ao = 2 9%k (wp)]] +b2N2ZZ Vi (wy) Vo (i),
k=1jeprt k=1 j#j'
Taking expectation, we get

_ 1 . Y\ 12 b(b — 1) al rt\ (12
k=1 k=1

Similarly the term A3 in equation [19| can be bounded by taking expectation as follows

ElAs] = Z<vq>k ), V@ (w;f)>

k#k!

1 r r
< 5w ; [IIV% (w12 + IV (wp!)|?]
k#k’

2
< 4 an P, (1)
where (a) follows from (a,b) < 1 llall* + 5 L |16]|°. Next, we lower bound the term A; in equation as

1
A = S198 (@) P + H—Zwk I - Sl Zw — Ve (w1

Jensen + smoothness

> *IIV@)( "I+ H*ZV% I~ ZII AT (22)

Substituting equation [20] equation 21] and equation 22]in equation [I7] we get the following
N 2 N
1 7t UL2 r,t r,t 2
NZV%(%) + oy 2wk = e
= k=1

n?Lb(b — 772L a it 112
Qsz Z qu)k J ( b2N2 2N> Z qu)k (wkt) H : (23)
k=1

::.A4 ::.As

Efe(w')] < E @(wﬂt)—gnvww)z
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The term 44 in equation [23]is bounded as follows

@ X N
A= 32| Ve, (wpf) = Ve, () [+ Y2 [ Ver, ()]
k=1 k=1
(b) N ) . g N y
< 2) G llwpt — w44 P (w)
k=1 k=1

© e al ot t)|2 > -t
< 2Zmaﬂc Z Hwk’ - QT7 H + 4lmaw Z (I)k,j (ﬂhl) )
k=1

where (a) follows by adding and subtracting the term V@& ; (w™") and using the fact that, |la + b2

2 |lall® +2|b]|%, (b) follows from Asbumptlonl and (c) follows from the fact that 4, := maxy, ; Iy ;. Taking
expectation, we get

N
E[A] <282, ZE [yt = w™|* + dlnae S E [@5 (w™)] . (24)
k=1

The term As in equation [23]is bounded as

4 < 2zuv¢k w) | +2Z|\V¢>k

N
< zsz ! | +4 3 Lyt ()
k=1

N
S 2L$naz Z Hw - MntHQ + 4Lmaz Z (I)k (Mnt) ) (25)
k=1

where (a) follows by adding and subtracting V&, (w™?), and (b) follows from Assumption [3|and (c) follows
from L,,q, 1= maxy L. Substituting upper bounds from equation 24] and equation 25 in equation 23] we
get

1 N
N Z Vo (wy')

+<2N+ bN2 + N2 )ZHw M”’

E[o(w)] < E @(wm>fg||v¢><w>u%g

2n2leM 2n2LLmaz
+< N TN

; 2n2LLm> @ (w') ] . (26)

Now, using PL inequality (see definition , ie, [[V® ('w)||2 > u® (w), Yw € R? and rearranging, we get

2 2
E[®(w""")] < E (1 e (277 Llmos  21°LLimac

bN N

+ 2n2LLm)) o (w™)

nL? | PLBy | PLLZ. | PLLE\ LS a2
+(2N+ bN2 T N2 TN )N;Hwkt_w't” '
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2

. < mi I L

Choosing < min (e gz 121 L,,,) " [ 18 , the above can be further bounded
bN N 2 m,aJ_ + "L(LL +LL’"L(LJ,

as

2 & r 2
Efe @) < (1-")E[@@™)]+ =3 Efup’ —w| (27)
k=1

(a) _% T,t 277L2 N T,t_ nt 9 nt— T,t 0
< (")l @)+ T S (- | gt - w ) (29

k=1

In the above, (a) follows by adding and subtracting the term w}" and using the fact that, |la + b]>
2 ||lal|*42|b||*. First, let us consider the local drift term i.e., 2116\[:1 ||w£’t - w} || in equation Telescoping
the update from step 7 of Algorithm [I| we have,

wyt = w? - Z > Ve (wyT). (29)

T= OJQB'"T

Further, consider the local average at node k, i.e., w};’t

= Z pk:,iw: - w;O n Z Z Pk.i Z V(I) ,] . (30)

€N T7=04EN} jeB; T

Now noting the fact that w}’ = w}® and using equation [29| and equation |30, we can bound the drift term
as

2

N t—1
S Efwpt —wi' P = YE[TY D Vo, ) Zme S Ve (w
k=1

7=

T:O_jeB;"' T7=04iEN} EB7 7

(@) N nt—l 0 2
2 55 |15 e + |25 5 it

k=1 L 7=0 T=0iEN}

2

(b) N 2t t—1
< 2)E | LN Ghyr )P + L me Gl W

k=1 7=0 7=0 |[|iEN}

where Gj;(r, ) = ZJGB” V&, ; (w;""). In the above, (a) follows from the fact that, |la + blI> < 2|lal?

2
2|b]|*, and (b) follows from the fact that for any vector z;, (Zfil zi> <N Zfil(zi)Q. The second term in

(b) can be further bounded using Jensen’s inequality as follows

N N i
S OE [t —wi|t < 2Z]E ZIIGkJ nlP+ 5 Z > piilIGij(r,7)l| ]
k=1 k=1

= L T7=04iEN}

N
= QZE Z > e[+ ZZPM > NIl
k=1 L 7=0;5eB;7 T=04ieN} jeB;”
@ & [l L TP rr
< ZZE TZ Z 2, P ; ('wk’ )+TZ Z Z Pr,i2li j @i (W)
k=1 L 7=0 jeBT”' T:OjeB;”' iENG
(b) N t— 2 t N t—1
= E HTZZ Z 2lmax¢k,] 77 ZZ Z Zpk12lmar zg(
k=17=0;eB;"" k=17=0jeB;7 i€N}
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where g7 := V®;, ; (w;"). In the above, (a) follows from smoothness assumption and (b) follows from the
fact that the mixing matrix P preserves the average and l;qq := maxy j I ;. Simplifying the above results
in

N t—1

al T T 8 tlmaw
Sefup - u! < TS S S a0

k=17=0jeB]"

Taking expectation, we get

N t—1

N
ZE [wp’ —wl|” < 8Pt 3> E [ (w)T)]. (31)

k=171=0

2
From equation f Corollaryl we have, E [®), (w;)")] < Lmar |lw}, — QTH; + %E [@f (w")]. Using
1]

this in equation we get i
N N t—1
2 2L2 4L
> E[wp — w7 < 8 tlmazZZ< ML ], — ' + = R (B (w >1).
k=1 k=17=0 Hmin

Simplifying the above results in

iEHwT’t—wr’tHQ < 160 lnaa L} i—E”%_M”; + 32071 iE e @] (39
— k 2k = marHmax maz max — /J/mzn

k=1 Hmin

2
Next, let us consider the global drift term i.e., Eszl HQ};’t — Qr’tHz in equation which can be rewritten

. . . -t £112 . .
in matrix notation as D, := HE} - E”HF. This term is bounded as

D, = E|QPW" — PW|?

2 El@-Pyw|,

Q- P) (W 0y 0d <W“>>

7=0

2

)
F

where (a) follows since QPW™ = W' and PW™ = W**, (b) follows from QP = @, and (c) follows from

the update Wt = Wn0 — nZizlo 8% (W), Using the fact that |ja +b]|* < 2|lal|* + 2]|b]|* in the above,
we get

t—1 9
Dy < 2E[(@-P)WOL+ 2%y E H(Q — P)ad (W)
7=0 F
t—1
< 2E[[(Q - PYW™O|| + 20t > AJE[0D (W) |[3. (33)
7=0

. 2
The term E H@@ (W™T)|| in the above can be bounded as

E Ha@ (Wn)

2 Nl
P B2 |lg 2 Vs (wh)
— - ,
T2
< E Z V@ ; (wy")l5
k=1 jGB”

(&)

S 2lmar Z E [(I)k (wl:ﬂ—)] )
k=1
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where (a) follows from the smoothness assumption and the fact that e, := maxy j I ;. Using equation
2
of Lemma ie., B[@ (w)T)] < 2mes| |l — w'||2 + —2—E||V®; (w")||” in the above, we get

Hmin

Hmm

3 r,T 2 4L$nou max w” 2 4lma1‘ al r\|12
Efod v, < e mek w3+ YRV ()]
k=1

The result above can be written in the matrix form as,

2

2
B Jod )| = stz Snanig g 70y

P e I

Substituting the above result in equation [33] we get

Doy < 2E|(Q— PYW™O|% + 412 L2, A2 D,  + 412 N3 1E |0 (WT0) | (34)

max ||F’

where ~y := 2mezN  Now, consider

Hmin

r4+1 e T
Efo @) = (1-%) B @)+

2nL? = (1 B W)Tiﬂi <‘ w17 T + erT I=r _ oy T-1-7 2>
k wy, w
N 7=0 4 k=1
2 2
where (a) follows from the fact that erT T wp™TT = 0 and HwTT T T = 0 for

7 =T — 1. Now choosing n < ﬁ and uainf equation [32[ and equation the average loss becomes

4n3T3 I’L AnTL?
Blo @) < &((1-%) + ﬁg ) )+ T Q- PW

9 2272
217]? { (mzmaxn T*Lis | 4\2,2012 T )Dr,o 4Py T202 ][00 (Wr,O)HzF” .(35)

Nmin

Using the fact that ( %)T < ( “), the above can be further bounded as

6413 T3 oz L2 Lo o TL? .
K17W ! )@m>+”N 2ll@ - Pywr|[}.+
16

E [é (QT-H < E
Hmin
22712
( lmaa;jl T7Lyvae ANy LR T ) Dyo + A0y T2)2 || 0D (WT,O)HTFH . (36)
min

The term E H@@ (ET’O) HF can be bounded as

Mz

E[od (wr) H ZEHV@k LinaaB [0 (w")] = 2Lpnae NE [ (w")],

k=1

where (a) follows from the smoothness assumption and (b) follows from the fact that & (w") =
LSV @ (w"). Using the above result in equation [36} we get

64 BTBZma'pLZLmaI 2 TL2
E[®(w )] < E(wa+ T )¢ww+” 2[@— Pyl +
1 2T2L2
( Glmw;? - maz | 4)\2772’7Lma1T2> r,0 + 8"72/\ ’}/TQ maz NP ( )‘|‘|
<

64 3T3lmaa:L2Lmaw i
E |:(1 _ M -+ il + 167]3’YT3)\%L2Lmaz> o (27) +

4 Hmin
MTL? [ [16lmaen>T2 L2
L2 ([t ey, 7] 2,020 - P02 |
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1/2

. 1 m . .

Choosing n < g <64T%zm“”L2LmT oyToL me) in the above result in
man

3 2 212
E[®(w*!)] < E {(1 - ) e @)+ 2 T [16T Dnaclmar | jya012 72| D00  (37)

a 8 N /"LmLTL max
AnTL?
@ P
3
Again choosing n < ( 16T2[$’fzfgﬂaw1+4>\2»yq~ me) , the above results in
. i my . 2nTL? anTL? 0|12
Efew™)] < (1-%)E[@ @)+ 2D+ “E[(Q- P}

2
It is easy to see that E[|(Q — P)W’"’OHf, =E ler,o —wn0 ‘ = D, . Using this above, gives us
F

o) < (1-2)E@w)+ ", (39)

This completes the proof. O

B.3 Proof of Lemma

2
Let Do =E HWT 0w OH Ziv 1 E er,o —w™?|| . Using compact notations for the updates in equa-

tion [7] and equation [§] the global drift term can be written as

Do = E|QPW™ — PWwO|%

E|[(@ - P)yW|?. (39)

Recall that Q = ]1[ 117 is the average matrix, P is the mixing matrix and QP = Q. Using W, 0= pwyr-1T
(see equation ' ), substituting for the update in W"~17 and taking the telescopic sum, we get

T-1
W0 = KIT,O - p (Wr—l,O —n Z a(i) (W’I'—l,T)) )
7=0

Plugging the above in equation and using the generalized Cauchy’s inequality, i.e., |la+ b||2
(1 + i) lall* + (1 + ) ||b]|* for any ¢ > 0, the global drift term can be upper bounded as

T-1
E[[@-PyW™|[; < (1+;>E+(1+¢)n21@ Q- P> > 0d (W)
7=0 F
2
(i) (1+;)E+(1+1/)7I (@ —P?)| Z@(I) (wr=t7)
F
(b) 1 =1 . 2
< (1+w>5+(1+w)n2/\‘2‘TZEH6<I> ) (40)
7=0
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where Ay is the second largest eigenvalue of the mixing matrix P and = :=E H (Q — P2) W“LOH; In the
above, (a) follows from Lemma [4] and (b) follows from Lemma |5} Next, consider bounding the following

2
£ r—1,7 2 al 1 r—1,7
Elodwr)| = EX L Y Ve, (wp )
k=1 jeBTfl,T
2
Jensens

z > v (wi )],

k=1 JEB,~ LT
< maxZJE[cbk( Iy (41)

where (a) follows from the smoothness assumption and 4, 1= maxy j Ik, ;. Recall from Lemma |1 that

2

212 2
B o (w]17)] < 2o a1 w4 2 Ve ()

o Mmzn

Substituting this in equation [£I] and writing it in the matrix form, we get

2
E Haé (WT—LT) ‘2 _ ME ler—l,o _ ET—LOHQ n %"JE Haq) (ET—LO)H2 '
F Hmin F Hmin F

Using the above in equation [40]

Bl@- Pl < (145 ) BI@= P W T D

— 2
FENBTE 00 (W) 2 2)
where 8 = ‘”’”Z’”TW. First, let us consider bounding a part of the first term above, i.e.,

E|(Q—P*)wr—10| i, Using the fact that QP = Q and Q? = @, it follows that P? — Q = (Q — P)%
Using this in equation [42] we get

Bl@-Pwli < (14 1)@= PEw| ¢ ST D

P ASBTE |02 (W10 |17

Applying the results of Lemma [4] and 5] the first term in the above can further be bounded as,

1 .
El@- Py < (14 3)I@-PIPEI@- PIW o + AT LDy
P NBTE |02 (W10 |17

(a)
< <1+¢) NED, 1 + PXBT2L2,0, Dy y o+ P NABTE |03 (W=19) | (43)

where (a) follows by substituting the results from Lemma The term E |0 (wrfl’o) 2

||F in the above is
bounded as follows

— 2
Efo® (W 0)|[,

EZHV@ w =)

—
&
g

< 2LpaeNE [@ (w'10)],
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where (a) follows from smoothness assumption and using the fact that ® (QT_LO) = % chvzl (O (MT_LO),
and L,,,, = maxy L. Using the above result in equation we get

1
D,y < ((1 + d}) A2+ nQAgﬁTQLEW) Dy_1,0 + 20°AN3BT? Loy NE [@ ("~ 10)] .
This completes the proof. O

B.4 Proof of Lemma [3] (Completing the proof of Theorem [1)
Let us recall the equations for D;410 and @ (QT“) from Lemma |1 and Lemma

P (wr-i-l)

Dr—i—l,O

a® (w") + pDrp, (44)

<
< VDT,O + X(p (wr) 5 (45)

where o := (1 — %) p = %, V= (1 + i) AN24+n2X\3BT2L2,,, and x = 202 \3BT? Lyae N. To ensure v <

max

_ 2 [ 1A 1
1, we choose 1) = T-A2 and any n < AT L2 .Further, to ensure x < 1, we choose n < SNIFT? Loaa N

Now consider the following Lyapunov function for some constant 6 > 0

O (w ) +60D,010 < a®(w")+pDyo+ 0 (VDo + xP (w"))

Y (a0 ® @)+ (p+ 65) Dy, (46)

g

where (a) follows from equation [44] and equation To show linear convergence we want the coeflicients of
the first and second terms in equation [46] to satisfy the following inequalities

a+9x§(1—%) and (p+9u)§9<1—%). (47)

Now, consider the first inequality above. Substituting for aw and x and choosing

n< I MQ )
320\38T2 Loz N

ensures that the first inequality in equation [47] is satisfied. Next, substituting the values for p and v in the
second inequality in equation [£7] and simplifying results in

6nL>*T 2\4 272 Onp 2 /\g
On“\sBT*L — < O(1=-X—-—=
N + n 26 mazx + 16 — 2 1;[} ’
where the above quantity is non-negative by choosing ¥ > % Now, picking n < W leads to
2 2 mazx
Ou  6L2T A2
1+ = < o(1-A3-22).

! ( TN ) - ( Ty

6 1437%3)
Choosing n < (1

L2
+34 4L
1
<mind4 2w L2 1( p \3( 1 Bmin
n= W fmin’ 4610 2¢20 8\ GT3 )\ GTZ) 0 G 0

2 A3
l*)\g 1 I 1 9(1_)‘2_7 (48)
V C6T27\ (zT?7 (gT?7 (oT?" (1+%+%) K

Substituting the conditions in equation [{7]in equation [6] we get

ensures that (p+ 6v) <6 (1 — 2&). Finally, choosing

P (w™*) + 0Dy < (1 - %) (@ (w") +6Dyo).
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for any constant 6 > 0. Here, fimin = mingen{tie}, lmae = maxyjlp; and Lpe, = maxy Ly,
3
) = 123‘)%2, y o= maN g 4l"‘“w(;+w), and D, = ZQ’,NEHQZ’O —MT’O’ Moreover, in the above
2 Hmin Hmin : =
maz maz L. | LL} .. mazLLmaz
¢ =4 (Rbar 4 2lpas 9L, ) ()= 2( nge 4 Llgpar | LL%Laa:)? Cq = 64l,,LZ;LmL,,m F167LA2 Lonas,s
2 2 _
G o= memlues 4 NBy12 ¢ o= 2[lmwlfmaw + Lmasbl® 1’}, C6 = 4MBL2,.., G = 2M\3BLnmaN,
(g = 320\3BLynax N and (g == ON3BL2, ..
[
C Differences between strongly convex and our setting
In the following, we provide a very simple 1-D examples for strongly convex (fi(z) = log(z — 0.5 +

1+ (z —0.5)2) + (x — 0.5)% + 0.25 + constant and fo(x) = 22?), and non-convex settings (fi(z) =
22 + 2sin?(z) and fo(x) = 0 x 1{f1(z) < 4} + fi(z)1{fi(z) > 4}), as shown in Fig. Note that in
the strongly convex setting, both clients share the unique minima z* = 0 due to the interpolation assump-
tion. In this case, both clients do not need to communicate since each client can run local rounds to reach the
global minima that minimize the average, and hence making decentralized or collaborative learning vacuous!
On the other hand, for the PL setting, multiple local rounds lead to different optimal points. For example,
running multiple rounds of GD results in client 1 reaching x7 = 0 while client 2 reaches ~ —1.3 or ~ +1.3
depending on the initialization. However, the optimal point * = 0. This simple scenario suggests challenges
while proving the results. For example, in the strongly convex setting ((Koloskova et al., 2020))), one can
start with the difference between global optimum and the local/global update while we cannot use this to
prove our results.

gl client 1 6 client 1
client 2 client 2
average loss average loss

6 | Al ( |

40 a (b)

2 | -

2 - -

0 | 0f |

| | | | | | | | | |
—2 -1 0 1 2 -2 —1 0 1 2

Figure 8: Strongly convex losses in the overparameterized regime (see (a)) and Losses satisfying PL inequality

(see (b)).
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