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LanEvil: Benchmarking the Robustness of Lane Detection to
Environmental Illusions

Anonymous Authors

ABSTRACT
Lane detection (LD) is an essential component of autonomous driv-
ing systems, providing fundamental functionalities like adaptive
cruise control and automated lane centering. Existing LD bench-
marks primarily focus on evaluating common cases, neglecting
the robustness of LD models against environmental illusions such
as shadows and tire marks on the road. This research gap poses
significant safety challenges since these illusions exist naturally in
real-world traffic situations. For the first time, this paper studies
the potential threats caused by these environmental illusions to
LD and establishes the first comprehensive benchmark LanEvil for
evaluating the robustness of LD against this natural corruption. We
systematically design 14 prevalent yet critical types of environmen-
tal illusions (e.g., shadow, reflection) that cover a wide spectrum
of real-world influencing factors in LD tasks. Based on real-world
environments, we create 94 realistic and customizable 3D cases
using the widely used CARLA simulator, resulting in a dataset com-
prising 90,292 sampled images. Through extensive experiments, we
benchmark the robustness of popular LD methods using LanEvil ,
revealing substantial performance degradation (-5.37% Accuracy
and -10.70% F1-Score on average), with shadow effects posing the
greatest risk (-7.39% Accuracy). Additionally, we assess the perfor-
mance of commercial auto-driving systems OpenPilot and Apollo
through collaborative simulations, demonstrating that proposed
environmental illusions can lead to incorrect decisions and poten-
tial traffic accidents. To defend against environmental illusions, we
propose the Attention Area Mixing (AAM) approach using hard ex-
amples, which witness significant robustness improvement (+3.76%)
under illumination effects. We hope our paper can contribute to
advancing more robust auto-driving systems in the future. Part of
our dataset and demos can be found at the anonymous website.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
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(a) (b)

(c) (d)

Figure 1: Illustration of naturally existing yet overlooked
environmental illusions (e.g., shadow). Perception of these
patterns that objectively exist in such a way could cause
misinterpretation of their actual nature leading to wrong
lane recognition.

1 INTRODUCTION
Lane detection aims to identify the location of lane lines or road
edges [24, 41–43, 63], which now serves as the foundation for many
driving assistant functions in the real-world auto-driving vehicles
[21], such as lane centering and adaptive cruise control.

Though demonstrating promising results on datasets of common
traffic cases (e.g., TuSimple [55], CULane [41]), the robustness of
LD models on cases containing environmental illusions remains
unexplored. In real-world traffic cases, there exists a range of natu-
rally existing yet overlooked environmental illusions, such as shadow
and reflection in Figure 1. These environmental illusions are natu-
ral to human perception. However, perception of these deceiving
patterns that objectively exist in such a way could bring natural
corruption and cause misinterpretation of their actural nature lead-
ing to wrong lane recognition. This sparsity of research presents
a severe risk to the safety of auto-driving systems, as it increases
their vulnerabilities and poses risks to human lives and properties
[58]. Considering the safety-critical nature of autonomous driving,
it is of paramount importance to rigorously evaluate LD robustness
on such environmental illusions before deployment.

In this paper, we take the first step in studying LD model robust-
ness towards the environmental illusions. In contrast to the com-
mon corruption datasets [12, 20] (e.g., snow) that directly perturb
the overall clean input images with noises, environmental illusions
target adding case-specific and naturally-looking modifications to
some regions of the case. Thus, environmental illusions should be
considered as a new type of natural corruption robustness problem.
Though naturally existing in practice, it is still difficult to directly
collect such large-scale real-world images containing different types
of environmental illusions. Simulation testing, renowned for its
cost-efficiency and reproducibility, has become a widely adopted

https://lanevil.github.io/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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alternative to real-world experimentation, especially within the
realm of autonomous driving research [1, 16, 47]. Therefore, we
adopt the commonly used simulation testing pipeline [28, 29, 56]
to collect synthetic images [45, 46, 49]. In particular, we utilize the
commonly used CARLA simulator [13] to intricately design 3D traf-
fic environments; we then physically perturb the visual properties
of the target objects (e.g., roads) with our proposed environmental
illusions and finally render the corrupted images.

Based on the pipeline, we rigorously analyze the critical influence
factors in LD scenarios including Dynamic Objects, Static Facilities,
and Environmental Conditions, and systematically design 14 illu-
sion types with 5 severity levels that collectively address a wide
spectrum of real-world environmental illusions on the road and pro-
pose the LanEvil LD robustness evaluation benchmark. Overall, our
benchmark encompasses 94 cases with editable 3D environments
and a 90,292 sampled image dataset with 40,000 clean training im-
ages and 50,292 test images. Leveraging LanEvil , we conducted
extensive experiments to benchmark the robustness of commonly
adopted LD models, where we observed severe performance degen-
eration (-5.37% Accuracy and -10.70% F1-Score on average). Notably,
the shadow effect caused the most considerable reduction (-7.39%
Accuracy). To improve model robustness against environmental
illusions, we propose the Attention Area Mixing (AAM) approach,
a novel noise defense baseline leveraging hard examples, achieving
a 3.76% improvement over vanilla detectors towards these illusions.
To better demonstrate the potential of our LanEvil, we conducted
joint simulation experiments on commercial autonomous driving
systems (OpenPilot [9] and Apollo [3]), where we observed incor-
rect decisions resulting in car accidents. Finally, we also conducted
case studies on real-world scenarios containing environmental il-
lusions, which demonstrate the threats in practice. We hope this
paper will raise awareness regarding potential security threats in
autonomous scenarios. Our contributions are as follows:

• As far as we know, we are the first to study the influence of
environmental illusions on the robustness of LD models (an
essential component in auto-driving).

• We build the LanEvil benchmark, which contains 14 typical
environmental illusions, 90,292 images, and 94 editable 3D
cases supporting user customization.

• We introduce the Attention Area Mixing (AAM) approach,
leveraging hard examples to surpass existing noise defense
techniques in addressing environmental illusions.

• We conduct extensive experiments on commonly used LD
models, and commercial autonomous driving systems, which
substantiates its real-world threats.

2 RELATEDWORK
2.1 Lane Detection
Lane detection addresses the identification of lane lines or road
edges. Currently, deep learning-based LD methods have emerged as
the predominant paradigm, harnessing their ability to learn complex
features and patterns. In general, the mainstream LD methods can
be divided into the following five categories as segmentation-based
methods [37, 39, 41] that treat LD as a pixel-level classification
task; keypoint-based methods [25, 44, 57] that identify critical points
for LD and subsequently group these key points into lane line

instances; anchor-based methods [30, 52, 53] that utilize predefined
anchor points to efficiently identify and locate lane boundaries in
images; row-wise classification methods [23, 42, 43, 60] that estimate
the cell that most probably contains a lane line for each row and
repeat this process for each lane; and parameter-based methods
[8, 15, 36, 54] that model the LD task as a curve fitting problem.

In this paper, we will then benchmark and evaluate the robust-
ness of all the above types of LD methods.

2.2 Lane Detection Datasets
The advancement of LD is closely tied to high-quality datasets un-
der various traffic cases. Early datasets are relatively simple, such
as the CalTech dataset [2], which contains 1,224 frames in common
urban streets without weather changes. In contrast, VPGNet [27]
introduces more complexity, offering 20,000 images featuring in-
tricate urban traffic cases; TuSimple [55] primarily concentrates
on the annotated lane under highway scenes. Besides, some other
datasets introduce more diverse traffic conditions. For example, CU-
Lane [41] includes over 130,000 images, with approximately 72.3%
of the dataset featuring challenging cases such as traffic crowds and
dazzling light; BDD-100K [61] covers diverse lighting conditions
and 6 extreme weather types; in LLAMAS [4], the count of marked
lane pixels is sparse and varies with marking distance and position;
in addition, CurveLane [59] places emphasis on curved lanes.

Besides the above common datasets, the robustness bench-
marks that study natural corruption in LD scenarios are rare. Some
pioneering benchmarks are devoted to assessing the robustness
of image classification [20] and object detection [20] against com-
mon perturbations such as blur, weather conditions, and digital
corruption. Recently, some studies have proposed to investigate the
perception robustness of autonomous driving against common cor-
ruption [12, 26]. However, these works primarily focus on general
3D perception tasks such as detection and segmentation, and the
generated corruption (e.g., motion blur) is not specially designed
for LD. Moreover, there also exist some studies that generate spe-
cially designed lane-like adversarial attacks for autonomous driving
[6, 48], which is out of the scope of this paper.

To sum up, though existing LD datasets have achieved notable
milestones in assessing the performance of LD methods, there still
exist no systematic investigations on LD scenario-related corrup-
tion, such as shadows and reflections. Our LanEvil aims to bridge
this gap by providing a comprehensive dataset for LD corruption
robustness evaluation. The detailed comparison of LanEvil and other
datasets are shown in Supplementary Materials.

3 THE LANEVIL DATASET
3.1 Problem Definition

Lane detector. A lane detector 𝑓𝜽 (I) → loc ∈ N𝐾 with parame-
ters 𝜽 , which takes an image I ∈ [0, 255]3 as input, outputs 𝐾 lane
line locations as loc. The formulation of the training is as follows:

min
𝜽
E(I,loc𝑔𝑡 )∼DL(𝑓𝜽 (I), loc𝑔𝑡 ), (1)

where D denotes the dataset, and L(·) is the loss function that
measures the difference between the output of the lane detector 𝑓
and the ground truth loc𝑔𝑡 .
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Environment. In practice, the autonomous vehicle first per-
ceives the real-world scenario environment Φ via the sensor and
then projects/renders the 3D objects into the 2D image I = 𝑅(Φ)
as the input, where 𝑅(·) is the environmental sampling function.
Specifically, the environment highly related to the LD scenario
can be roughly divided into the static facilities S = {s1, s2, ..., s𝑛}
(e.g., roads, fences) and dynamic objects X = {x1, x2, ..., x𝑚} (e.g.,
pedestrians, vehicles). In addition, the environmental conditions
C, such as weather and lighting, can also pose influences on the
environment. Therefore, the environment Φ should be defined as

Φ = (< S,X >,C). (2)

The input I of LD should be rendered from the environment with
specific sets of static/dynamic objects with certain conditions as

I = 𝑅(< S,X >,C). (3)

Environmental illusions on LD models. Natural changes/
modifications of the aforementioned static facilities, dynamic ob-
jects, and environmental conditions would bring certain corruption
to the rendered input I and cause the performance degeneration of
LD models. In particular, to generate environmental illusions, we
directly modify the attributes of each parameter under the environ-
ment Φ in Equation 2 to get Φ̂. Then, the rendered image Î = 𝑅(Φ̂)
is slightly perturbed and contains environmental illusions in spe-
cific regions. Therefore, the performance 𝑓𝜽 (Î) of LD model may
decrease. In this paper, we mainly design single-factor changes and
generate the corresponding environmental illusions.

3.2 Environmental Illusion Design
As shown in Figure 2, our benchmark encompasses four environ-
mental illusion categories with 14 types. We then illustrate the
design of each category.

❶ Road Damage. The road damage corresponds to the influ-
ences brought by the perturbations added to the static facilities S
on the road. Here, we design four typical types of environmental
illusions including Road Crack, Road Repair, Tire Marks, Guard
Rail. In particular, Road Crack illusion encompasses common
forms of cracks, ranging from minor transverse and longitudinal
cracks to mesh-like fissures. The repaired regions are visually ob-
vious and some of them exhibit linear patterns that are similar to
lane markings, and we term this Road Repair illusion. We also
design the Tire Marks illusion which depicts the case of emer-
gency braking or collisions.Moreover, we consider the potential
misidentification of Guard Rail as lane markings, which can affect
the detection of road edges.

Given an existing static object s𝑖 (e.g., road) in the environment
Φ, we modify the appearance attributes of object s𝑖 by physically
adding the above specific perturbation type on specific regions and
obtain the perturbed object as ŝ𝑖 = s𝑖 + 𝑔(𝜹), where 𝑔(·) is the
perturbed function and 𝜹 denotes the severity levels and perturbed
mask. Additionally, we add new object s𝑗 on the roadside in Φ,
such as guard rails. Therefore, the environmental illusions caused
by Road Damage can be formulated as perturbing or adding the
static facilities in the environment as Ŝ = {ŝ1, ..., ŝ𝑖 , s𝑖+1, · · · , s𝑖+𝑁 },
where 𝑁 is the number of added objects.

❷ Traffic Obstruction. This category of illusion corresponds to
the influence of dynamic objectsX on the roads. Traffic participants
constitute a pivotal element in the realm of autonomous driving, of-
ten necessitating stringent safety measures. In this paper, wemainly
focus on three classical types of traffic participants Pedestrian,
Vehicle, and Bicycle. These participants could obstruct the view
of lane lines and influence the performance of LD. In addition, we
also generate different quantities of participants to simulate traffic
flow with different levels of complexity.

In detail, for each specific case, we generate 𝑛 instances x𝑖 of
the specific illusion type. Different from Road Damage, we set the
default X in the environment as ∅ and add participants at differ-
ent regions on the roads. Therefore, the environmental illusions
caused by Traffic Obstruction can be formulated as adding extra𝑚
participants in the environment as X̂ = {x1, x2, x3, · · · , x𝑚}.

❸ Shadow. The environmental conditions C, such as weather
and lighting, can affect the visual appearance of the roads and re-
lated objects resulting in extra illusions. One influential factor is the
lighting condition changes over time, which would project different
shadows on the road. These shadows (e.g., shadows of the fence or
streetlight) have patterns that are similar to lane lines, which could
cause a decrease in LD performance. For example, at nightfall, the
light angle is comparatively huge resulting in a larger shadow area;
the light intensity at noon is high while the angle is small causing
clearer shadow edges. Considering the above circumstances, we
design four types of environmental illusions for shadows including
Streetlight, Fence, Rail, and Wire. Specifically, Streetlight
and Fence cast elongated shadows on the road when the sun is at
a low elevation angle. Meanwhile, we also devise a type of shadow
deception caused by the translucent parts of Rail. By adjusting the
lighting angles, rails can project bright lines on the road that closely
resemble lane markings in both color and shape, creating a highly
deceptive visual effect. Finally, we observe a similar effect of Wire.
Both the opaque parts of the shadow and the translucent areas
between two power lines could be mistaken for lane markings.

Based on the above analysis, we generate the shadow illusion
by altering the lighting factor in the simulation environment. The
perturbation images I(𝑙,𝑎) can be calculated by Equation 3 with
hyper-parameter (𝑙, 𝑎) luminance and angle.

❹Reflection.Another environmental conditionweather changes,
such as rains, would create water puddles on the roads, which
can reflect the light and influence the accurate capture of lane
lines. Images captured by autonomous vehicles at backlit angles
are significantly distorted due to the impact of reflection. Based on
the above observation, we design three types of illusion including
Sunlight Reflection, Streetlight Reflection, and Vehicle
Reflection. In particular, when the vehicle travels into the sun,
intense Sunlight Reflection can blur lane markings, especially
white lines and dashed lines. Moreover, after heavy rain, this effect
becomes more pronounced, as the reflection from water on the road
makes lane markings invisible in the images. Similarly, nighttime
Streetlight Reflection also strongly affects the recognition of
road lane markings. To make the illusion more severe and practical,
we also consider the two most common colors of streetlights, i.e.,
white and yellow, coincidentally matching the common colors of
lane markings. Additionally, we introduce Vehicle Reflection,
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Figure 2: The framework of our LanEvil benchmark, which contains 14 specially-designed environmental illusion types from 4
categories including road damage, traffic obstruction, reflection, and shadow.

1. Environment Build 2. Properties Modification

3. Facilities/Traffic Generation 4. Image Collection

a.
b.

c.

static
facilities

dynamic
objects

construction

Figure 3: Illustration of our data collection pipeline.

which denotes the reflection of the surface of some vehicles, affect-
ing the visibility of the front vehicles.

3.3 Construction Details
Data collection. Though the proposed environmental illusions

naturally exist, it is difficult to directly collect large-scale real-world
images containing diverse types of illusions. Therefore, we use
CARLA [13] simulator to generate high-quality perturbed cases
and then sample the images with high visual fidelity. The data
collection pipeline is as follows:❶ according to real-world scenarios,
we customize the 3D environment and design road types (map
segmentations) that are commonly witnessed for traffic, such as
T-junction; ❷ we perturb the properties of specific objects in the
simulation environment based on the illusion generation methods
in Section 3.2;❸we place objects in different positions and generate
traffic flow; ❹ we run our vehicle agent under the given routing
path, and then save the case and capture the first-view images.
The sampling RGB camera is positioned in front of the vehicle
agent with 1280 × 720 resolution and 90.0◦ field of view. To make
it more practical, we follow [5, 14] and replicate the most basic and
common traffic cases for autonomous driving such as following
other vehicles and executing sharp turns. The pipeline and collected
images are shown in Figure 3 and 5, respectively.
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(b)
Figure 4: The statistics of LanEvil dataset. (a) The number of
original and perturbed cases under four categories. (b) The
case distribution of four illusion categories.

Quality control.We follow a similar annotation quality control
procedure to classical datasets [31, 55]. Here, all of our annotators
followed the same annotation guidelines, including what to anno-
tate and how to annotate lanes. Moreover, to ensure the accuracy
of annotation, we divide the annotators into 3 groups. Each image
was assigned to 2 groups for annotation. Then the average results
were reviewed by the third group.

3.4 Data Properties
Subset division.Our LanEvil contains two subsets, i.e., a training

set with normal images and a test set with environmental illusions.
We first generate the training set with 40,000 randomly sampled
clean images without designed environmental illusions. The test set
consists of 50,292 images. For each basic environmental illusion, we
provide an original case without any illusion and 2 - 10 perturbed
cases, each consisting of 50 to 300 consecutively captured driving
images. The statistics of original and perturbed cases are shown in
Figure 4a and Table 1b. More dataset details including license can be
found in Supplementary Material.
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Figure 5: Visualization of images from our LanEvil dataset under different environmental illusions.

Table 1: Detailed data properties of LanEvil.

(a) Scenario diversity

Type Number Typical examples
Scene 5 Urban, Highway

Lane line 9 White single solid, Yellow double solid
Weather 12 SoftRainNoon, ClearNoon
Road type 9 T-junction, Uphill

(b) Quality distribution

Image Type Road Damage Traffic Obstruction Shadow Reflection
Original 2,600 5,000 2,051 4,600
Perturbed 2,600 10,000 6,441 17,000
Total 5,200 15,000 8,492 21,600

Category distribution. Our LanEvil test set contains 50,292
images comprising a total of 94 basic cases (e.g., straight ahead,
turn) with editable 3D environments. The quantity of cases and
images for each type of environmental illusion is illustrated in
Figure 4b. In addition, The LanEvil dataset encompasses 9 line
types in different shapes and colors. It also covers multiple driving
scenes and multiple road types, as shown in Table 1a.

Other application possibilities. Besides image collection, our
dataset also involves the meticulous construction of large-scale
corrupted 3D simulation scenarios. These scenarios are saved in
editable formats which could support further development; in ad-
dition, these dynamic scenarios could be used as input to other
software for evaluation, since CARLA has been successfully con-
nected to many other systems.

4 ATTENTION AREA MIXING (AAM)
To address environmental illusions, we introduce the Attention
Area Mixing (AAM) here. The framework is shown in Figure 6.

Recent studies, such as Geirhos et al. [17], highlight a significant
texture bias in DNNs. Following this, Liu et al. [35] proposed uti-
lizing category-specific features to improve training. Drawing on
prior research and [62], we introduce the AAM approach, specifi-
cally designed to meet the unique requirements of LD. We create
a repository of high-attention (HAA) areas from hard examples,
which are then blended with dataset images for augmentation. This
method aims to enhance LD model performance significantly.

4.1 Attention Area Generation
The attention graph is instrumental in visualizing the regions that
the model prioritizes during the prediction phase. By incorporating
visual attention mechanisms such as CAM [64], Grad-CAM [50],
and Grad-CAM++ [7], we significantly bolster the interpretability

High Attention Area ExtractionAttention Area Generation

Hard Examples

Common Data

HAA
Repository

Heat Map

Initial Detector

Error Attention

Robust Detector

Attention Area Mixing

finetune

Mixing

Figure 6: The Attention Area Mixing (AAM) Framework

and insight into deep learning models. Our approach meticulously
evaluates the precision of the model’s focus on relevant sectors by
examining its attention map. More precisely, for a given image 𝐼 ,
we compute its attention map 𝑀 employing an attention module
A, specifically designed for LD:

𝑀 = A(𝐼 ) . (4)
More precisely, the attention module A for LD is

A(𝐼 ) = relu ©«
∑︁
𝑘

∑︁
𝑖

∑︁
𝑗

𝛼𝑘𝑖 𝑗 · relu
(
𝜕L
𝜕𝐴𝑘
𝑖 𝑗

)
· 𝐴𝑘𝑖 𝑗

ª®¬ , (5)

where 𝛼𝑘
𝑖 𝑗
represents the gradient weights for the lane detection

taskwithin activationmap𝑘 ,L(·) denotes a loss function optimized
for lane detection,𝐴𝑘

𝑖 𝑗
is the pixel value in position (𝑖, 𝑗) of the 𝑘-th

feature map, and relu(·) denotes the RELU function.
Additionally, our methodology concentrates exclusively on hard

examples—images that the model does not readily detect accurately.
For any given image, should its Accuracy or F1-score be lower than
the dataset’s mean, we designate it as a hard example.

4.2 High Attention Area Extraction
The process of High Attention Area (HAA) Extraction identifies
mismatches between model focus and ground truth. It begins by
applying Gaussian blurring to the heatmap𝑀 to improve general-
ization, represented as:

𝑀′ = 𝐺 (𝑀,𝜎), (6)
with𝑀′ as the blurred heatmap, where 𝜎 is the Gaussian kernel’s
standard deviation. This step is followed by thresholding 𝑀′ to
produce a binary map 𝐵:



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝐵(𝑥,𝑦) =
{
1 if𝑀′ (𝑥,𝑦) > 𝑇,
0 otherwise,

(7)

here, 𝑇 is the threshold, with 𝑥,𝑦 as pixel coordinates. We identify
connected regions in 𝐵, remove areas smaller than size threshold 𝑆 ,
forming interest areas 𝐴:

𝐴 = {𝑟 | area(𝑟 ) > 𝑆, 𝑟 ⊂ 𝐵}. (8)
Discrepancies are pinpointed by comparing each region 𝑟 ∈ 𝐴

with ground truth 𝐺 , defining mismatches as regions with insuf-
ficient overlap and extracting the minimum bounding rectangles
(MBR) for these regions :

R𝐻𝐴𝐴 = {MBR(𝑟 ) | 𝑟 ∈ 𝐴 ∧ overlap(𝑟,𝐺) < 𝜃 }, (9)
where R𝐻𝐴𝐴 represents the set of mismatched regions enclosed by
their minimum bounding rectangles, and 𝜃 establishes the threshold
for acceptable overlap.

4.3 Attention Area Mixing
Following the creation of the R𝐻𝐴𝐴 , we perform mixed operations
to infuse the dataset with hard examples. Given the dataset D, for
each image 𝐼 within D, we integrate a randomly selected High
Attention Area 𝐻 from 𝐻𝐴𝐴 𝑅𝑒𝑝𝑜 into 𝐼 , through the operation:

𝐼mixed = 𝐼 ⊕ Locate(𝐻,𝐺𝐼 ), (10)
here, 𝐼mixed signifies the augmented image, incorporating 𝐻 based
on the ground truth 𝐺𝐼 , with ⊕ representing the blending action.
This method enhances model resilience to real-world variability
by embedding critical High Attention Areas into training images,
fostering improved recognition and detection accuracy.

5 EXPERIMENTS
5.1 Experimental Setup

Dataset. In our main experiments, we first train the LD models
from scratch using the training set of our LanEvil, and then evaluate
their robustness on the test set of LanEvil. We also evaluate the
domain gap between simulated data and real data in Section 5.4.

Target models. To provide a comprehensive evaluation, we
choose five representative and commonly-used LD models from the
five LD categories as introduced in Section 2.1 for experiments:
LaneATT [53], UltraFast [42], BezierLaneNet [15], GANet [57],
SCNN [41]. For the backbones, we use the ResNet [19] series includ-
ing ResNet-18, ResNet-34, ResNet-50, and ResNet-101 with weights
pre-trained on ImageNet [10]. Note that, the official SCNN model
implementation only supports VGG-16 [51] architecture. Therefore,
we only use VGG-16 as its backbone.

Evaluationmetrics.We select the twomostwidely usedmetrics
in lane detection, i.e., Accuracy and F1-score, as the main evaluation
metrics to calculate the performance of LD methods. For both of
these metrics, higher values indicate better performance/robustness.
Detailed definitions can be found in the Supplementary Materials.

5.2 Main Results
We first evaluate the model robustness of five LDmodels on LanEvil.
Due to the space limitations, we report the average performance

of models on each of the four main illusion categories here. The
breakdown results of each illusion type and level can be found in the
Supplementary Material. As shown in Table 2, we can identify:

❶ Overall, the proposed environmental illusions have demon-
strated certain impacts on the robustness of LD models. In general,
these illusions can cause an average absolute 5.37% Accuracy drop
and 10.70% F1-Score drop.

❷ Different environmental illusions show different threat im-
pacts on LD model robustness. For instance, Shadow demonstrates
the most pronounced effect, leading to an average model perfor-
mance decrease of 7.39%; in contrast, Road Damage shows compar-
atively weak influence with only 2.49% decreases on average.

❸ Following a comprehensive analysis of the model and back-
bone, we observe that different models display various degrees
of resistance to these types of corruption. In particular, GANet
showcases the highest clean performance. However, the Accuracy
decreases the most after attacks, amounting to approximately 7.53%.
Conversely, SCNN has the lowest Accuracy in clean images but
experiences the least Accuracy decrease. Additionally, in terms of
model backbones, as the depth of layers increases, the performance
and robustness of the model tend to improve.

❹ As the severity level increases, the performance degeneration
increases significantly. Specifically, the level-1 images cause an
average 2.61% Accuracy drop and 7.06% F1-Score drop; in contrast,
the level-5 images can cause an average 19.12% Accuracy drop and
34.10% F1-Score drop.

5.3 Results on Noise Defense Methods
In this section, we further investigated the effectiveness of our pro-
posed AAM method and existing noise defense methods on our
LanEvil dataset. Specifically, we choose ResNet-18 as the backbone
for the LaneATT and UFLDmodels and apply PGD adversarial train-
ing [38], cutout [11], copy-paste [18], Augment HSV and MixUP
[62] for the noise defense methods as they improve the model ro-
bustness towards adversarial noises [32–35] or natural corruption.

Figure 7 demonstrates that, across various noise defensemethods,
our AAM leads with a notable 3.76% average increase in accuracy,
outperforming competing methods. Other defense strategies yield
only modest gains, typically below 1.5%, with an overall average im-
provement of +1.24%. Notably, PGD-AT experienced performance
declines compared to vanilla models (-1.45%). These outcomes sug-
gest that the environmental illusions introduced by our method
diverge from conventional adversarial noise and corruption, high-
lighting the need for specialized defense studies.

5.4 Visual Fidelity Analysis
In this part, we further study the visual fidelity of our generated
corrupted images. Specifically, we conduct two experiments: (1)
training on either simulated or real-world datasets and then testing
on another dataset; (2) conducting human perception studies on
the visual quality of our dataset.

Cross-domainmodel prediction.❶ LanEvil→ Real-world. For
each of the three real-world datasets (TuSimple, CULane, LLAMAS),
we separately train a model on the original real-world dataset, a
model on the generated LanEvil, and a LanEvil pre-trained model
fine-tuning on 100 images from the corresponding real-world datasets.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LanEvil: Benchmarking the Robustness of Lane Detection to Environmental Illusions ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Evaluation results of different LD models using ResNet-18 on the LanEvil dataset. LD models are trained using the
LanEvil training set. For each category of illusion, we report the average value over different types and severity levels. The bold
values represent the minimum in each column, and “Gap” is computed by “Perturbed” minus “Original”. More results of other
backbones and illusions breakdown can be found in Supplementary Material.

(a) Results under Accuracy (%)

Road Damage Traffic Obstruction Shadow Reflection Average
Method

Perturbed Original Gap Perturbed Original Gap Perturbed Original Gap Perturbed Original Gap Perturbed Original Gap

LaneATT [53] 76.23 78.66 -2.43 73.18 75.84 -2.66 79.48 86.07 -6.59 71.33 78.93 -7.59 73.53 78.85 -5.32
UFLD [42] 65.90 68.47 -2.57 65.64 67.58 -1.94 67.73 74.01 -6.27 64.45 70.88 -6.42 65.45 69.90 -4.44

BezierLaneNet [15] 73.14 75.76 -2.62 71.44 74.51 -3.07 68.79 78.32 -9.54 69.44 75.31 -5.87 70.00 75.52 -5.52
GANet [57] 85.32 89.33 -4.01 80.53 84.75 -4.22 83.44 93.02 -9.58 79.21 89.23 -10.02 80.55 88.08 -7.53
SCNN [41] 71.11 71.94 -0.84 67.17 69.67 -2.50 65.38 70.33 -4.95 63.88 68.05 -4.16 65.31 69.36 -4.05

(b) Results under F1-score (%)

Road Damage Traffic Obstruction Shadow Reflection Average
Method

Perturbed Original Gap Perturbed Original Gap Perturbed Original Gap Perturbed Original Gap Perturbed Original Gap

LaneATT [53] 49.20 52.63 -3.43 46.03 51.87 -5.84 48.23 60.35 -12.12 38.81 53.23 -14.41 42.95 53.80 -10.85
UFLD [42] 21.25 24.54 -3.30 28.23 31.85 -3.62 26.18 36.32 -10.13 19.96 30.82 -10.85 23.57 31.65 -8.08

BezierLaneNet [15] 37.84 40.68 -2.85 42.53 50.03 -7.49 41.41 50.93 -9.52 37.06 45.86 -8.81 39.49 47.95 -8.46
GANet [57] 79.01 84.16 -5.15 70.34 80.79 -10.45 73.50 89.33 -15.83 65.25 83.03 -17.78 68.64 83.25 -14.61
SCNN [41] 48.69 52.88 -4.19 43.63 50.47 -6.85 34.92 49.42 -14.50 34.70 46.94 -12.24 37.71 49.19 -11.49
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Figure 7: Evaluation of noise defense methods. The designed
illusions are resilient to the data defense methods employed.
The x-axis indicates different types of environmental illu-
sions. More details can be found in Supplementary Material.

All the models are LaneATT with ResNet-34. Here, we report the
F1-score (%) on the testing set of TuSimple (96.77, 91.56, 94.23),
CULane (76.68, 69.32, 73.98), and LLAMAS (93.74, 89.15, 92.58). The
results indicate acceptable domain gaps despite differences between
the real world and our simulated images. Additionally, the gap can
be narrowed by incorporating a small number of real images. ❷

Real-world → LanEvil. Furthermore, we use LaneATT models with
ResNet-34 and train them on real-world datasets (i.e., TuSimple,
CULane, and LLAMAS), and then w/ or w/o fine-tuning them on
the LanEvil . For each model, we test it separately on corresponding
real-world datasets and LanEvil . Table 3 shows minor performance
reductions, indicating a comparatively small domain gap between
LanEvil and other real-world datasets.

Human perception study. Following [29], we conduct human
perception studies and ask the participants to evaluate the natural-
ness of the collected 300 images (150 from LanEvil and 150 from
real-world scenarios). Specifically, We recruited 100 participants
from campus, all with normal (corrected) eyesight. For each image,
participants first view it for 3 seconds, and then rate the image by
a 5-point Absolute Category Rating (ACR) [22]. All participants

Table 3: F1-Scores (%) of LaneATT with ResNet-34 w/o and w/
fine-tuning on LanEvil training set.

Real-world test set LanEvil test set
Dataset w/o w/ Gap w/o w/ Gap

TuSimple [55] 96.77 95.40 -1.37 48.34 62.92 +14.58
CULane [41] 76.68 76.14 -0.54 55.98 68.41 +12.43
LLAMAS [4] 93.74 93.09 -0.65 58.26 66.95 +8.69

are asked to finish the evaluation in 30 minutes. The average ACR
results (our images: 3.89 and real-world images: 3.98) suggest that
our simulated images are comparatively natural to human vision
when compared to real-world images.

6 EVALUATION ON COMMERCIAL SYSTEMS
Here, we conduct software-in-the-loop tests on two commercial
autonomous driving systems includingOpenPilot andApollo. These
systems contain perception and decision modules, which have been
applied in real-world auto-driving vehicles (e.g., TOYOTA, Baidu
Apollo). To conduct experiments, we directly feed the 3D cases in
LanEvil as the perception input for the systems and evaluate their
final decision performance.

6.1 OpenPilot Simulation
We first evaluate LanEvil on OpenPilot, an open-sourced commer-
cial driver assistance system that provides a range of functions. We
chose eight cases (two types under each category of illusion) in
LanEvil and configured their starting points and directions to en-
sure they traverse the road sections we have designed. The pipeline
for implementing joint simulation is: ❶ we connect OpenPilot with
the source-compiled CARLA 0.9.14, and specify CARLA’s initial-
ization parameters (e.g., maps); ❷ for each case pair (clean and
perturbed CARLA 3D cases), we select the vehicle model (i.e., Audi)
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(a) clean scenario

(b) perturbed scenario

Figure 8: The Tire Marks case causes OpenPilot to incorrect
decisions leading to collisions on the wall.

and set the starting point; ❸ we start up the auto-driving mode
with a speed limit of 45 mph and observe/evaluate the decision
performance. Note that, the starting point is positioned with a 5-10
meters distance away from the perturbed location.

We repeat the experiment five times for all eight cases and report
the average results. To quantify the results, we follow [48], and use
the Attack Success Rate (ASR) as the evaluation metric. Following
the US traffic policy [40], the criterion determines an attack or per-
turbation is successful (i.e., the car is deceived) when it achieves
over 0.285m lateral deviations within the required success time (2.5
seconds). As the driving time from the starting point increases, we
observe that the ASR for all types of illusions significantly increases.
In other words, the auto-driving vehicle turns to make incorrect
decisions. In particular, for 92.31% of the frames, the Road Damage
can make OpenPilot achieve over 0.285m lateral deviations within
2.5 seconds. More results can be found in Supplementary Material.
We also provide a visualization of the Tire Marks cases in Figure 8,
where nearly all frames of the OpenPilot system encounter recog-
nition errors, resulting in decision-making mistakes and ultimately
leading to car collisions on the wall. The above results indicate that
our proposed environmental illusions present certain impacts on
the robustness of commercial autonomous driving systems.

6.2 Apollo Simulation
We also evaluate LanEvil on an auto-driving software platform
Apollo developed by Baidu. The evaluated cases are similar to Open-
Pilot. However, the evaluation protocol is different since Apollo
will stop when encountering the lane lines. Therefore, we measure
the percentage of cases where Apollo stops. Also, different from
the pipeline in Section 6.1, in step ❸, we simultaneously select
the start point and end point of the vehicle for each case. During
the experiments, the Apollo vehicle stopped in 6 cases over the 8
tests, demonstrating its comparatively weak robustness towards
environmental illusions.

To sum up, the above studies on two systems demonstrate the
potential threats of our proposed environmental illusions to com-
mercial autonomous driving systems, which yield strong safety
concerns on real-world auto-driving vehicles. More visualizations
and details can be found in Supplementary Material.

(a) Fence Shadow (b) Tire Marks

Figure 9: Real-world environmental illusion images.

7 REAL-WORLD CASE STUDIES
Finally, we extend our experiments from the simulation environ-
ment to the real-world images (as shown in Figure 9) to verify the
threats of the proposed environmental illusions in real-world sce-
narios. Specifically, a stationary camerawasmounted on a vehicle to
acquire video recordings from various highways and urban routes.
These routes were repeatedly navigated under different weather
and time conditions to capture a wide range of environmental illu-
sions. Subsequently, we meticulously select 1,400 images that cover
14 types of illusions as the perturbed set from all collected frames
and select the corresponding normal scene frames as the clean set.
All images were subject to manual annotation for precise analysis.

We use TuSimple pre-trained LaneATT with ResNet-34 to re-
port the Accuracy drop (%) on Road Damage (-7.48%), Traffic
Obstruction (-8.61%), Shadow (-13.55%), and Reflection (-12.84%).
The tendency of the impact of illusions on real-world images stays
the samewith simulator conclusions basically, where Shadow demon-
strates the most pronounced effect while Road Damage shows com-
paratively weak influence. In particular, the main observations in
the simulator hold for real-world images, showcasing an even more
pronounced impact, which indicates that environmental illusions
also pose a significant threat in the real world.

In addition, we drove a real car and turned on the assistant-
driving mode in the real-world shadow illusion scenario, where we
identified incorrect decisions with noticeable steering deviation.
Since the vehicle has not been released, we are bound by the confi-
dentiality agreement and cannot disclose more details. However, we
report a demo video on the website. The above results demonstrate
that the proposed environmental illusions also have high risks in
the real world, which requires wider attention in the future.

8 CONCLUSIONS AND FUTUREWORK
This paper studies the potential threats caused by the environmen-
tal illusions to LD models and establishes the first comprehensive
benchmark LanEvil for evaluation. Large-scale experiments on
LanEvil demonstrate that those naturally existing environmental
illusions significantly reduce the performance of LD models, which
necessitates further attention for building robust auto-driving sys-
tems. We will release our dataset upon paper publication.

Limitations. Despite the promising results, there are several
directions/limitations we would like to explore: ❶ evaluation of
LanEvil on end-to-end foundation models for autonomous driving;
❷ evaluation of LanEvil on other common tasks in autonomous
driving such as 3D obstacle detection; ❸ extending the size of real-
world images with environmental illusions; and ❹ testing more
product-level real-world autonomous driving vehicles.
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