
Supplementary Materials: Parameter-Efficient Complementary
Expert Learning for Long-Tailed Visual Recognition

1 DETAILED EXPERIMENTAL SETTINGS
The detailed experimental settings on CIFAR100-LT [4], ImageNet-
LT [1], Places-LT [17] and iNaturalist 2018 [13] are presented in
Table 1 and 2. † denotes lower bottle dimensions in PEFT blocks. As
shown in Table 1, except for the bottleneck dimension, CIFAR100-
LT, ImageNet-LT and Places-LT share the same settings. Experi-
ments on iNaturalist 2018 adopt the AdamW [7] optimizer with
longer training epochs.

Table 1: The default experimental settings on CIFAR100-LT
[4], ImageNet-LT [1], Places-LT [17]. † denotes a setting with
a lower bottleneck dimension.

CIFAR100-LT ImageNet-LT Places-LT

optimizer SGD SGD SGD
training epochs 10 10 10
learning rate 1e-2 1e-2 1e-2
weight decay 5e-4 5e-4 5e-4
batch size 128 128 128

expert number 3 3 3
weight factors 𝜏 [0.5, 1.0, 1.5] [0.5, 1.0, 1.5] [0.5, 1.0, 1.5]
bias term 𝜖 0.1 0.1 0.1
bottleneck dim † 1 32 4
bottleneck dim 14 64 24

Table 2: The default experimental settings on iNaturalist 2018
[13]. † denotes a setting with a lower bottleneck dimension.

iNaturalist 2018

optimizer AdamW
training epochs 20
learning rate 5e-4
weight decay 5e-4
batch size 128

expert number 3
weight factors 𝜏 [0.5, 1.0, 1.5]
bias term 𝜖 0.1
bottleneck dim † 128
bottleneck dim 224

2 MORE EXPERIMENTAL ANALYSIS
2.1 Scale factors of Different Experts
In Figure 1, we present the learned scale factors in different Adapt-
Former blocks of PECEL. A larger scale factor means that the out-
put features of this PEFT block are more significant. As shown
in Figure 1, different experts in PECEL typically exhibit the same

significance tendency in different layers. Since the resolutions of
images in CIFAR100-LT and training images for CLIP [9] are differ-
ent, the scale factors in shallow layers are higher than the factors
in mediate layers. Besides, due to the difference of semantic cate-
gories, the deeper layers typically exhibit higher scale factors to
learn representations with better semantic discriminability on all
three datasets.

2.2 𝜖 in Sample-aware Logit Adjustment
In Figure 2, we present the impact of bias value 𝜖 in the sample-
aware logit adjustment on CIFAR100-LT. Figure 2 shows that the
accuracy on the few-shot class increases when increasing the bias
value 𝜖 , since a larger 𝜖 encourages the model to focus more on the
misclassified samples. We select 𝜖 = 0.1 in our experiments since it
achieves the highest overall accuracy.

2.3 Regularization Loss
The intention of regularization loss is to reduce the representa-
tion redundancy of shared parameters in PECEL. To verify this,
in Figure 3, we present the mean cosine similarities of the shared
parameters of training PECEL with and without the regularization
loss on ImageNet-LT. As presented in Figure 3, training PECELwith-
out the regularization loss (PECEL w/o Reg) naturally decreases the
self-similarity of parameters, since the parameter sharing strategy
inherently encourages to better exploit the shared parameters and
reduces their redundancy. Due to the soft orthogonal regularization,
training with the regularization loss (PECEL w/ Reg) can further
reduce similarity.

2.4 Performance on Larger Models
To demonstrate PECEL’s generalization ability on larger models, in
Table 3, we report the recognition accuracy of LIFT [10] and our
proposed PECEL when using larger pretrained foundation models,
i.e CLIP with ViT-Large as the backbone (CLIP-ViT-L) [9]. Table 3
shows that the proposed PECEL can also outperform LIFT with a
larger pretrained foundationmodel and achieve higher performance
on many-shot, medium-shot and few-shot classes.

3 RESULTS ON PLACES-LT
We present the results on Places-LT in Table 4. As reported in
Table 4, due to the complementary expert learning, the proposed
PECEL can achieve 52.5% classification accuracy on Places-LT, out-
performing the previous state-of-the-art method LIFT [10]. PECEL
can also achieve a more balanced performance in different class
groups. When decreasing the bottleneck dimension to 4 (denoted
with †), due to the proposed parameter sharing strategy, PECEL
can achieve comparable performance with LIFT with about 77%
fewer parameters.

It’s noted that compared with other datasets, the improvement of
PECEL on Places-LT is somewhat marginal. To investigate this, as
shown in Figure 4, we analyze the classification results of validation
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Figure 1: The learned scale factors of different PEFT blocks in PECEL.

Table 3: The recognition accuracy on CIFAR100-LT (left) and ImageNet-LT (right).

Method Backbone Many Med Few All

LIFT [10] CLIP-ViT-B 85.2 82.4 76.8 81.7
PECEL CLIP-ViT-B 87.5 83.3 81.8 84.3
LIFT [10] CLIP-ViT-L 89.7 87.6 85.9 87.8
PECEL CLIP-ViT-L 91.4 87.9 87.7 89.0

Method Backbone Many Med Few All

LIFT [10] CLIP-ViT-B 81.3 77.4 73.4 78.3
PECEL CLIP-ViT-B 82.1 77.8 76.3 79.2
LIFT [10] CLIP-ViT-L 85.3 81.7 78.3 82.7
PECEL CLIP-ViT-L 86.3 82.5 79.6 83.6
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Figure 2: The impact of bias value 𝜖 in the sample-aware logit
adjustment on CIFAR100-LT.

samples in Places-LT. We visualize the samples in Top-3 classes
with the lowest accuracy, i.e Building facade, River and Mountain.
For each class, we present the number of training samples, the class
accuracy on the validation set, the Top-5 wrongly predicted classes
and some corresponding samples. For example, class Building fa-
cade includes 841 training samples and 100 validation samples, with
validation accuracy of 2%, i.e only 2 samples in the validation set
are correctly predicted. There are 9, 8, 6, 5 and 5 samples in the
validation set that are wrongly predicted as Synagogue-outdoor, Em-
bassy, Parking garage-outdoor, Courthouse andHospital, respectively.
These misclassified images are highlighted in red. The correctly
classified images are highlighted in green. The right part in Figure 4
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Figure 3: The cosine similarity of the shared parameters in
PECEL with and without regularization loss.

showcases some reference samples of these misclassified classes
for comparison.

In Figure 4, it’s noted that the semantics of ground-truth classes
and the wrongly predicted classes are often overlapped. For ex-
ample, the Synagogue-outdoor often contains Building facade. The
misclassified samples are also more similar to the corresponding
classes. Moreover, an image can contain multiple categories. For
example, the images of River that are misclassified as Bridges do
contain both rivers and bridges, which cannot demonstrate the
predictions are incorrect. Therefore, the evaluation on Places-LT
may not fully demonstrate the efficacy of the proposed PECEL.
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Table 4: Accuracy on Places-LT. Param: number of train-
able parameters in backbone; †: lower bottleneck dimension.
The best and second-best results are highlighted in bold and
underline, respectively.

Places-LT

Backbone Param Many Med Few All

Training from scratch.
SADE [15] NeurIPS’22 ResNet152 169.3M - - - 40.9
NCL [5] CVPR’22 ResNet152 169.3M - - - 41.8
LiVT [14] CVPR’23 ViT-B 85.0M 48.1 40.6 27.5 40.8
MDCS [16] ICCV’23 ResNet152 169.3M 43.1 42.9 36.3 42.4
LGLA [11] ICCV’23 ResNet152 169.3M - - - 42.0

Fine-tuning pretrained models.
Zero-Shot ViT-B - 38.3 39.2 45.9 40.2
Full Fine-Tuning ViT-B 85.0M 51.6 48.5 36.2 47.2
BALLAD [8] arXiv’21 ViT-B 149.6M 49.3 50.2 48.4 49.5
VL-LTR [12] ECCV’22 ViT-B 149.6M 54.2 48.5 42.0 50.1
RAC [6] CVPR’22 ViT-B 85.0M 48.7 48.3 41.8 47.2
UDCPG [3] ACM MM’23 ResNet50 23.5M 50.8 48.8 44.6 48.7
LPT [2] ICLR’23 ViT-B 1.01M 51.3 52.2 50.5 51.5
LIFT [10] ICML’24 ViT-B 0.18M 51.7 53.1 50.9 52.2
PECEL† ViT-B 0.04M 51.6 52.0 53.9 52.2
PECEL ViT-B 0.17M 52.2 52.4 53.5 52.5
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Figure 4: Visualization of the validation samples in Places-LT. We visualize the Top-3 categories with the lowest accuracy, i.e
Building facade, River andMountain. In the left part, the correctly and wrongly predicted samples are highlighted in green
and red, respectively. In the right part, we also present some true samples of the wrongly predicted classes for reference and
comparison.
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