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Figure 1: ET-SEED is a visual imitation learning algorithm that marries SE(3) equivariant visual
representations with diffusion policies. (a) When the input object observation is rotated or translated,
the output action sequence change equivariantly. (b) ET-SEED learns equivariant multi-modal action
sequence and commits to only one mode within each rollout.

ABSTRACT

Imitation learning, e.g., diffusion policy, has been proven effective in various
robotic manipulation tasks. However, extensive demonstrations are required for
policy robustness and generalization. To reduce the demonstration reliance, we
leverage spatial symmetry and propose ET-SEED, an efficient trajectory-level
SE(3) equivariant diffusion model for generating action sequences in complex
robot manipulation tasks. Further, previous equivariant diffusion models require
the per-step equivariance in the Markov process, making it difficult to learn policy
under such strong constraints. We theoretically extend equivariant Markov kernels
and simplify the condition of equivariant diffusion process, thereby significantly
improving training efficiency for trajectory-level SE(3) equivariant diffusion pol-
icy in an end-to-end manner. We evaluate ET-SEED on representative robotic
manipulation tasks, involving rigid body, articulated and deformable object. Ex-
periments demonstrate superior data efficiency and manipulation proficiency of
our proposed method, as well as its ability to generalize to unseen configurations
with only a few demonstrations. Website: https://et-seed.github.io/

1 INTRODUCTION

Imitation learning has achieved promising results for acquiring robot manipulation skills (Zhu et al.,
2023; Fu et al., 2024; Chi et al., 2023). Though, one of the main challenges of imitation learning
is that it requires extensive demonstrations to learn a robust manipulation policy (Brohan et al.,
2022; Liu et al., 2024; Mandlekar et al., 2021). Especially once the spatial pose of the object to be
manipulated runs out of the demonstration distribution, the policy performance will easily decrease.
Although some works seek to tackle these issues through data augmentation (Yu et al., 2023) or
contrastive learning (Ma et al., 2024), they usually require task-specific knowledge or extra training,
and without theoretical guarantee of spatial generalization ability.
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Another promising idea is to leverage symmetry. Symmetry is ubiquitous in the physical world,
and many manipulation tasks exhibit a specific type of symmetry known as SE(3) Equivariance.
SE(3) is a group consisting of 3D rigid transformations. For example, as shown in fig. 1(a), a real
robot arm is required to write characters “ICLR” on a paper or fold a garment, when the pose of
the paper or the garment changes, the manipulation trajectories of the end-effector should transform
equivalently. Employing such symmetries into policy learning can not only improve the data effi-
ciency but also increase the spatial generalization ability. Recent works on 3D manipulation have
explored using SE(3) equivariance in the imitation learning process. Most of these works focus on
equivariant pose estimation of the target object or end-effector (Ryu et al., 2024; Hu et al., 2024; Gao
et al., 2024). Trajectory-level imitation learning has achieved state-of-the-art performances on di-
verse manipulation tasks (Chi et al., 2023; Yang et al., 2024b). By generating a whole manipulation
trajectory, this kind of method is capable to tackle more complex manipulation task beyond pick-
and-place. For trajectory-level equivariance, Equivariant Diffusion Policy (Wang et al., 2024) and
Equibot (Yang et al., 2024a) propose equivariant diffusion process for robotic manipulation tasks.

However, previous trajectory-level diffusion models for robotic manipulation have two key limita-
tions. First, to maintain equivariance throughout the diffusion process, these models assume that
every transition step must preserve equivariance. As we will show in section 4.1, training neu-
ral networks with equivariance is more challenging than neural networks with invariance, requir-
ing additional computational resources and leading to slower convergence. This design constrains
the model’s efficiency, making it hard for tackling complex long-horizon manipulation tasks. Sec-
ond, these models define the diffusion process in Euclidean space, which is not a natural defini-
tion, and limits the expressiveness. Since the focus is on equivariant diffusion processes within the
SE(3) group, it is more natural to define both the diffused variables and the noise as elements of
the SE(3) group, which will lead to better convergence and multimodal distributions representa-
tion (Urain et al., 2023).

In this work, we propose ET-SEED, a new trajectory-level SE(3) equivariant diffusion model for
manipulation tasks. ET-SEED improves the sample efficiency and decreases the training difficulty
by restricting the equivariant operations during the diffusion denoising process. We extend the
equivaraint Markov kernels theory and prove that during the full denoising process, at least only one
equivariant transition is required. Then, we integrate the diffusion process on SE(3) manifold (Jiang
et al., 2024) and SE(3) transformers (Fuchs et al., 2020) to design a new trajectory-level equivariant
diffusion model on SE(3) space. In experiment, we evaluate our method on several common and
representative manipulation tasks, including rigid body manipulation (rotate triangle, open bottle
cap), articulated object manipulation (open door), long-horizon tasks (robot calligraphy), and de-
formable object manipulation (fold and fling garment), while keeping the ability of handling multi-
modal in the supervision signals fig. 1(b). Experiments show our method outperforms SOTA meth-
ods in terms of data efficiency, manipulation proficiency and spatial generalization ability. Further,
in real-world experiments, with only 20 demonstration trajectories, our method is able to generalize
to unseen scenarios.

In summary, our contributions are mainly as followed:

• We propose ET-SEED, an efficient trajectory-level SE(3) equivariant diffusion policy de-
fined on SE(3) manifold, which achieves a proficient and generalizable manipulation pol-
icy with only a few demonstrations.

• We extend the theory of equivariant diffusion processes and derive a novel
SE(3) equivariant diffusion process, for simplified modeling and inference.

• We extensively evaluate our method on standard robot manipulation tasks in both simu-
lation and real-world settings, demonstrating its data efficiency, manipulation proficiency,
and spatial generalization ability, significantly outperforming baseline methods.

2 RELATED WORK

2.1 LEVERAGING EQUIVARIANCE FOR ROBOTIC MANIPULATION

Previous research has demonstrated that leveraging symmetry or equivariance in 3D Euclidean
space can improve spatial generalization in a variety of robotic manipulation tasks. Lim et al.
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(2024); Hu et al. (2024); Simeonov et al. (2022); Xue et al. (2023b); Gao et al. (2024) proposed
SE(3) equivariant model for grasp pose prediction. Other works have also leveraged this symmetry
in tasks such as part assembly (Wu et al., 2023; Scarpellini et al., 2024), object manipulation on
desktop (Wang et al., 2024), articulated and deformable object manipulation (Yang et al., 2024b)
and affordance learning (Chen et al., 2024). Most of these studies either focus solely on generating
a single 6D pose or fail to guarantee end-to-end equivariance across the entire SE(3) space. In this
paper, our proposed method is capable of generating manipulation trajectories while theoretically
maintaining end-to-end equivariance over the entire SE(3) group.

2.2 EQUIVARIANT DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) compose a powerful family of gen-
erative models that have proven effective in robotic manipulation tasks (Chi et al., 2023). Previous
studies (Guan et al., 2023; Schneuing et al., 2022) have investigated the effectiveness of combin-
ing spatial equivariance in the diffusion process to increase data efficiency and improve the spa-
tial generalization ability of the model. GeoDiff (Xu et al., 2022) gave a theoretical proof of
SE(3) equivariant Markov process. Diffusion-EDFs (Ryu et al., 2024) and Orbitgrasp (Hu et al.,
2024) introduced SE(3) equivariant diffusion processes for target grasp pose prediction, but lack
the capability to generate entire manipulation trajectories. Wang et al. (2024) proposed an equivari-
ant diffusion policy capable of addressing SO(2) equivariant tasks. EquiBot (Yang et al., 2024a)
extended equivariant diffusion policies to SIM(3) transformations, with the assumption that every
transition step in the diffusion process is equivariant, which demands a high training cost. We further
discuss the conditions of SE(3) equivariant diffusion process and prove that not each, but at least
one equivariant step is required. Based on this condition, we propose a novel SE(3) equivariant
diffusion model achieving better performance than previous works.

2.3 DIFFUSION ON SE(3) MANIFOLD

Most diffusion models define the diffusion process on pixel space (Ho et al., 2020) or 3D Euclidean
space (Chi et al., 2023). Leach et al. (2022) introduces a denoising diffusion model on SO(3) group.
SE(3)-Diffusion Fields (Urain et al., 2023) suggests that in 6-DoF grasp pose generation scenarios,
formulating the diffusion process in SE(3) manifold provides better coverage and representation
of multimodal distributions, resulting in improved sample efficiency and performance. Jiang et al.
(2024) proposes a SE(3) diffusion model for robust 6D object pose estimation. In this work, we
introduce an equivariant diffusion model on SE(3) manifold for robot manipulation, revealing the
superiority of defining equivariant diffusion process on SE(3) over Euclidean space.

3 PRELIMINARY BACKGROUND

SE(3) Equivariant Function. Generally, we call a function f : X → Y that maps elements from
input space X to output space Y is equivariant to a group G if there are group representations of G
on X and Y respectively denoted by ρX and ρY such that ∀g∈G : ρY(g) ◦ f = f ◦ ρX (g). In other
words, the function f commutes with representations of the group G. As special cases of general
equivariance, A function f : X → Y is called SE(3) equivariant if

∀T∈SE(3) : T ◦ f = f ◦ T (1)
A function f : X → Y is called SE(3) invariant if

∀T∈SE(3) : f = f ◦ T (2)
SE(3) Equivariant Trajectory. In many robotic manipulation tasks, the trajectories of the manip-
ulator show a certain symmetry. If the representation of a trajectory under certain coordinate frame
is SE(3) invariant, we call the trajectory as SE(3) Equivariant. Formally, it can be defined as

Definition 1 SE(3) Equivariant Trajectory.
A trajectory {si}ni=1 is called SE(3) equivariant if exists a coordinate frame A, such that
for any transformation T ∈ SE(3) applied on both the trajectory and the coordinate
frame(denoted as {s′i}ni=1 = T{si}ni=1 and A′ = TA), the representation of {s′i}ni=1 by
the basis of A′ is same as the representation of {si}ni=1 by the basis of A.
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This property means the trajectory is “attached” on a certain frame, and when the frame transforms,
the trajectory transforms accordingly. In our experiments, we select 6 representative manipulation
tasks with this symmetry. Further discussion can be found in appendix G .

4 METHOD

Problem Formulation. We formulate the problem as an imitation learning setting, aiming to learn a
mapping from observation O to action sequence A, with some demonstrations from an expert policy.
In our setting, the observation O is colored point clouds P = {(x1, c1), · · ·, (xN , cN )} ∈ RN×6.
The action is defined directly as the desired 6D pose H ∈ SE(3) of the end-effectors. So in our
setting, the action sequence means to the trajectory of end-effectors. This experimental setup does
not require additional input information, and the action definition is both intuitive and consistent
with real robot control, making it applicable to a wide range of robotic manipulation tasks.

𝑝ଵ(𝑥
ିଵ|𝑥, 𝑐)

𝑝ଶ(𝑥
ିଵ|𝑥, 𝑐)

Invariant 
Transitions

Equivariant 
Transition

Figure 2: Illustration of the denoising process
of ET-SEED. In this example, given an observa-
tion c of the plane, ET-SEED predicts a noise-
free trajectory x0. A random trajectory xK first
passes through an invariant transition for K − 1
times and finally passes an equivariant transition
once. This process is efficient while keeping
SE(3) equivariance property.

In this paper, we propose ET-SEED, a
trajectory-level end-to-end SE(3) equivariant
diffusion model for robotic manipulation.
ET-SEED can theoretically guarantee the
output actions are equivariant to any
SE(3) transformation applied on the input
observation, while only involving one equiv-
ariant denoising step. Fig. 2 is a general ex-
ample to show how it works, given an obser-
vation and a noisy action sequence, our model
first implement K−1 invariant denoising steps,
and pass the result into the last equivariant de-
noising step to generate a SE(3) equivariant
denoised trajectory.

We will discuss equivariant Markov pro-
cesses further to explain the correctness and
advantages of our proposed diffusion pro-
cess in section 4.1 , with only one de-
noising step SE(3) equivariant and the rest
SE(3) invariant. Then introduce our mod-
ified SE(3) invariant and equivariant back-
bones in section 4.2 , and illustrate our
SE(3) equivariant diffusion process in sec-
tion 4.3 .

4.1 EQUIVARIANT MARKOV PROCESS

For a Markov process xK:0, and any roto-translational transformation T ∈ SE(3). Geodiff (Xu
et al., 2022) shows that if the initial probabilistic distribution is SE(3) invariant, i.e., p(xK) =
p(TxK), and the Markov transitions p(xk−1|xk) are SE(3) equivariant for any 1 ≤ k ≤ K,
i.e., p(xk−1|xk) = p(Txk−1|Txk), then the density of x0 satisfies p(x0) = p(Tx0). Equibot (Yang
et al., 2024a) adapts the theory and makes it more consistent with the robotics setting. They in-
volve an additional condition c (can be seen as an observation) and show that if the initial distri-
bution p(xK |c) and transitions are all equivariant, i.e., p(xK |c) = p(TxK |Tc), p(xk−1|xk, c) =
p(Txk−1|Txk, T c) then the marginal distribution satisfies p(x0|c) = p(Tx0|Tc).
In this paper, we discover that the condition of getting an equivariant marginal distribution p(x0|c)
can be weaker. Formally, we first define three Markov transitions with different properties.

p1(x
k−1|xk, c) = p1(x

k−1|xk, T c)

p2(x
k−1|xk, c) = p2(Tx

k−1|xk, T c)

p3(x
k−1|xk, c) = p3(Tx

k−1|Txk, T c)

(3)

Then we derive the marginal distribution using the three types of Markov transitions. We have the
following statement. See appendix B for the detailed proof.

4
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Proposition 1 For a Markov process xK:0, if the initial distribution p(xK |c) = p(xK |Tc),
first K − n+ 1 transitions follow the property of p1, the middle 1 transition follows p2, and
the last n − 2 transitions follow p3, then the final marginal distribution satisfies p(x0|c) =
p(Tx0|Tc).

Previous works (Wang et al., 2024; Yang et al., 2024a) make all transitions p3-like, which is a
special case of proposition 1. In practice, we observe that training neural networks to approximate
the properties of p2 and p3 is much more challenging compared to p1, both in terms of performance
and training cost. When the condition c is transformed by a SE(3) element, the distributions in
p2 and p3 change equivalently, while the distribution in p1 remains unchanged. Learning to output
an equivariant feature is clearly more challenging for neural networks than producing an invariant
feature. Additionally, in most of implementations of equivariant networks, building and training
a model whose output is SE(3) equivariant to the input takes up more computing resources than
a SE(3) invariant version. We design experiments to validate these facts. The results show that
whether in single step or multiple steps setting, training invariant model is easier than equivariant
model. Details of this confirmatory experiment can be found in appendix D.

In ET-SEED, we set the parameter n = 2, meaning there are K − 1 p1-like transitions (re-
ferred to as “SE(3) Invariant Denoising Steps”) and one p2-like transition (referred to as the
“SE(3) Equivariant Denoising Step”). This key design choice significantly reduces the training
complexity, thereby enhancing the overall performance of our method.

4.2 SE(3) EQUIVARIANT BACKBONE

In order to generate whole manipulation trajectories, it’s necessary that the network has the ability to
output a translation vector at anywhere in the 3D space (even beyond the convex hull of the object),
which can not be achieved by directly using existing equivariant backbones (Fuchs et al., 2020; Deng
et al., 2021; Liao & Smidt, 2022). In this paper, based on SE(3) Transformer (Fuchs et al., 2020),
we propose SE(3) equivariant backbone Eequiv and invariant backbone Einv , which are suitable
for predicting SE(3) action sequences while theoretically satisfying 1 and 2 . The implementation
details can be found at appendix E . The input of backbone is a set of points coordinates X ∈ RN×3,
with some type-0 features Din

0 and type-1 features Din
1 attached on each point. Type-0 vectors are

invariant under roto-translation transformations and type-1 vectors rotate and translate according
to SE(3) transformation of point cloud. The output can be elements of SE(3) , each element is
represented as a 4× 4 matrix. For the SE(3) equivariant model Eequiv , we have

∀T∈SE(3) : TEequiv(X ;Din
0 , Din

1 ) = Eequiv(TX ;Din
0 , TDin

1 ) (4)
And for the SE(3) invariant model Einv , we have

∀T∈SE(3) : Einv(X ;Din
0 , Din

1 ) = Einv(TX ;Din
0 , TDin

1 ) (5)

Algorithm 1 Training phase
repeat

Sample A0, O ∼pdata
Sample k ∼ Uniform({1, ...,K}), ε ∼ N (0, I)
for Hi ∈ A0 do

Hk
i = Exp

(
γ
√
1− ᾱtε

)
F

(√
ᾱt;H

0
i ,H

)
Assign Ak = {Hk

i }
Tp

i=0

Predict Âk→0 = sθ(O,Ak; k)

Optimize loss L = loss(Âk→0, A0(Ak)−1)
until converged

Algorithm 2 Inference phase
for k = K, ..., 2 do

Predict Âk→0 = Einv(O,Ak; k)
for Hk

i ∈ Ak do
Hk−1

i = Exp(λ0 Log(Ĥ
k→0
i Hk

i )

+ λ1 Log(H
k
i ))

Assign Ak = {Hk
i }

Tp

i=0

Predict Â1→0 = Eequiv(O,A1; 1)
for H1

i ∈ A1 do
Update H0

i = Ĥ1→0
i H1

i

Return: A0 = {H0
i }

Tp

i=0

4.3 SE(3) EQUIVARIANT DIFFUSION PROCESS

Inspired by standard diffusion model, ET-SEED progressively disturbs the noise-free action H0 ∈
SE(3) into a noisy action HK . As standard diffusion process assume the final noisy variable xT fol-
lows the standard Gaussian distribution N (0, I), we assume the noisy action HK follow a Gaussian

5
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Figure 3: Overview of our pipeline. A colored point cloud and a random sampled action sequence
are first passed through K − 1 SE(3) invariant denoising steps and then a SE(3) equivariant de-
noising step to generate a noise free action sequence. Although Inv. SE(3) Transformer and Eqv.
SE(3) Transformer have same network architecture, the feature types of input and output differ, re-
sulting in different coefficient matrices in network forward. Details can be referred to in appendix E.

distribution on SE(3) , centered at the identity transformation H. So we use an interpolation-based
SE(3) diffusion formula, which represent the Hk ∼ q(Hk|H0) at noise step k(1 ≤ k ≤ K) as

Hk = Exp
(
γ
√
1− ᾱtε

)︸ ︷︷ ︸
Perturbation

F
(√

ᾱt;H
0,H

)︸ ︷︷ ︸
Interpolation

, ε ∼ N (0, I) (6)

The interpolation function F
(√

ᾱt;H
0,H

)
is an intermediate transformation between the origin

action H0 and the identity transformation H. By applying a perturbation noise Exp
(
γ
√
1− ᾱtε

)
on the intermediate transformation, we get a diffused action Hk. As shown in algorithm 1, we
design a model sθ to predict the applied noise in a supervised learning fashion. More explanation
about 6 can be found in Jiang et al. (2024) or appendix F.

This formulation is an analogy of DDPM (Ho et al., 2020), which represent the noisy image as
xt = ᾱtx0 + β̄tε̄, ε̄ ∼ N (0, I) (7)

We can treat the first term of 7 as interpolation between x0 and 0, second term as external noise.

The goal of SE(3) reverse process is to train a denoising network, gradually refine the noisy action
to the optimal ones. As illustrated in fig. 3 , the input of reverse process is an observation O, an
noisy action sequence AK = [HK

0 ,HK
1 , ...,HK

Tp
], where Tp is the action prediction horizon, and

each HK
i is drawn from a SE(3) Gaussian distribution centered at identity transformation H. The

denoising process forms a Markov chain AK → AK−1 → · · · → A0. In each denoising step,
the input of our denoising network sθ consists of observation O, noisy action sequence Ak, and
scalar condition k, outputs the predicted relative transformation between Ak and noise-free action
sequence A0. Formally, we have

Âk→0 = sθ(O,Ak; k) (8)

To ensure the overall SE(3) equivariance of our pipeline, we propose a novel design of denoising
network sθ. It consists of one SE(3) invariant backbone Einv and one SE(3) equivariant backbone
Eequiv . We use Einv to denoise in the first K − 1 iterations and use Eequiv to denoise in the last
iteration. Formally, sθ is defined as

sθ(O,Ak; k) =

{
Einv(O,Ak; k), k > 1
Eequiv(O,Ak; k), k = 1

(9)

6
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As illustrated in algorithm 2 , in the first K−1 denoising iteration, we use SE(3) invariant backbone
Einv to predict noise, and for each Hk

i in Ak, we use the i-th transformation Ĥk→0
i of predicted noise

sequence Âk→0 to implement a denoise step by

Hk−1
i = Exp(λ0 Log(Ĥ

k→0
i Hk

i ) + λ1 Log(H
k
i )) (10)

This formulation, by minimizing the KL divergence of the posterior distribution and prior distribu-
tion of Hk−1

i , is able to infer a more reliable distribution for Hk−1
i (Jiang et al., 2024).

By implementing the above SE(3) invariant denoising step for K − 1 times, we get the partially
denoised action sequence A1, which is invariant to any SE(3) transformation of O. In the last
denoising iteration, we use a SE(3) equivariant backbone Eequiv to predict noise Â1→0 and directly
apply each Ĥ1→0

i of Â1→0 on corresponding action H1
i ,i.e.H0

i = Ĥ1→0
i H1

i . And finally get the
noise-free action sequence A0 = [H0

0,H
0
1, ...,H

0
Tp
].

With such design, the end-to-end equivariance is guaranteed. When the input observation O is
transformed by any SE(3) element T , the output denoised action sequence A0 will be equivariantly
transformed. Formally, we have following proposition, with detailed proof attached in appendix C.

Proposition 2 For a Markov process AK:0, if AK is sampled from Gaussian distribution,
A0 = ETSEED(AK ;O). Then, ∀T ∈ SE(3) : TA0 = ETSEED(TO,AK).

5 EXPERIMENTS
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50 Demos, Test on various SE(3)-transformed Object Poses

(a)

3D Diffusion Policy ET-SEED (Ours)

(b) (c)

Figure 4: (a) ET-SEED achieve surprising efficiency and spatial generalization than baselines. (b)
Visualizations of simulation environments. (c) Visualizations of the real-world environments.

We systematically evaluate ET-SEED through both simulation and real-world experiments, aim-
ing to address the following research questions: (1) Does our method demonstrate superior spatial
generalization compared to existing imitation learning approaches? (2) Can our method achieve
comparable performance with fewer demonstrations? (3) Is our method applicable to real-world
robotic manipulation tasks?

5.1 SIMULATION EXPERIMENTS

Tasks. We design six representative robot manipulation tasks: Open Bottle Cap, Open Door, Rotate
Triangle, Calligraphy, Cloth Folding, and Cloth Fling. A brief overview is illustrated in fig. 4(b).
These tasks encompass manipulation of rigid bodies, articulated bodies, and deformable objects,
as well as dual-arm collaboration, long-horizon tasks, and complex manipulation scenarios. For
each task, we set up multiple cameras to capture full point clouds of the objects to be manipulated.
We assume each robot manipulator operates within a complete 6DoF SE(3) action space. Further
details and discussions of their equivariant properties can be found in appendix G .
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Table 1: Success rates (↑) and standard deviation of different tasks in simulation.

Open Bottle Cap Open Door Rotate Triangle

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 (Ze et al., 2024) 65±4.5 76±5.5 11±4.2 14±6.5 61±2.24 72±2.74 9±3.54 16±5.48 67±2.74 89±2.24 5±2.24 10±2.74
DP3+Aug 35.0±5.0 44±4.2 38±4.47 46±7.42 43±8.37 54±6.52 30±4.18 40±8.22 35±3.54 42±4.47 32±5.70 41±4.18
EquiBot (Yang et al., 2024a) 63±2.74 73±2.74 63±5.70 77±7.58 56±2.24 72±2.24 58±7.58 77±7.58 67±2.74 84±2.24 64±8.66 86±5.48
ET-SEED(Ours) 67±2.74 81±2.24 74±6.52 82±2.74 66±2.24 75±2.74 66±2.74 76±2.24 83±2.24 93±2.74 85±2.24 89±4.18

Calligraphy Fold Garment Fling Garment

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 (Ze et al., 2024) 28±2.74 50±3.54 0±0.00 3±2.74 44±2.24 60±4.18 4±5.48 8±4.48 36±5.48 67±4.48 4±5.48 9±8.22
DP3+Aug 8±2.74 21±4.18 3±2.24 12±11.51 13±5.70 27±7.58 17±10.37 31±9.62 28±7.58 38±4.48 11±4.18 31±2.24
EquiBot (Yang et al., 2024a) 24±5.48 43±8.37 14±10.84 40±10.61 34±4.18 58±2.74 33±2.74 60±7.90 35±6.12 61±6.52 36±6.52 64±8.22
ET-SEED(Ours) 38±2.74 55±3.54 36±6.52 54±8.22 47±2.74 67±2.74 49±2.24 69±4.18 50±5.00 67±4.48 48±4.47 62±5.70

Table 2: SE(3) Geodesic distances (↓) of different tasks in simulation.

Open bottle cap Open Door Rotate Triangle

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 (Ze et al., 2024) 0.257 0.197 1.413 1.785 0.384 0.354 0.478 0.442 0.265 0.192 1.812 1.627
DP3+Aug 0.283 0.234 0.276 0.218 0.391 0.315 0.442 0.329 0.247 0.187 0.578 0.447
EquiBot (Yang et al., 2024a) 0.194 0.151 0.197 0.170 0.241 0.224 0.266 0.228 0.197 0.107 0.214 0.099
ET-SEED (Ours) 0.133 0.114 0.127 0.124 0.127 0.101 0.121 0.128 0.098 0.082 0.104 0.087

Calligraphy Fold Garment Fling Garment

T NP T NP T NP

Method 25 50 25 50 25 50 25 50 25 50 25 50

DP3 (Ze et al., 2024) 0.305 0.241 4.988 4.662 0.479 0.298 4.466 4.179 0.529 0.348 4.993 4.365
DP3+Aug 0.354 0.337 4.752 4.365 1.318 0.976 1.524 1.219 1.318 0.976 1.524 1.219
EquiBot (Yang et al., 2024a) 0.291 0.117 0.282 0.129 0.368 0.293 0.387 0.288 0.418 0.343 0.437 0.338
ET-SEED (Ours) 0.124 0.083 0.121 0.089 0.299 0.149 0.287 0.136 0.349 0.179 0.337 0.186

DP3ET-SEED

Figure 5: Visualization of the generated trajectory by ET-SEED and DP3 in the fling garment
task. The left figure illustrates the trajectory generated by the model in the training setting (T), and
the right figure shows the trajectory generated in the New Poses (NP) scenario. When the input
object observation is rotated or translated, ET-SEED maintains the equivariant change of the output
action sequence.However, due to the fact that DP3 fails to leverage equivariance and has poor spatial
generalization, it is unable to correctly grasp the collar and complete the task.

Baselines. We compare our method against the following baselines:

• 3D Diffusion Policy (DP3) (Ze et al., 2024): A diffusion-based 3D visuomotor policy.

• 3D Diffusion Policy with Data Augmentations (DP3+Aug): Same architecture as DP3,
with SE(3) data augmentation added.

• EquiBot (Yang et al., 2024a): A baseline combines SIM(3)-equivariant neural network
architectures with diffusion policy.
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DP3 and DP3+Aug are used to compare ET-SEED with baseline methods that utilize data augmen-
tation to achieve spatial generalization, while EquiBot allows for a comparison between different
architectures of equivariant diffusion process.

Augmentations. The DP3+Aug baseline utilizes augmentations during training. In all environ-
ments, training data is augmented by (1) rotating the observation along all three axes by random
angles between 0◦ and 90◦, and (2) applying a random Gaussian offset to the observation. The
standard deviation of the Gaussian noise is set to 10% of the workspace size.

Evaluation. Following the setup of Gao et al. (2024), we collect demonstrations and train our policy
under the Training setting (T), subsequently testing the trained policy on both T and New Poses
(NP), where target object poses undergo random SE(3) transformations. We evaluate all methods
using two metrics, based on 20 evaluation rollouts, averaged over 5 random seeds. Since we generate
complete manipulation trajectories, the final success rate alone is inadequate for fully assessing the
trajectory’s quality. We calculate the geodesic distance between each step of the predicted trajectory
and the ground truth trajectory, providing a more comprehensive reflection of the trajectory’s overall
quality. The geodesic distance between each step of the predicted trajectory and the ground truth
trajectory, we can obtain a more accurate reflection of the trajectory’s overall quality. The definition
of geodesic distance between T, T̂ ∈ SE(3) is

Dgeo(T, T̂) =

√∥∥∥Log(R⊤R̂)
∥∥∥2 + ∥∥t̂− t

∥∥2, (11)

where R and t are the rotation and translation parts of T . We report Dgeo in the same manner as
success rates.

Results. Table 1, 2 and fig. 4(a) provide a quantitative comparison between our method and the
baseline. To gain a better understanding of the difference between our approach and the baseline, we
select the fling garment task as a representative task and provide the visualization of the generated
trajectory by our method and DP3 in fig. 5

Both DP3 and its augmented variant demonstrate strong performance in the training setting (T), but
they exhibit a significant drop in performance when faced with New Poses (NP) scenarios. This
highlights that merely incorporating data augmentation is insufficient for the model to generalize
effectively to unseen poses. Instead, leveraging equivariance proves essential for enhancing spatial
generalization.

While EquiBot achieves commendable results in both success rate and Dgeo, it struggles with more
complex, long-horizon tasks such as Calligraphy and Fold Garment. Also, when less demonstrations
are given, the performance is not satisfactory. These challenges stem from the inherent complex-
ity of its diffusion process design, where maintaining equivariance in each Markov transition adds
substantial difficulty to the learning task.

In contrast, ET-SEED consistently outperforms across all six tasks, with minimal performance drop
when facing unseen object poses. This advantage is especially pronounced when using a limited
number of demonstrations, showcasing the superior data efficiency, manipulation proficiency, and
spatial generalization ability of ET-SEED.

Table 3: Ablation studies.

Design Average

Ours w/o SE(3) 24±4.48
Ours w/o Eqv-Diff 57±6.52
Ours 76±2.24

Ablation Studies. We conduct ablation studies on the New Pose (NP) scenario of the representative
Opening Door task to evaluate the effectiveness of different components of our approach:

• Ours w/o SE(3): Our method without SE(3) invariance and equivariance in the backbone
architecture. In this variant, we use a standard PointNet++ to predict noise at each step.

• Ours w/o Eqv-Diff: Our method without our deigned denoising process. Instead, we use
a non-equivariant diffusion process (DDIM), following the approach of Ze et al. (2024).
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Table 3 shows quantitative comparisons with ablations. Clearly each component improves our
method’s capability.

5.2 REAL-ROBOT EXPERIMENT

Setup. We test the performance of our model on four tasks on real scenarios. All the tasks are
visualized in Figure 4(c). The tasks are performed using multiple Microsoft Azure Kinect cameras
and Intel® RealSense for point cloud fusion and a Franka Panda robot arm for execution. We use
Segment Anything Model 2 (SAM2) (Ravi et al., 2024) to segment the object from the scene and
project the segmented image with depth to point cloud. Please refer to appendix H and our website
for more details and videos of real-world manipulations.

Expert demonstrations are collected by human tele-operation. The Franka arm and the gripper are
teleoperated by the keyboard. Since our tasks contain more than one stage and include two robots
and various objects, making the process of demonstration collection very time-consuming, we only
provide 20 demonstrations for each task.

In test setting, We place the object at 10 different positions with different poses that are unseen in
the training data. Each position is evaluated with one trial.

Table 4: Success rates in real-world robot experiments.

Method Open Bottle Cap Open Door Calligraphy Fold Garment

DP3 0.2 0.2 0.0 0.1
DP3+Aug 0.2 0.3 0.0 0.2
EquiBot 0.6 0.5 0.0 0.3
ET-SEED (Ours) 0.8 0.6 0.4 0.6

Results. Results for our real robot tasks are given in Table 4. Consistent with simulation findings,
ET-SEED performs better than baselines in all the four real world tasks, given only 20 demonstra-
tions. The evaluation shows the effectiveness and spatial generalization ability of ET-SEED.

6 CONCLUSION

In this paper, we propose ET-SEED, an efficient trajectory-level SE(3) equivariant diffusion policy.
Our method enhances both data efficiency and spatial generalization while reducing the training
complexity typically encountered in diffusion-based methods. Through theoretical extensions of
equivariant Markov kernels, we demonstrated that the SE(3) equivariant diffusion process can be
achieved given a weaker condition, significantly simplifying the learning task. Experimental results
on diverse robotic manipulation tasks show that ET-SEED performs better than SOTA methods.
Real-world experiments further validate the generalization ability of our model to unseen object
poses with only 20 demonstrations. ET-SEED is a novel approach for data efficient and generalizable
imitation learning, paving the way for more capable and adaptive robots in real-world applications.

7 LIMITATION

This paper proposes an efficient SE(3) equivariant diffusion policy to address a class of robotic
manipulation tasks with specific symmetries. However, the proposed method has certain limitations.
1) The equivariance of ET-SEED is designed for object point clouds, so, pre-processing is required
to extract segmented object point clouds from the scene point clouds. 2) The action space is defined
as the 6D poses of the end-effectors, and we assume the end-effectors can reach any feasible 6D
pose by Inverse Kinematics solvers and controllers. Additionally, this action space is not able to
tackle dexterous manipulation tasks as they need action space with higher dimension.
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A SE(3) GROUP AND se(3) ALGEBRA

In this section, we briefly introduce the SE(3) Lie group and se(3) Lie algebra. One can refer
to Eade (2013) for more detailed explaination.

A.1 BASIC TERMS

An element in SE(3) can be represented as a 4× 4 matrix

R ∈ SO(3), t ∈ R3

C =

(
R t
0 1

)
(12)

This representation means we can compute the composition and inversion of elements in SE(3) by
matrix multiplication and inversion.

An element δ = se(3) can be represented by multiples of the generators

δ = (u, ω)T ∈ R6 (13)

u is the translation, u ∈ R3

ω is the rotation (exactly the axis-angle representation, its normal is the rotation angle, and its
direction is the rotation axis), ω ∈ R3

There’s a 1-1 map between SE(3) and se(3)

δ = ln(C)

C = exp(δ)
(14)

A.2 INTERPOLATION

two elements a, b ∈ G, we would like to interpolate between the two elements according to a
parameter t ∈ [0, 1], define an interpolation function

f : G×G× R → G (15)

First define a group element that tasks a to b

d := b · a−1d · a = b (16)

Compute the corresponding Lie algebra vector and scale it by t

d(t) = t · ln(d); dt = exp(d(t))

f(a, b, t) = dt · a (17)

A.3 GAUSSIAN DISTRIBUTION

Consider a Lie group G and its Lie algebra vector space g, with k DoF. A mean transformation µ ∈ G
and a covariance matrix Σ ∈ Rk×k. We can sample an element from the Gaussian distribution on G

δ ∼ N (0; Σ)(δ ∈ g)

x = exp(δ) · µ (18)

c.f. Gaussian in RD

N(x | µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(19)
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B PROOF OF PROPOSITION 1

p(x0|c) =
∫

p(xK |c)p(x0:K−1|xK , c)dx1:K

=

∫
p(xK |c)

K∏
k=1

p(xk−1|xk, c)dx1:K

=

∫
p(xK |c)(

K∏
k=n

p(xk−1|xk, c))p(xn−2|xn−1, c)(

n−2∏
i=1

p(xi−1|xi, c))dx1:K

=

∫
p(xK |Tc)[

K∏
k=n

p1(x
k−1|xk, T c)]p2(Tx

n−2|xn−1, T c)

[

n−2∏
i=1

p3(Tx
i−1|Txi, T c)]dx1:K

= p(xn−1|Tc) p(Txn−2|xn−1, T c) p(Tx0|Txn−2, T c)

= p(Tx0|Tc)

(20)

C PROOF PROPOSITION 2

Here, for simplicity, we define two operations. 1) For a matrix T and a list of matrix A =
[H1, ...,HN ], the notation TA means multiplying T on each Hi. i.e., TA = [TH1, ..., THN ]. 2)
For two lists of matrix A = [H1, ...,HN ], B = [G1, ...,GN ], the notation AB means multiplying
the matrices at the corresponding positions. i.e., AB = [H1G1, ...,HNGN ]

As shown in 4 and 5, our backbones are theoretically SE(3) equivariant and invariant, i.e.

Einv(O,Ak; k) = Einv(TO,Ak; k)

TEequiv(O,Ak; k) = Eequiv(TO,Ak; k)
(21)

We firstly use Einv to denoise K − 1 steps, so for any 1 < k ≤ K, the denoise iteration satisfies

Âk→0 = Einv(O,Ak; k) (22)
When the input observation is transformed by SE(3) element, for the property of Einv , we have

∀T∈SE(3) : Â
k→0 = Einv(TO,Ak; k) (23)

It means the predicted noise Âk→0 keeps invariant no matter what SE(3) transformation is applied
on the input observation. And then we carry each element of the predicted noise sequence into 10
, it’s obvious that Hk−1

i is also SE(3) invariant for any 1 ≤ i ≤ Tp. So we can infer that H1
i is

SE(3) invariant to input observation. In terms of Markov transition, the first K − 1 transitions are
p1-like.

p(Hk−1
i |Hk

i , O) = p(Hk−1
i |Hk

i , TO), 1 < k ≤ K (24)
For the last denoising iteration, we use a SE(3) equivariant model to predict noise, so when the
input observation is transformed, we have

∀T∈SE(3) : TÂ
1→0 = Eequiv(TO,A1; 1) (25)

Carry each element the result into the last denoise step H0
i = Ĥ1→0

i H1
i , we will discover the final

denoised action sequence Â0 is SE(3) Equivariant. In another word, the last Markov transition is
p2-like.

p(H0
i |H1

i , O) = p(TH0
i |H1

i , TO) (26)
Additionally, as the initial noisy action HK

i is sampled from Gaussian distribution, it’s not condi-
tioned on the observation.

p(HK
i |O) = p(HK

i |TO) (27)
Combine 24, 26, 27 together and put them back into 20, we find the whole diffusion process for
single action is SE(3) equivariant. Joint all the H0

i (0 ≤ i ≤ Tp) into a sequence A0, it’s easy
to verify proposition 2 holds. In other word, our predicted action sequence is theoretically
SE(3) equivariant to input observations.
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D EXPERIMENTS SHOWING OUR PROPOSED MARKOV PROCESS IS EASIER TO
LEARN

The properties of three different Markov transitions can be described as

p(y|x, c) = p1(y|x, Tc)
p(y|x, c) = p2(Ty|x, Tc)
p(y|x, c) = p3(Ty|Tx, Tc)

(28)

In practice, we use the SE(3) Transformer (Fuchs et al., 2020) with different input and output
feature types to approximate the three types of transitions(Denoted as P1Net, P2Net and P3Net).

D.1 SINGLE-STEP EVALUATION

In this validation experiment, we take a point cloud P with random orientation as observation (fo-
cusing solely on rotation for simplicity). The detailed input and output feature types are shown
in table 5 . According to the features of SE(3) Transformer, it’s easy to verify the networks satisfy
the corresponding equivariant properties.

Table 5: Input and Output Feature Types
Input Feature Output Feature Supervision Final Loss

P1Net 3 type-0 9 type-0 identity matrix 0.0002
P2Net 3 type-0 3 type-1 Pose of input pts 0.25
P3Net 1 type-1 3 type-1 Pose of input pts 0.27

For all three networks, the input feature consists of 3 scalar values attached to each point, and the
output feature consists of 9 scalar values (after pooling across all points). For P1Net, the output is
set as nine type-0 features, meaning the output remains invariant to the rotation of the input point
cloud. We supervise the output by computing the L2 loss between it and a fixed rotation matrix. In
contrast, for P2Net and P3Net, the output is treated as three type-1 features, which are supervised
using the pose of the input point cloud. The only difference among the three networks is the input
and output feature types, while all other hyperparameters remain the same.
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Figure 6: Loss curve of P1Net, P2Net and P3Net. After only several gradient descent, the loss of
P1Net converges almost to 0, while the losses of P2Net and P3Net do not decrease obviously.

After training for the same number of epochs, the loss curve of the three networks is shown in
fig. 6. The experiments demonstrate that the invariant model (P1Net) is significantly easier to train
compared to the equivariant models (P2Net and P3Net), as it is expected to output the same values
regardless of the transformation applied to the input point cloud. Additionally, we observe that the
use of higher-type features in P2Net and P3Net results in increased memory requirements and longer
inference times.
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D.2 MULTI-STEP EVALUATION

Moreover, to further demonstrate the superiority of our proposed diffusion process, we compose
P1Net, P2Net and P3Net in different ways and evaluate the performance. In this experiment, we
compare two diffusion processes, both are end-to-end equivariant to the condition c, but have differ-
ent kinds of transitions. Same as the single-step experiment, we take a point cloud P with random
orientation as observation (fo- cusing solely on rotation for simplicity.

For the first process, all transitions are p3-like. So we use one P3Net to approximate the transition
function. The input features of this P3Net consists of 3 type-1 features(same size with a rotation
matrix), and one type-0 scaler indicating the index of current denoising step. And the output of the
P3Net is also 3 type-1 features. So the first diffusion process can be written as

xk−1 = P3Net(P, xk, k), for 1 ≤ k ≤ K (29)
And for the second process, the first K − 1 denoising steps are p1-like, and the last is p2-like. So

here we use one P1Net and one P2Net to approximate the transitions. The input of the P1Net is 10
type-0 features, 9 representing the rotation matrix, 1 representing the index of denoising step, and
the output is 9 type-0 features representing the rotation matrix. The input of the P2Net is 9 type-0
features representing the rotation matrix, as we only use it in the last step, we don’t input the step
index into it. And the P2Net outputs 3 type-1 features. Formally, the diffusion process can be written
as

xk−1 = P1Net(P, xk, k), for 2 ≤ k ≤ K (30)
x0 = P2Net(P, x1) (31)

According to the properties of SE(3) Transformer, it’s easy to verify the two diffusion processes
are both equivariant to the input point cloud P . We generate same number of diffusion data pieces
{P, xK:0} and separately train the models in two diffusion process. The supervision is added on the
output of each transition step. To compare the performance of the two diffusion process, we show
the final loss L(x0

pred, x
0
gt) of the two process with respect to the training epoch.
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Figure 7: Loss curve of two diffusion process. After only several gradient descent, the loss of
Inv.+Eqv. process onverges much faster than the Pure Eqv. process

As shown in fig. 7. , the Inv.+Eqv. process converges much faster than the Pure Eqv. process.

With the two experiments, we demonstrate our choice of using K − 1 p1-like denoising steps and
only one p2-like step is better than using K p3-like steps.

E IMPLEMENTATION OF SE(3) EQUIVARIANT AND INVARIANT BACKBONES

Here we introduce the implementation of our true SE(3) equivariant backbone Eequiv and invariant
backbone Einv SE(3) Transformer (Fuchs et al., 2020).

In general, each module consists of 2 SE(3) Transformers, called as pos net and ori net, outputing
translation and rotation separately. As the output of SE(3) Transformer is per-point features, we
implement a mean pooling over all points to get global features.
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E.1 INVARIANT MODULE

We set the output of ori net as 6×Tp type0 features, and then implement Schimidt orthogonalization
to get rotation matrix. As the 6 × Tp type0 features are SE(3) invariant, the rotation matrix is also
invariant.

We set the output of pos net as 3 × Tp type0 features, which is naturally invariant to any SE(3)
transformation of the point cloud, guaranteed by the translation invariance of SE(3) Transformer.

Finally we combine each translation and rotation parts to a 4 × 4 matrix. So we get Tp of 4 × 4
matrices, and all of them are invariant to any SE(3) transformations of input point cloud.

E.2 EQUIVARIANT MODULE

We set the output of ori net as 2×Tp type1 features, and then implement Schimidt orthogonalization
on each 2 type1 features to get Tp of rotation matrices. As the 2 × Tp type1 features are SE(3)
equivariant, the rotation matrices are also equivariant.

We set the output of pos net as 2×Tp type1 feature and 3×Tp type0 feature(denoted as offset). First
we implement Schimidt orthogonalization on each 2 type1 features, get a rotation matrix (denoted
as R). Additionally, we denote the mass center of the input point cloud as M := 1

NΣN
i=1xi, xi is

the coordinate of the i-th point. Then we can write each of the predicted translations t as

t(X ) = M+R · offset (32)

We can prove this translation vector is equivariant to any SE(3) transformation of the input point-
cloud X . When the input point cloud is transformed, X ′ = RdataX + tdata.

t(X ′) = (RdataM+ tdata) +RdataR · offset
= Rdata(M+R · offset) + tdata

= Rdatat(X ) + tdata

(33)

Finally we combine each translation and rotation parts to a 4 × 4 matrix. So we get Tp of 4 × 4
matrices, and all of them are equivariant to any SE(3) transformations of input point cloud.

F EQUIVARIANT DIFFUSION ON SE(3) MANIFOLD

The noisy action of step k can be represented as

Hk = Exp
(
γ
√
1− ᾱtε

)︸ ︷︷ ︸
Perturbation

F
(√

ᾱt;H
0,H

)︸ ︷︷ ︸
Interpolation

, ε ∼ N (0, I) (34)

The first term, Exp(γ
√
1− ᾱtε) is a random noise on SE(3) manifold, aiming to randomize the dif-

fusion process. According to the Gaussian distribution on SE(3) (appendix A.3), a SE(3) Gaussian
variable can be written as the Exp of a Gaussian variable on se(3) . So we first randomly sample a
6D noise ε ∈ R6 from unit Gaussian distribution, then scale it by a scheduler factor γ

√
1− α̂t to

control the magnitude of the perturbation at different steps. Finally we use the Exp map to convert
the variable back to SE(3) .

The second term is an interpolation on SE(3) manifold between H0 and H. The idea behind this
function is, first project the SE(3) transformation to se(3) , perform linear interpolation in this
tangent space, and then convert the interpolated vector back to SE(3) to obtain the interpolated
transformation. One can refer to Jiang et al. (2024) for more details. Formally, the interpolation
funcion F can be expressed as

F
(√

ᾱt;H0,H
)
= Exp

((
1−

√
ᾱt

)
· log

(
HH−1

0

))
H0 (35)

G SIMULATION TASKS– FURTHER DETAILS

• Rotate Triangle: A robotic arm with 2D anchor pushes the triangle to a target 6D pose.
The task reward is computed as the percentage of the Triangle shape that overlaps with the
target Triangle pose.
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• Open Bottle Cap: A bottle with a cap is placed at a random position in Workspace, and
a robot arm is tasked with opening the cap. In this task, the demonstrations show robots
Unscrewing bottle cap with parallel gripper. Success in this task depends on whether the
bottle cap is successfully opened. Note that, due to simulator constraints, opening the bottle
cap simply involves lifting it upward without the need to twist it first.

• Open Door: This task evaluates the manipulation of articulated objects. The model is re-
quired to generate trajectories to open doors positioned at various orientations. The demon-
stration is given as: We initialize the gripper at a point p sampled on the handle of the door
and set the forward orientation along the negative direction of the surface normal at p. And
then we pull the door by a degree. Different from door pushing, we perform a grasping at
contact point p for pulling. Success in this task is determined by the opening angle of the
door.

• Robot Calligraphy: This long-horizon task involves using a robot arm to write complex
Chinese characters on paper, accounting for different orientations. Success in this task
is determined by the aesthetic quality and accuracy of the characters or patterns formed,
which should closely resemble the target trajectory.

• Fold Garment: A long-horizon task involving deformable object manipulation, where a
robot folds a long-sleeved garment. The robot folds the sleeves inward along the garment’s
central axis, then gathers the lower edge of the garment and folds it upward, aligning it with
the underarm region. A folding succeeds when the Intersection-over-Union (IOU) between
the target and the folded garments exceeds a bar (Xue et al., 2023a; Canberk et al., 2022).

• Fling Garment: A dual-arm task for manipulating deformable objects. The robot grasps
the two shoulder sections of a wrinkled dress, lifting it to allow the fabric is clear of the
surface. Then flings the garment it to flatten the fabric, and then places it back onto a flat
surface. Success is determined by the projection area of the flattened garment.

Some of the six tasks are exactly SE(3) equivariant, and some are partially. In the Open Door task,
the manipulation trajectory is exactly equivariant with the point cloud of the door. In the Robot
Calligraphy task, the manipulation trajectory is exactly equivariant with the point cloud of the paper
and the handwriting that has been written. In the Open Bottle Cap task, the manipulation trajectory
is exactly equivariant with the point cloud of the bottle. In the Rotate Triangle task, as we always
add same transformation on initial pose and target pose of the triangle, the manipulation trajectory
is exactly equivariant with the point cloud of the triangle. In the Fling Garment and Fold Garment
tasks, the trajectories are not exactly equivariant with the initial observation of the garment, as the
deformation differs in each initialization. But even so, our method can also outperform baselines.

The intuition is, by ensuring end-to-end SE(3) equivariance, our model treats a point cloud in
the observation space and all the point clouds possible by SE(3) transformation as an equivalence
class, so the observation space is reduced to the quotient space of the observation space over the
SE(3) group. Once the SE(3) equivariance is naturally ensured, the network can focus on the geo-
metric features of the object, so it still has the ability to generalize to the deformation and geometry
of objects.

H REAL TASKS– FURTHER DETAILS

In the task of Open Bottle Cap, unlike in a simulator, the process in the real world involves first
twisting the cap and then lifting it off to open. The bottle is initially placed at a random position
on the table. For Opening Door, the initial position of the cabinet is randomly determined. In
Calligraphy, we use flat-bristled brushes and watercolor paper, which is randomly positioned on
the table. In Cloth Folding, the limited workspace of the Franka robot means it cannot reach every
possible location. Therefore, the placement of clothes is not random but is instead based on locations
accessible to the robot.
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