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A Appendix

A.1 Compact Notations and Useful Lemmas

We simplify the presentation of the proof by using the following matrix notations. Let the local average of
the parameters be denoted by W r

l := [wr
1,w

r
2, . . . ,w

r
N ]T ∈ RN×d, where wr

k ∈ Rd is the parameter vector
at node k. The Aggregation step of Algorithm 1 can be compactly written in matrix form as

wr+1
k =

∑
i∈Nk

pk,iw
r,T
k ≡ W r+1

l = PW r,T , (7)

where Nk := {i : pk,i > 0}, and the symbol ≡ means “equivalent to". Further, we define the global average
as

wr := 1
N

N∑
k=1

wr
k ≡ W r = QW r

l , (8)

where Q := 1
N 11T . Now, let us represent the gradients compactly in the matrix form as

∂Φ̂
(
W r,t

)
:=

1
b

∑
j∈Br,t1

G
(r,t)
1,j ,

1
b

∑
j∈Br,t2

G
(r,t)
2,j , . . . ,

1
b

∑
j∈Br,t

N

G
(r,t)
N,j

 , (9)

where G(r,t)
l,j := ∇Φl,j

(
wr,t
l

)
. The mixing matrix P also preserves the average, and hence QP = P . In the

following subsection, we provide a Lemma that relates the local average with the drift. Next, we present two
Lemmas that will be used in proving the convergence result of Decentralized FedAvg algorithm, in particular,
while bounding the global drift.

Lemma 4. (See (Horn & Johnson, 2012)) For any matrices A ∈ CN×N and B ∈ CN×d, we have
∥AB∥2

F ≤ ∥A∥2
op ∥B∥2

F , where ∥A∥op denotes the operator norm of A.

Lemma 5. (See Lemma 1 in (Sun et al., 2021)) Suppose Assumption 5 holds, then for any m ∈ N,
the mixing matrix P satisfies ∥Pm −Q∥op ≤ λm2 , where λ2 is the second largest eigenvalue of the
mixing matrix P , and Q := 1

N 11T .

The above Lemmas are standard which come in handy while bounding the consensus error (Koloskova et al.,
2020; Liu et al., 2022b; Wang & Joshi, 2021). See Liu et al. (2022b); Wang & Joshi (2021); Sun et al. (2021)
for the detailed proofs.

B Proof of Theorem 1

In this section, we will prove the main theorem by proving Lemmas 1 and 2. The proof mainly consists of
two intermediate steps, namely bounding i) the local loss (see Lemma 1) using Lk smoothness (see Definition
1) and local PL inequality to show that the loss at local parameter is bounded in terms of the loss at the
global average parameter and the drift and ii) the global drift (see Lemma 2).

B.1 Useful Lemma to Prove Theorem 1
Lemma 1. The expected local loss function Φk (wr,τ

k ) satisfies the following bound

E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 2

µmin
E ∥∇Φk (wr)∥2

, (10)

where µmin := mink∈[N ]{µk}.
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Proof: Using Assumption 1, we have

Φk (wr,τ
k ) ≤ Φk

(
wr,τ−1
k

)
+
〈

∇Φk
(

wr,τ−1
k

)
,wr,τ

k − wr,τ−1
k

〉
+ Lk

2

∥∥∥wr,τ
k − wr,τ−1

k

∥∥∥2

2
. (11)

We know from Step 7 of the Algorithm 1 that wr,τ
k − wr,τ−1

k = −η
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. Using this

in equation 11, we get

Φk (wr,τ
k ) ≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,

1
b

∑
j∈Br,τ−1

k

∇Φk,j
(

wr,τ−1
k

)〉
+ η2Lk

2 Gk(r, τ).

= Φk
(

wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,

1
b

∑
j∈Br,τ−1

k

∇Φk,j
(

w
r,τ−1)
k

)〉

+ η2Lk
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lk

2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j

(
wr,τ−1
k

)〉
.

≤ Φk
(

wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,

1
b

∑
j∈Br,τ−1

k

∇Φk,j
(

w
r,τ−1)
k

)〉

+ η2Lmax
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lmax

2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j′

(
wr,τ−1
k

)〉
,(12)

where Gk(r, τ) :=
∥∥∥ 1
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)∥∥∥2

2
, and Lmax := maxk Lk. Taking expectation of the above

leads to

E [Φk (wr,τ
k )] ≤ E

[
Φk
(

wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,∇Φk

(
wr,τ−1
k

)〉
+ η2Lmax

2b

∥∥∥∇Φk,j
(

wr,τ−1
k

)∥∥∥2

2

+ η2Lmaxb(b− 1)
2b2

∥∥∥∇Φk
(

wr,τ−1
k

)∥∥∥2

2

]
.

Applying smoothness assumption of each sample, i.e.,
∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2

2
≤ 2lk,jΦk,j

(
wr,τ−1
k

)
, we have

E [Φk (wr,τ
k )] ≤ E

[
Φk
(

wr,τ−1
k

)
− η

∥∥∥∇Φk
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lmaxlk,j

b
Φk,j

(
wr,τ−1
k

)
+ η2Lmaxb(b− 1)Lk

b2

[
Φk
(

wr,τ−1
k

)]]
.

≤ Φk
(

wr,τ−1
k

)
− η

∥∥∥∇Φk
(

wr,τ−1
k

)∥∥∥2

2
+ η2Lmaxlmax

b
E
[
Φk,j

(
wr,τ−1
k

)]
+ η2L2

maxb(b− 1)
b2

[
Φk
(

wr,τ−1
k

)]
, (13)

where lmax := maxk Lk. From the local PL inequality (see definition 2), it follows that
∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2

2
≥

µminΦk
(

wr,τ−1
k

)
for k = {1, 2, . . . , N}, where µmin := mink∈[N ]{µk}. Using this in equation 13 results in

E [Φk (wr,τ
k )] ≤

[
1 − ηµmin + η2

(
lmaxLmax

b
+ L2

maxb(b− 1)
b2

)]
E
[
Φk
(

wr,τ−1
k

)]
.

By setting η ≤ µmin

2
[
lmaxLmax

b +L2
maxb(b−1)

b2

] , the above can be further bounded as

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)
E
[
Φk
(

wr,τ−1
k

)]
.
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Since wr,0
k = wr

k, the above can be written as

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ
E [Φk (wr

k)] . (14)

Using the local PL inequality, i.e., Φk (wr
k) ≤ 1

µmin
∥∇Φk (wr

k)∥2
2 in equation 14, we have

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ 1
µmin

E ∥∇Φk (wr
k)∥2 . (15)

Now, adding and subtracting the term ∇Φk (wr) in the above, and using the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 +
2 ∥b∥2, we get

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ 2
µmin

E
(

∥∇Φk (wr
k) − ∇Φk (wr)∥2

2 + ∥∇Φk (wr)∥2
2

)
.

Using Lk smoothness assumption (see Assumption 3), we have

E [Φk (wr,τ
k )] ≤

(
1 − ηµmin

2

)τ
E
(

2L2
k

µmin
∥wr

k − wr∥2
2 + 2

µmin
∥∇Φk (wr)∥2

2

)
.

Choosing η < 2
µmin

and using the fact that Lmax = maxk Lk, we get

E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 2

µmin
E ∥∇Φk (wr)∥2

.

Using smoothness condition, the above leads to the following corollary. The below result comes in handy
while proving the main result.

Corollary 1. The function Φk (wr,τ
k ) satisfies local PL inequality and can be bounded in terms of global

average parameter i.e., Φk (wr) as follows

E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 4Lmax

µmin
E [Φk (wr)] , (16)

where µmin := mink∈[N ]{µk} and Lmax := maxk Lk.

B.2 Proof of Lemma 1

From L-smoothness assumption (see 1) of Φ (w), we have

Φ
(
wr,t+1) ≤ Φ

(
wr,t

)
+ ⟨∇Φ(wr,t),wr,t+1 − wr,t⟩ + L

2
∥∥wr,t+1 − wr,t

∥∥2
. (17)

Using step 7 of Algorithm 2, we have wr,t+1
i = wr,t

i − η
b

∑
j∈Br,t

i
∇Φi,j

(
wr,t
i

)
. Multiplying both sides by

pk,i and summing over i ∈ Nk, we get

wr,t+1
k = wr,t

k − η

b

∑
i∈Nk

pk,i
∑
j∈Br,t

i

∇Φi,j
(
wr,t
i

)
. (18)

Averaging on both sides over k ∈ [N ], we get

wr,t+1 = wr,t − η

bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
.
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Substituting for wr,t+1 − wr,t from the above udpate in equation 17, we get

Φ
(
wr,t+1) ≤ Φ

(
wr,t

)
− η

〈
∇Φ

(
wr,t

)
,

1
bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)〉
+ η2L

2b2N2

∥∥Gr,t
∥∥2
,

where Gr,t :=
∑N
k=1

∑
j∈Br,t

k
∇Φk,j

(
wr,t
k

)
. Taking expectation conditioning on wr,t

k and past, we get

E
[
Φ
(
wr,t+1)] ≤ E

[
Φ
(
wr,t

)
− η

〈
∇Φ(wr,t), 1

N

N∑
k=1

∇Φk
(
wr,t
k

)〉
︸ ︷︷ ︸

:=A1

+η2L

2

(
1

b2N2

N∑
k=1

∥∥∥∥∥∥
∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=A2

+ 1
b2N2

∑
k ̸=k′

〈 ∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
,
∑
i∈Br,t

k

∇Φk′,i

(
wr,t
k′

)〉
︸ ︷︷ ︸

:=A3

)]
, (19)

First, consider the second term above, i.e., A2

A2 = 1
b2N2

N∑
k=1

∑
j∈Br,t

k

∥∥∇Φk,j
(
wr,t
k

)∥∥2 + 1
b2N2

N∑
k=1

∑
j ̸=j′

〈
∇Φk,j

(
wr,t
k

)
,∇Φk,j′

(
wr,t
k

) 〉
.

Taking expectation, we get

E[A2] = 1
bN2

N∑
k=1

E∥∇Φk,j
(
wr,t
k

)
∥2 + b(b− 1)

b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2. (20)

Similarly the term A3 in equation 19 can be bounded by taking expectation as follows

E[A3] = 1
N2

∑
k ̸=k′

〈
∇Φk

(
wr,t
k

)
,∇Φk′

(
wr,t
k′

)〉
(a)
≤ 1

2N2

∑
k ̸=k′

[
∥∇Φk

(
wr,t
k

)
∥2 + ∥∇Φk′

(
wr,t
k′

)
∥2
]

= 2(N − 1)
2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2

≤ 1
N

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (21)

where (a) follows from ⟨a, b⟩ ≤ 1
2 ∥a∥2 + 1

2 ∥b∥2. Next, we lower bound the term A1 in equation 19 as

A1 = 1
2∥∇Φ

(
wr,t

)
∥2 + 1

2∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − 1

2∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)
− ∇Φ

(
wr,t

)
∥2

Jensen + smoothness
≥ 1

2∥∇Φ
(
wr,t

)
∥2 + 1

2∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − L2

2N

N∑
k=1

∥wr,t
k − wr,t∥2. (22)

Substituting equation 20, equation 21 and equation 22 in equation 17, we get the following

E
[
Φ
(
wr,t+1)] ≤ E

[
Φ
(
wr,t

)
− η

2
∥∥∇Φ

(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+ ηL2

2N

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2

+ η2L

2bN2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)∥∥2

︸ ︷︷ ︸
:=A4

+
(
η2Lb(b− 1)

2b2N2 + η2L

2N

) N∑
k=1

∥∥∇Φk
(
wr,t
k

)∥∥2

︸ ︷︷ ︸
:=A5

]
. (23)
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The term A4 in equation 23 is bounded as follows

A4
(a)
≤

N∑
k=1

2
∥∥∇Φk,j

(
wr,t
k

)
− ∇Φk,j

(
wr,t

)∥∥2 +
N∑
k=1

2
∥∥∇Φk,j

(
wr,t

)∥∥2

(b)
≤ 2

N∑
k=1

l2k,j
∥∥wr,t

k − wr,t
∥∥2 + 4

N∑
k=1

lk,jΦk,j
(
wr,t

)
(c)
≤ 2l2max

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2 + 4lmax
N∑
k=1

Φk,j
(
wr,t

)
,

where (a) follows by adding and subtracting the term ∇Φk,j (wr,t) and using the fact that, ∥a+ b∥2 ≤
2 ∥a∥2 +2 ∥b∥2, (b) follows from Assumption 3, and (c) follows from the fact that lmax := maxk,j lk,j . Taking
expectation, we get

E [A4] ≤ 2l2max
N∑
k=1

E
∥∥wr,t

k − wr,t
∥∥2 + 4lmax

N∑
k=1

E
[
Φk
(
wr,t

)]
. (24)

The term A5 in equation 23 is bounded as

A5
(a)
≤ 2

N∑
k=1

∥∥∇Φk
(
wr,t
k

)
− ∇Φk

(
wr,t

)∥∥2 + 2
N∑
k=1

∥∥∇Φk
(
wr,t

)∥∥2

(b)
≤ 2

N∑
k=1

L2
k

∥∥wr,t
k − wr,t

∥∥2 + 4
N∑
k=1

LkΦk
(
wr,t

)
(c)
≤ 2L2

max

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2 + 4Lmax
N∑
k=1

Φk
(
wr,t

)
, (25)

where (a) follows by adding and subtracting ∇Φk (wr,t), and (b) follows from Assumption 3 and (c) follows
from Lmax := maxk Lk. Substituting upper bounds from equation 24 and equation 25 in equation 23, we
get

E
[
Φ
(
wr,t+1)] ≤ E

[
Φ
(
wr,t

)
− η

2
∥∥∇Φ

(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1
N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+
(
ηL2

2N + η2Ll2max
bN2 + η2LL2

max

N2 + η2LL2
max

N

) N∑
k=1

∥∥wr,t
k − wr,t

∥∥2

+
(

2η2Llmax
bN

+ 2η2LLmax
N

+ 2η2LLmax

)
Φ
(
wr,t

) ]
. (26)

Now, using PL inequality (see definition 2), i.e., ∥∇Φ (w)∥2 ≥ µΦ (w) , ∀w ∈ Rd and rearranging, we get

E
[
Φ
(
wr,t+1)] ≤ E

[(
1 − ηµ

2 +
(

2η2Llmax
bN

+ 2η2LLmax
N

+ 2η2LLmax

))
Φ
(
wr,t

)
+
(
ηL2

2N + η2Ll2max
bN2 + η2LL2

max

N2 + η2LL2
max

N

)
1
N

N∑
k=1

∥∥wr,t
k − wr,t

∥∥2
]
.

20



Published in Transactions on Machine Learning Research (MM/YYYY)

Choosing η ≤ min
{

µ

4( 2Llmax
bN + 2LLmax

N +2LLmax) ,
L2

2
(
Ll2max
bN +LL2

max
N +LL2

max

)}, the above can be further bounded

as

E
[
Φ
(
wr,t+1)] ≤

(
1 − ηµ

4

)
E
[
Φ
(
wr,t

)]
+ ηL2

N

N∑
k=1

E
∥∥wr,t

k − wr,t
∥∥2 (27)

(a)
≤

(
1 − ηµ

4

)
E
[
Φ
(
wr,t

)]
+ 2ηL2

N

N∑
k=1

E
(∥∥wr,t

k − wr,t
k

∥∥2 +
∥∥wr,t

k − wr,t
∥∥2)

, (28)

In the above, (a) follows by adding and subtracting the term wr,t
k and using the fact that, ∥a+ b∥2 ≤

2 ∥a∥2 +2 ∥b∥2. First, let us consider the local drift term i.e.,
∑N
k=1

∥∥wr,t
k − wr,t

k

∥∥ in equation 28. Telescoping
the update from step 7 of Algorithm 1 we have,

wr,t
k = wr,0

k − η

b

t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (wr,τ
k ) . (29)

Further, consider the local average at node k, i.e., wr,t
k

wr,t
k =

∑
i∈Nk

pk,iw
r,t
i = wr,0

k − η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (wr,τ
i ) . (30)

Now noting the fact that wr,0
k = wr,0

k and using equation 29 and equation 30, we can bound the drift term
as

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 =
N∑
k=1

E

∥∥∥∥∥∥ηb
t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (wr,τ
k ) − η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (wr,τ
i )

∥∥∥∥∥∥
2

(a)
≤ 2

N∑
k=1

E

∥∥∥∥∥ηb
t−1∑
τ=0

Gkj(r, τ)

∥∥∥∥∥
2

+

∥∥∥∥∥ηb
t−1∑
τ=0

∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2

(b)
≤ 2

N∑
k=1

E

η2t

b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 + η2t

b2

t−1∑
τ=0

∥∥∥∥∥∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2
 ,

where Gij(r, τ) :=
∑
j∈Br,τ

i
∇Φi,j (wr,τ

i ). In the above, (a) follows from the fact that, ∥a+ b∥2 ≤ 2 ∥a∥2 +

2 ∥b∥2, and (b) follows from the fact that for any vector zi,
(∑N

i=1 zi

)2
≤ N

∑N
i=1(zi)2. The second term in

(b) can be further bounded using Jensen’s inequality as follows

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 2
N∑
k=1

E

[
η2t

b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 + η2t

b2

t−1∑
τ=0

∑
i∈Nk

pk,i ∥Gij(r, τ)∥2

]

≤ 2
N∑
k=1

E

η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

∥∥∥gr,τkj ∥∥∥2
+ η2t

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∥∥gr,τij ∥∥2


(a)
≤ 2

N∑
k=1

E

η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

2lk,jΦk,j (wr,τ
k ) + η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2li,jΦi,j (wr,τ
i )


(b)= E

2η2t

b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

2lmaxΦk,j (wr,τ
k ) + 2η2t

b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2lmaxΦi,j (wr,τ
i )

 ,
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where gr,τkj := ∇Φk,j (wr,τ
k ). In the above, (a) follows from smoothness assumption and (b) follows from the

fact that the mixing matrix P preserves the average and lmax := maxk,j lk,j . Simplifying the above results
in

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ E

8η2tlmax
b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

Φk,j (wr,τ
k )

 .
Taking expectation, we get

N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

E [Φk (wr,τ
k )] . (31)

From equation 16 of Corollary 1, we have, E [Φk (wr,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k − wr∥2
2 + 4Lmax

µmin
E [Φk (wr)]. Using

this in equation 31, we get
N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

(
2L2

max

µmin
E ∥wr

k − wr∥2
2 + 4Lmax

µmin
E [Φk (wr)]

)
.

Simplifying the above results in
N∑
k=1

E
∥∥wr,t

k − wr,t
k

∥∥2 ≤ 16η2t2lmaxL
2
max

N∑
k=1

E ∥wr
k − wr∥2

2
µmin

+ 32η2t2lmaxLmax

N∑
k=1

E [Φk (wr)]
µmin

. (32)

Next, let us consider the global drift term i.e.,
∑N
k=1

∥∥wr,t
k − wr,t

∥∥2
2 in equation 28, which can be rewritten

in matrix notation as Dr,t :=
∥∥W r,t

l −W r,t
∥∥2
F

. This term is bounded as

Dr,t
(a)= E

∥∥QPW r,t − PW r,t
∥∥2
F

(b)= E
∥∥(Q− P )W r,t

∥∥2
F

(c)= E

∥∥∥∥∥(Q− P )
(
W r,0 − η

t−1∑
τ=0

∂Φ̂ (W r,τ )
)∥∥∥∥∥

2

F

,

where (a) follows since QPW r,t = W r,t and PW r,t = W r,t
l , (b) follows from QP = Q, and (c) follows from

the update W r,t = W r,0 − η
∑t−1
τ=0 ∂Φ̂ (W r,τ ). Using the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 in the above,

we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0∥∥2

F
+ 2η2t

t−1∑
τ=0

E
∥∥∥(Q− P )∂Φ̂ (W r,τ )

∥∥∥2

F

≤ 2E
∥∥(Q− P )W r,0∥∥+ 2η2t

t−1∑
τ=0

λ2
2E∥∂Φ̂ (W r,τ ) ∥2

F . (33)

The term E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
in the above can be bounded as

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
= E

N∑
k=1

∥∥∥∥∥∥1
b

∑
j∈Br,t

k

∇Φk,j (wr,τ
k )

∥∥∥∥∥∥
2

2

≤ E
N∑
k=1

1
b

∑
j∈Br,t

k

∥∇Φk,j (wr,τ
k )∥2

2

(a)
≤ 2lmax

N∑
k=1

E [Φk (wr,τ
k )] ,
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where (a) follows from the smoothness assumption and the fact that lmax := maxk,j lk,j . Using equation 10
of Lemma 1, i.e., E [Φk (wr,τ

k )] ≤ 2L2
max

µmin
E ∥wr

k − wr∥2
2 + 2

µmin
E ∥∇Φk (wr)∥2 in the above, we get

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
≤ 4L2

maxlmax
µmin

N∑
k=1

E ∥wr
k − wr∥2

2 + 4lmax
µmin

N∑
k=1

E ∥∇Φk (wr)∥2
.

The result above can be written in the matrix form as,

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2

F
= 4L2

maxlmax
µmin

Dr,0 + 4lmax
µmin

E
∥∥∂Φ

(
W r,0)∥∥2

F
.

Substituting the above result in equation 33, we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0∥∥2

F
+ 4η2L2

maxλ
2
2γt

2Dr,0 + 4η2λ2
2γt

2E
∥∥∂Φ

(
W r,0)∥∥2

F
, (34)

where γ := 2lmaxN
µmin

. Now, consider

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

4

)T
E [Φ (wr)] +

2ηL2

N

T−1∑
τ=0

(
1 − ηµ

4

)τ N∑
k=1

E
(∥∥∥wr,T−1−τ

k − wr,T−1−τ
k

∥∥∥2
+
∥∥∥wr,T−1−τ

k − wr,T−1−τ
∥∥∥2
)

where (a) follows from the fact that
∥∥∥wr,T−1−τ

k − wr,T−1−τ
k

∥∥∥2
= 0 and

∥∥∥wr,T−1−τ
k − wr,T−1−τ

∥∥∥2
= 0 for

τ = T − 1. Now choosing η < 4
µ and uainf equation 32 and equation 34, the average loss becomes

E
[
Φ
(
wr+1)] ≤ E

[((
1 − ηµ

4

)T
+ 64η3T 3lmaxL

2Lmax
µmin

)
Φ (wr) + 4ηTL2

N

∥∥(Q− P )W r,0∥∥2
F

+

2ηTL2

N

[(
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 4η2γT 2λ2
2
∥∥∂Φ

(
W r,0)∥∥2

F

]]
. (35)

Using the fact that
(
1 − ηµ

4
)T ≤

(
1 − ηµ

4
)
, the above can be further bounded as

E
[
Φ
(
wr+1)] ≤ E

[(
1 − ηµ

4 + 64η3T 3lmaxL
2Lmax

µmin

)
Φ (wr) + 2ηTL2

N

[
2
∥∥(Q− P )W r,0∥∥2

F
+(

16lmaxη2T 2L2
max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 4η2γT 2λ2
2
∥∥∂Φ

(
W r,0)∥∥2

F

]]
. (36)

The term E
∥∥∂Φ

(
W r,0)∥∥2

F
can be bounded as

E
∥∥∥∂Φ̂

(
W r,0)∥∥∥2

F
=

N∑
k=1

E ∥∇Φk (wr)∥2 (a)
≤

N∑
k=1

2LmaxE [Φk (wr)] = 2LmaxNE [Φ (wr)] ,

where (a) follows from the smoothness assumption and (b) follows from the fact that Φ (wr) =
1
N

∑N
k=1 Φk (wr). Using the above result in equation 36, we get

E
[
Φ
(
wr+1)] ≤ E

[(
1 − ηµ

4 + 64η3T 3lmaxL
2Lmax

µmin

)
Φ (wr) + 2ηTL2

N

[
2
∥∥(Q− P )W r,0∥∥2

F
+

(
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
)

Dr,0 + 8η2λ2
2γT

2LmaxNΦ (wr)
]]

≤ E
[(

1 − ηµ

4 + 64η3T 3lmaxL
2Lmax

µmin
+ 16η3γT 3λ2

2L
2Lmax

)
Φ (wr) +

2ηTL2

N

([
16lmaxη2T 2L2

max

µmin
+ 4λ2

2η
2γL2

maxT
2
]

Dr,0 + 2
∥∥(Q− P )W r,0∥∥2

F

)]
.
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Choosing η ≤ 1
8

(
µ

64T3lmaxL2Lmax
µmin

+16γT 3L2λ2
2Lmax

)1/2
in the above result in

E
[
Φ
(
wr+1)] ≤ E

[(
1 − ηµ

8

)
Φ (wr) + 2η3TL2

N

[
16T 2L2

maxlmax
µmin

+ 4λ2
2γL

2
maxT

2
]

Dr,0 (37)

+ 4ηTL2

N

∥∥(Q− P )W r,0∥∥2
F

]
.

Again choosing η ≤

(
1

16T2lmaxL2
max

µmin
+4λ2

2γT
2L2

max

) 1
2

, the above results in

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

8

)
E [Φ (wr)] + 2ηTL2

N
Dr,0 + 4ηTL2

N
E
∥∥(Q− P )W r,0∥∥2

F
.

It is easy to see that E
∥∥(Q− P )W r,0

∥∥2
F

= E
∥∥∥W r,0

l −W r,0
∥∥∥2

F
= Dr,0. Using this above, gives us

E
[
Φ
(
wr+1)] ≤

(
1 − ηµ

8

)
E [Φ (wr)] + 6ηTL2

N
Dr,0. (38)

This completes the proof.

B.3 Proof of Lemma 2

Let Dr,0 = E
∥∥∥W r,0

l −W r,0
∥∥∥2

F
=
∑N
k=1 E

∥∥∥wr,0
k − wr,0

∥∥∥2
. Using compact notations for the updates in equa-

tion 7 and equation 8, the global drift term can be written as

Dr,0 = E
∥∥QPW r,0 − PW r,0∥∥2

F

= E
∥∥(Q− P )W r,0∥∥2

F
. (39)

Recall that Q = 1
N 11T is the average matrix, P is the mixing matrix and QP = Q. Using W r,0

l = PW r−1,T

(see equation 7), substituting for the update in W r−1,T and taking the telescopic sum, we get

W r,0 = W r,0
l = P

(
W r−1,0 − η

T−1∑
τ=0

∂Φ̂
(
W r−1,τ)) .

Plugging the above in equation 39, and using the generalized Cauchy’s inequality, i.e., ∥a+ b∥2 ≤(
1 + 1

ψ

)
∥a∥2 + (1 + ψ) ∥b∥2 for any ψ ≥ 0, the global drift term can be upper bounded as

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
Ξ + (1 + ψ)η2E

∥∥∥∥∥(Q− P 2) T−1∑
τ=0

∂Φ̂
(
W r−1,τ)∥∥∥∥∥

2

F

(a)
≤

(
1 + 1

ψ

)
Ξ + (1 + ψ)η2 ∥∥(Q− P 2)∥∥2

op
E

∥∥∥∥∥
T−1∑
τ=0

∂Φ̂
(
W r−1,τ)∥∥∥∥∥

2

F

(b)
≤

(
1 + 1

ψ

)
Ξ + (1 + ψ)η2λ4

2T

T−1∑
τ=0

E
∥∥∥∂Φ̂

(
W r−1,τ)∥∥∥2

F
, (40)
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where λ2 is the second largest eigenvalue of the mixing matrix P and Ξ := E
∥∥(Q− P 2)W r−1,0

∥∥2
F

. In the
above, (a) follows from Lemma 4 and (b) follows from Lemma 5. Next, consider bounding the following

E
∥∥∥∂Φ̂

(
W r−1,τ)∥∥∥2

F
= E

N∑
k=1

∥∥∥∥∥∥∥
1
b

∑
j∈Br−1,τ

k

∇Φk,j
(

wr−1,τ
k

)∥∥∥∥∥∥∥
2

2

Jensen’s
≤ E

N∑
k=1

1
b

∑
j∈Br−1,τ

k

∥∥∥∇Φk,j
(

wr−1,τ
k

)∥∥∥2

2

(a)
≤ 2lmax

N∑
k=1

E
[
Φk
(

wr−1,τ
k

)]
, (41)

where (a) follows from the smoothness assumption and lmax := maxk,j lk,j . Recall from Lemma 1 that

E
[
Φk
(

wr−1,τ
k

)]
≤ 2L2

max

µmin
E
∥∥wr−1

k − wr−1∥∥2
2 + 2

µmin
E
∥∥∇Φk

(
wr−1)∥∥2

.

Substituting this in equation 41, and writing it in the matrix form, we get

E
∥∥∥∂Φ̂

(
W r−1,τ)∥∥∥2

F
= 4lmaxL2

max

µmin
E
∥∥∥W r−1,0

l −W r−1,0
∥∥∥2

F
+ 4lmax
µmin

E
∥∥∂Φ

(
W r−1,0)∥∥2

F
.

Using the above in equation 40

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
E
∥∥(Q− P 2)W r−1,0∥∥2

F
+ η2λ4

2αT
2L2

maxDr−1,0

+η2λ4
2βT

2E
∥∥∂Φ

(
W r−1,0)∥∥2

F
, (42)

where β := 4lmax(1+ψ)
µmin

. First, let us consider bounding a part of the first term above, i.e.,
E
∥∥(Q− P 2)W r−1,0

∥∥2
F

. Using the fact that QP = Q and Q2 = Q, it follows that P 2 − Q = (Q − P )2.
Using this in equation 42, we get

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
E
∥∥∥(Q− P )2

W r−1,0
∥∥∥2

F
+ η2λ4

2βT
2L2

maxDr−1,0

+η2λ4
2βT

2E
∥∥∂Φ

(
W r−1,0)∥∥2

F
.

Applying the results of Lemma 4 and 5, the first term in the above can further be bounded as,

E
∥∥(Q− P )W r,0∥∥2

F
≤

(
1 + 1

ψ

)
∥(Q− P )∥2 E

∥∥(Q− P )W r−1,0∥∥2
F

+ η2λ4
2βT

2L2
maxDr−1,0

+η2λ4
2βT

2E
∥∥∂Φ

(
W r−1,0)∥∥2

F

(a)
≤

(
1 + 1

ψ

)
λ2

2Dr−1,0 + η2λ4
2βT

2L2
maxDr−1,0 + η2λ4

2βT
2E
∥∥∂Φ

(
W r−1,0)∥∥2

F
, (43)

where (a) follows by substituting the results from Lemma 5. The term E
∥∥∂Φ

(
W r−1,0)∥∥2

F
in the above is

bounded as follows

E
∥∥∂Φ

(
W r−1,0)∥∥2

F
= E

N∑
k=1

∥∥∇Φk
(
wr−1,0)∥∥2

2

(a)
≤ 2LmaxNE

[
Φ
(
wr−1,0)] ,
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where (a) follows from smoothness assumption and using the fact that Φ
(
wr−1,0) = 1

N

∑N
k=1 Φk

(
wr−1,0),

and Lmax = maxk Lk. Using the above result in equation 43, we get

Dr,0 ≤
((

1 + 1
ψ

)
λ2

2 + η2λ4
2βT

2L2
max

)
Dr−1,0 + 2η2λ4

2βT
2LmaxNE

[
Φ
(
wr−1,0)] .

This completes the proof.

B.4 Proof of Lemma 3 (Completing the proof of Theorem 1)

Let us recall the equations for Dr+1,0 and Φ
(
wr+1) from Lemma 1 and Lemma 2

Φ
(
wr+1) ≤ αΦ (wr) + ρDr,0, (44)
Dr+1,0 ≤ νDr,0 + χΦ (wr) , (45)

where α :=
(
1 − ηµ

8
)
, ρ := 6ηL2T

N , ν :=
(

1 + 1
ψ

)
λ2

2+η2λ4
2βT

2L2
max and χ := 2η2λ4

2βT
2LmaxN . To ensure ν <

1, we choose ψ = 2λ2
2

1−λ2
2

and any η ≤
√

1−λ2
2

4λ4
2βT

2L2
max

.Further, to ensure χ < 1, we choose η ≤
√

1
2λ4

2βT
2LmaxN

.
Now consider the following Lyapunov function for some constant θ > 0

Φ
(
wr+1)+ θDr+1,0 ≤ αΦ (wr) + ρDr,0 + θ (νDr,0 + χΦ (wr))

(a)
≤ (α+ θχ) Φ (wr) + (ρ+ θν) Dr,0, (46)

where (a) follows from equation 44 and equation 45. To show linear convergence we want the coefficients of
the first and second terms in equation 46 to satisfy the following inequalities

α+ θχ ≤
(

1 − ηµ

16

)
and (ρ+ θν) ≤ θ

(
1 − ηµ

16

)
. (47)

Now, consider the first inequality above. Substituting for α and χ and choosing

η ≤ µ

32θλ4
2βT

2LmaxN
,

ensures that the first inequality in equation 47 is satisfied. Next, substituting the values for ρ and ν in the
second inequality in equation 47, and simplifying results in

6ηL2T

N
+ θη2λ4

2βT
2L2

max + θηµ

16 ≤ θ

(
1 − λ2

2 − λ2
2
ψ

)
,

where the above quantity is non-negative by choosing ψ > λ2
2

1−λ2
2
. Now, picking η ≤ 1

θλ4
2βT

2L2
max

leads to

η

(
1 + θµ

16 + 6L2T

N

)
≤ θ

(
1 − λ2

2 − λ2
2
ψ

)
.

Choosing η ≤
θ

(
1−λ2

2−
λ2

2
ψ

)
(

1+ ηµ
16 + 6L2T

N

) ensures that (ρ+ θν) ≤ θ
(
1 − ηµ

16
)
. Finally, choosing

η ≤ min
{

4
µ ,

2
µmin

, µ
4ζ1
, L

2

2ζ2
, 1

8

(
µ

ζ3T 3

) 1
3
,
(

1
ζ4T 2

) 1
2
, µminζ5

,√
1−λ2

2
ζ6T 2 ,

√
1

ζ7T 2 ,
µ

ζ8T 2 ,
1

ζ9T 2 ,
θ(1−λ2

2−
λ2

2
ψ )(

1+ θµ
16 + 6L2T

N

)}, (48)

Substituting the conditions in equation 47 in equation 46, we get

Φ
(
wr+1)+ θDr+1,0 ≤

(
1 − ηµ

16

)
(Φ (wr) + θDr,0) .
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for any constant θ > 0. Here, µmin := mink∈[N ]{µk}, lmax := maxk,j lk,j and Lmax := maxk Lk,

ψ = 2λ2
2

1−λ2
2
, γ := 2lmaxN

µmin
, β := 4lmax(1+ψ)

µmin
, and Dr,0 :=

∑N
k=1 E

∥∥∥wr,0
k − wr,0

∥∥∥2
. Moreover, in the above

ζ1 := 4
( 2Llmax

bN + 2LLmax
N + 2LLmax

)
, ζ2 := 2

(
Ll2max
bN + LL2

max

N + LL2
max

)
, ζ3 := 64lmaxLLmax

µmin
+ 16γLλ2

2Lmax,

ζ4 := 16lmaxL2
max

µmin
+ 4λ2

2γL
2, ζ5 := 2

[
lmaxLmax

b + L2
maxb(b−1)

b2

]
, ζ6 := 4λ4

2βL
2
max, ζ7 := 2λ4

2βLmaxN ,
ζ8 := 32θλ4

2βLmaxN and ζ9 := θλ4
2βL

2
max.

C Differences between strongly convex and our setting

In the following, we provide a very simple 1-D examples for strongly convex (f1(x) = log(x − 0.5 +√
1 + (x− 0.5)2) + (x − 0.5)2 + 0.25 + constant and f2(x) = 2x2), and non-convex settings (f1(x) =

x2 + 2 sin2(x) and f2(x) = 0 × 1{f1(x) ≤ 4} + f1(x)1{f1(x) > 4}), as shown in Fig. 8. Note that in
the strongly convex setting, both clients share the unique minima x∗ = 0 due to the interpolation assump-
tion. In this case, both clients do not need to communicate since each client can run local rounds to reach the
global minima that minimize the average, and hence making decentralized or collaborative learning vacuous!
On the other hand, for the PL setting, multiple local rounds lead to different optimal points. For example,
running multiple rounds of GD results in client 1 reaching x∗

1 = 0 while client 2 reaches ≈ −1.3 or ≈ +1.3
depending on the initialization. However, the optimal point x∗ = 0. This simple scenario suggests challenges
while proving the results. For example, in the strongly convex setting ((Koloskova et al., 2020)), one can
start with the difference between global optimum and the local/global update while we cannot use this to
prove our results.
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Figure 8: Strongly convex losses in the overparameterized regime (see (a)) and Losses satisfying PL inequality
(see (b)).
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