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1 DATASET DESCRIPTIONS
As shown in Table 2, we collect a large-scale audio-text dataset
consisting of 0.92 million of audio samples with a total duration
of approximately 3.7k hours. For text-to-music generation, we use
the LP-MusicCaps for training. For Clotho dataset, we only use its
evaluation set for zero-shot testing and do not use for training. For
text-to-audio generation, we filter 95% of the samples that contain
speech and music to build a more balanced dataset, as speech and
music are the dominant classes in AudioSet.

2 ARCHITECTURE
We list the model hyper-parameters of AudioLCM in Table 1.

Hyperparameter AudioLCM

Spectrogram Autoencoders
Input/Output Channels 80

Hidden Channels 20
Residual Blocks 2
Spectrogram Size 80 × 624
Channel Mult [1, 2, 4]

Transformer Backbone

Input shape (20, T)
Condition Embed Dim 1024

Feed-forward Hidden Size 576
Transformer Heads 8
Transformer Blocks 8
Sampling Steps 2

CLAP Text Encoder Transformer Embed Channels 768
Output Project Channels 1024

Token Length 77

Total Number of Non-trainable Parameters 984M
Total Number of Trainable Parameters 159M

Table 1: Hyperparameters of AudioLCM models.

3 EVALUATION
3.1 Subjective evaluation
To assess the generation quality, we conduct MOS (Mean Opinion
Score) tests regarding audio quality and text-audio faithfulness,
respectively scoring MOS-Q and MOS-F.

For audio quality, the raters were explicitly instructed to “focus
on examining the audio quality and naturalness.” The testers were
presented with audio samples and asked to rate their subjective
score (MOS-P) on a 20-100 Likert scale.

For text-audio faithfulness, human raters were shown the au-
dio and its caption and asked to respond to the question, "Does
the natural language description align with the audio faithfully?"
They had to choose one of the options - "completely," "mostly," or
"somewhat" on a 20-100 Likert scale.

Our crowd-sourced subjective evaluation tests were conducted
via Amazon Mechanical Turk where participants were paid $8
hourly. A small subset of the generated audio samples used in the
test can be found at https://Echo-Audio.github.io/.

3.2 Objective evaluation
Fréchet Audio Distance (FAD) [7] is adapted from the Fréchet In-
ception Distance (FID) to the audio domain, it is a reference-free
perceptual metric that measures the distance between the gener-
ated and ground truth audio distributions. FAD is used to evaluate
the quality of generated audio.

KL divergence is measured at a paired sample level between the
generated audio and the ground truth audio, it is computed using
the label distribution and is averaged as the final result.

CLAP score: adapted from the CLIP score [5, 14] to the audio
domain and is a reference-free evaluation metric to measure audio-
text alignment for this work that closely correlates with human
perception.

https://Echo-Audio.github.io/
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4 DETAILED FORMULATION OF DDPM
As a blossoming class of generative models, denoising diffusion
probabilistic models (DDPMs) [6, 16] has emerged to prove its
capability to achieve leading performances in both image and audio
syntheses [9, 17]. We define the data distribution as 𝑞(x0). The
diffusion process is defined by a fixed Markov chain from data x0
to the latent variable x𝑇 :

𝑞(x1, · · · , x𝑇 |x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 |x𝑡−1), (1)

For a small positive constant 𝛽𝑡 , a small Gaussian noise is added
from x𝑡−1 to the distribution of x𝑡 under the function of 𝑞(x𝑡 |x𝑡−1).

The whole process gradually converts data x0 to whitened latents
x𝑇 according to the fixed noise schedule 𝛽1, · · · , 𝛽𝑇 , where 𝝐 ∼
N(0, 𝑰 ):

𝑞(x𝑡 |x𝑡−1) := N(x𝑡 ;
√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 𝑰 ) (2)

Efficient training is optimizing a random term of 𝑡 with stochastic
gradient descent:

L𝜃 =





𝝐𝜃 (
𝛼𝑡x0 +

√︃
1 − 𝛼2𝑡 𝝐

)
− 𝝐





2
2

(3)

Unlike the diffusion process, the reverse process is to recover sam-
ples from Gaussian noises. The reverse process is a Markov chain
from 𝑥𝑇 to 𝑥0 parameterized by shared 𝜃 :

𝑝𝜃 (x0, · · · , x𝑇−1 |x𝑇 ) =
𝑇∏
𝑡=1

𝑝𝜃 (x𝑡−1 |x𝑡 ), (4)

where each iteration eliminates the Gaussian noise added in the
diffusion process:

𝑝𝜃 (x𝑡−1 |x𝑡 ) := N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), 𝜎𝜃 (x𝑡 , 𝑡)2𝑰 ) (5)

5 IMPLEMENTATION DETAILS
5.1 Ablation Studies on Novel Transformer

Backbone
We further investigate the efficacy of the LLaMA architectures on
the AudioLCM model applied to the audiocaps dataset, as depicted
in Table 3. Remarkably, all incorporated designs within the trans-
former architecture exhibit enhancements in the performance of
our AudioLCM system, with particular prominence observed in the
case of Rotary Embeddings.

5.2 Analyses about Scalable Transformer
During the training phase of the original diffusion transformer, we
encountered instability issues, particularly evident when utilizing
low-bit training models and scaling up parameters. We investigate
the performance of a novel transformer backbone designed to scale
up the trainable parameters, as showcased in Table 4. The outcomes
suggest a notable improvement in AudioLCM’s performance follow-
ing parameter scaling-up, underscoring the potential of scaled-up
transformers for augmenting system performance.

6 POTENTIAL NEGATIVE SOCIETAL IMPACTS
This paper aims to achieve efficient and high-quality text-to-audio
generation, which makes generative models practically applicable
to text-to-audio generation deployment. A negative impact is the
risk of misinformation. To alleviate it, we can train an additional
classifier to discriminate the fakes. We believe the benefits outweigh
the downsides.

AudioLCM lowers the requirements for fast and high-quality
text-to-audio synthesis, which may cause unemployment for people
with related occupations, such as sound engineers and radio hosts.
In addition, there is the potential for harm from non-consensual
voice cloning or the generation of fake media, and the voices in the
recordings might be overused than they expect.

7 LIMITATIONS
AudioLCM adopts multi-step consistency sampling which evaluate
AudioLCM multiple times by alternating denoising and noise injec-
tion steps for improved sample quality. However, this enhancement
dispeared when sampling steps is larger than ten steps. It is because
the discretisation errors accumulated during the sampling phase.
One of our future directions is to solve this problem.
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Dataset Hours Type Source

Audiocaps 109hrs caption [8]
WavCaps 2056hrs caption [11]
WavText5K 25hrs caption [1]
MACS 48hrs caption [10]
Clothv2 152hrs caption [3]
Audiostock 44hrs caption https://audiostock.net
epidemic sound 220hrs caption https://www.epidemicsound.com
Adobe Audition Sound Effects 26hrs caption https://www.adobe.com/products/audition/

offers/AdobeAuditionDLCSFX.html
LP-MusicCaps 5673hrs caption [2]

FSD50K 108hrs label https://annotator.freesound.org/fsd
ODEON_Sound_Effects 20hrs label https://www.paramountmotion.com/odeon-

sound-effects
UrbanSound8K 9hrs label [15]
ESC-50 3hrs label [13]
filteraudioset 945hrs multi label [4]
TUT 13hrs label [12]

Table 2: Statistics for the Datasets used in the paper.

(a) Screenshot of MOS-F testing.

(b) Screenshot of MOS-Q testing.

Figure 1: Screenshots of subjective evaluations.

Method FAD KL

AudioLCM 1.67 1.37
w/o RoPE 1.80 1.45

w/o RMSNorm 1.74 1.41
w/o SwiGLU 1.78 1.40

Table 3: Comparison of audio quality in the ablation study
with LLaMA designs. RoPE denotes Rotary Embeddings.

https://audiostock.net
https://www.epidemicsound.com
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://www.adobe.com/products/audition/offers/AdobeAuditionDLCSFX.html
https://annotator.freesound.org/fsd
https://www.paramountmotion.com/odeon-sound-effects
https://www.paramountmotion.com/odeon-sound-effects
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Model Parameters FAD KL

AudioLCM-B 159M 1.67 1.37
AudioLCM-M 561M 1.62 1.33
AudioLCM-L 996M 1.53 1.30
AudioLCM-XL 2.4B 1.50 1.28

Table 4: AudioLCM-B, AudioLCM-M, AudioLCM-L, and
AudioLCM-XL respectively represent the base, medium,
large, and extra largemodels of AudioLCM. The presented fig-
ures only account for trainable parameters, i.e., those within
the transformer architecture, evaluated on AudioCaps.
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