
Appendix for the paper entitled Improving Exploration in Deep409

Reinforcement Learning by State Planning Policies410

A Appendix411

Videos visualizing the trained agents, and link to the git software repository with SPP-RL412

algorithms implementations are available online https://sites.google.com/view/spprl.413

B SPP-RL Algorithm Details414

B.1 Lagrangian Optimization415

To solve the constrained optimization problem we use the idea of Lagrange multipliers going back416

to the classical calculus. Lagrange multipliers were already applied in the RL context in [25],417

where authors developed on-policy RL algorithms for safety RL. This method uses an adaptive418

penalty coefficient to enforce constraints. We find this method plausible, as it translates a419

constrained objective into solving a classical max-min problem that can be incorporated within any420

RL algorithm. The max-min Lagrangian objective L(π, λ) for the constrained optimization421

problem (1) takes the form422

max
π

min
λ≥0

L(π, λ) = E
τ∼π

[R0(π)]− λ

(
E
D

[
∥st+1 − zt∥22

∣∣∣
zt∼π(st)

]
− d

)
. (2)

Intuitively, when the constraint (1b) is satisfied, then the min w.r.t. λ is attained for λ = 0, and423

causes λ to decrease. On the other hand, if the constraint is not satisfied, then the min is attained for424

λ = ∞, and hence causing λ to increase, the constraint satisfaction receives more weight in the425

overall max-min objective, eventually forcing the constraint to be fulfilled.426

We solve the max-min Lagrangian objective for SPP policy using simultaneous gradient ascent427

w.r.t. the policy parameters θ, descent w.r.t. the Lagrange multiplier λ, updates. Such an approach428

can be viewed as an instance of a primal-dual algorithm for constrained MDP. It is known in the429

literature that time-steps of Actor, Critic & dual variable gradient updates should be adjusted430

separately to guarantee convergence. The SPP algorithms use three learning rates: actor (lθ), critic431

(lϕ), and dual variable (lλ), which were adjusted using a hyper-parameter optimization. The actor432

and critic learning rates were equal in all of the studied algorithms, whereas the dual variable was433

fixed in all algorithms to lλ = 0.0001.434

B.2 SPP-SAC Algorithm435

The original DDPG algorithm, which is the base of SPP-DDPG presented in Algorithm 1 aims at436

training a deterministic policy, as contrary to for example SAC algorithm by [11, 12] that trains a437

stochastic policy. Its main principle is rooted in the very successful deep Q-learning method,438

originally applied for solving the Atari benchmark problem [20]. However, DDPG is suitable for439

continuous action spaces like in the MuJoCo tasks. SAC is an algorithm that combines ideas of440

DDPG and soft Q-learning [10] utilizing the advantages of both approaches, SPP-SAC is presented441

in Algorithm 2.442

B.3 SPP-TD3 Algorithm443

Twin Delayed Policy Gradient (TD3) [8] is an improved DDPG algorithm using several tricks,444

which can be summarized as Clipped Double-Q Learning, Delayed Policy Updates, Target Policy445

Smoothing. SPP-TD3 algorithm is presented in Algorithm 3.446

C Hyperparameters Used in Experiments447

We present hyper-parameters used in our experiments in Table 2 for the SPP-DDPG, in Table 6 for448

the SPP-SAC. SPP-TD3 hyper-parameters were dependent on the set of benchmarks, and449

12

https://sites.google.com/view/spprl

Algorithm 2: SPP-SAC Algorithm
repeat

Sample random action a ∼ U ;
Store experience (st, zt, at, st+1, rt) in D; (use next-state as the initial actor actions)

until random exploration is done;
repeat

if buffer D is not full then
Sample actor prediction zt ∼ π(st);
Compute action at = CM(st, zt);
Observe reward rt and next state st+1;
Store experience (st, zt, at, st+1, rt) in D;
If st+1 is terminal, reset environment state;

end
if it’s time to update CM then

Randomly sample {bi = {(st, st+1), at}}ni=1 n batches of samples from replay buffer
D;

SGD train CM using the batches and MSE loss;
end
if it’s time to update actor and critic then

for update steps do
Randomly sample B = {(st, zt, at, st+1, rt)} set of batches from D;
Compute actions ât+1 = CM(st+1, ẑt+1), using samples ẑt+1 ∼ π(zt+1|st+1);
Compute targets y = rt + γ min

i=1,2
Qπ,CM
ϕtarg,i

(st+1, ât+1) ;

Compute ϕ = ϕ− lϕ · ∇ϕ
1
|B|

∑
B

(
y −Qπ,CM

ϕ (st, at)
)2

;

Compute θ = θ + lθ · ∇θ
1
|B|

∑
B(min
i=1,2

Qπ,CM
ϕ (st, ãθ,t(st))− α log πθ(z̃θ,t(st)|st),

where z̃θ,t(st) ∼ π(zt|st) is differentiable wrt θ;
Compute θ = θ − lθλ

|B| · ∇θ

∑
B ∥st+1 − z̃θ,t(st)∥22;

Update λ = λ+ lλ

(
1
|B|

∑
B ∥st+1 − z̃θ,t(st)∥22 − d

)
;

Update target networks ϕtarg,i = (1− τ)ϕtarg,i + τϕi, for i = 1,2;
end

end
until convergence;

hyper-parameters specific for MuJoCo environments are in Tab. 3, for SafetyGym in Tab. 4, and for450

AntPush in Tab. 5.451

In SPP-DDPG implementation we used the following architectures:452

• Actor: dim(S) −→ 256 ReLU −→ 256 ReLU −→ dim(A) tanh;453

• Critic: dim(S) + dim(A) −→ 256 ReLU −→ 256 ReLU → 1;454

• CM: 2 · dim(S) −→ 100 tanh −→ 50 tanh −→ dim(A) tanh;455

In SPP-TD3 implementation we used the following architectures:456

• Actor: dim(S) −→ 256 ReLU −→ 256 ReLU −→ dim(A) tanh;457

• Critic: dim(S) + dim(A) −→ 256 ReLU −→ 256 ReLU → 1;458

• CM: 2 · dim(S) −→ 100 tanh −→ 50 tanh −→ dim(A) tanh;459

In SPP-SAC implementation we used the following architectures:460

• Actor: dim(S) −→ 256 ReLU −→ 256 ReLU −→ dim(A) tanh;461

• Critic: dim(S) + dim(A) −→ 256 ReLU −→ 256 ReLU → 1;462

• CM: 2 · dim(S) −→ 64 tanh −→ 32 tanh −→ dim(A) tanh;463

13

Algorithm 3: SPP-TD3 Algorithm
input : environment E; initial model parameters θ, ϕ1, ϕ2, ψ; state planning distance threshold d; empty

replay buffer D; TD3 algorithm hyperparameters
output: trained model parameters θ, ϕ1, ϕ2, ψ; total return
repeat

Sample random action a ∼ U ;
Store experience (st, at, zt, rt+1, st+1) in replay buffer D; (use next-state as the initial actor actions)

until random exploration is done;
repeat

if buffer D is not full then
Compute actor prediction zt = clip (π(st) + ε, zlow, zhigh), where ε ∼ N ;
Compute action at = CM(st, zt) and observe reward rt+1 and next state st+1;
Store experience (st, zt, at, st+1, rt+1) in D;

end
if it’s time to update CM then

Sample {bi = {((st, st+1), a)}}bi=1 b batches of samples from replay buffer D;
SGD train CM using the batches and MSE loss;

end
if it’s time to update actor and critic then

for update steps do
Randomly sample B = {(st, zt, at, st+1, rt+1)} set of batches from D;
Compute target states z̃t+1(st+1) = clip

(
πθtarg (st+1) + clip(ε,−c, c), zlow, zhigh

)
, where

ε ∼ N (0, σ);
Compute target actions ãt+1(st+1) = CM(st+1, z̃t+1(st+1));
Compute targets y(r, st+1) = r + γmini=1,2Q

π,CM
ϕtarg,i

(st+1, ãt+1(st+1) (using target
parameters ϕtarg,1, ϕtarg,2);

Update ϕ1 = ϕ1 −
lϕ
|B| · ∇ϕ1

∑
B

(
y(r, st+1)−Qπ,CM

ϕ1
(st, at)

)2

;

Update ϕ2 = ϕ2 −
lϕ
|B| · ∇ϕ2

∑
B

(
y(r, st+1)−Qπ,CM

ϕ2
(st, at)

)2

;

if current_step mod policy_delay = 0 then
Update θ = θ +

lθ

(
1
|B| · ∇θ

∑
B Q

π,CM
ϕ (st, at)

∣∣∣
at=CM(st,πθ(st))

− λ
|B| · ∇θ

∑
B ∥st+1 − πθ(st)∥22

)
;

Update λ = λ+ lλ
(

1
|B|

∑
B ∥st+1 − πθ(st)∥22 − d

)
;

Update actor & critics ϕtarg,i = (1− τ)ϕtarg,i + τϕi; θtarg = (1− τ)θtarg + τθ;
end

end
end

until convergence;

14

Hyperparameter Value
γ 0.99
τ 0.005

actor/critic learning rate lϕ = lθ 0.0005
λ learning rate lλ 0.0001

episode length 5000
batch size 100

test episodes 10
update freq. & grad.steps. 50
exploration noise param. 0.05

replay buffer size same as number of env. interacts
parameters specific for SPP-DDPG

d state consistency 0.2
CM hyper-parameters

init. rand. samples 20000
learning rate 0.005

batch size 128
update frequency 500 steps

update epochs 1
update batches 100

Table 2: SPP-DDPG Algorithm hyperparameters, DDPG used the same hyperparameters, except
exploration noise (set to 0.1).

Hyperparameter Value
γ 0.99
τ 0.005

actor/critic learning rate lϕ = lθ 0.0001
λ learning rate lλ 0.0001

episode length 5000
batch size 100

test episodes 10
update freq. & grad.steps. 50
exploration noise param. 0.2

policy noise 0.2
noise clip. 0.5

replay buffer size same as number of env. interacts
parameters specific for SPP-TD3

d state consistency 0.2
CM hyper-parameters

init. rand. samples 25000
learning rate 0.001

batch size 128
update frequency 500 steps

update epochs 1
update batches 200

Table 3: SPP-TD3 Algorithm hyperparameters for MuJoCo environments, TD3 used the same (com-
mon) hyperparameters.

15

Hyperparameter Value
γ 0.99
τ 0.005

actor/critic learning rate lϕ = lθ 0.0002
λ learning rate lλ 0.0001

episode length 5000
batch size 100

test episodes 10
update freq. & grad.steps. 50
exploration noise param. 0.1

policy noise 0.2
noise clip. 0.5

replay buffer size same as number of env. interacts
parameters specific for SPP-TD3

d state consistency 0.2
CM hyper-parameters

init. rand. samples 400000
learning rate 0.001

batch size 128
update frequency 500 steps

update epochs 1
update batches 200

Table 4: SPP-TD3 Algorithm hyperparameters for SafetyGym environments. Observe that for this
environment specifically we used larger number of CM pretrain samples

Hyperparameter Value
γ 0.99
τ 0.005

actor/critic learning rate lϕ = lθ 0.0001
λ learning rate lλ 0.0001

episode length 5000
batch size 100

test episodes 10
update freq. & grad.steps. 50
exploration noise param. 1

policy noise 0.2
noise clip. 0.5

replay buffer size 250000

parameters specific for SPP-TD3
d state consistency 0.2

CM hyper-parameters
init. rand. samples 100000

learning rate 0.001
batch size 128

update frequency 500 steps
update epochs 1
update batches 200

Table 5: SPP-TD3 Algorithm hyperparameters for AntPush environment. Observe that for this en-
vironment specifically we used fixed buffer size which is significantly smaller than the total number
of env interacts, and a much larger exploration noise param equal to 1.

16

Hyperparameter Value
γ 0.99
τ 0.005

actor/critic learning rate lϕ = lθ 0.001
λ learning rate lλ 0.0001

batch size 100
test episodes 10 each 1000 frames

update freq. & grad.steps. 50
α 0.2

α learning rate 0.001
replay buffer size 1e6

parameters specific for SPP-SAC
d state consistency 0.2

CM hyper-parameters
init. rand. samples 10000

learning rate 0.001
batch size 100

update frequency 1000 steps
update batches 100

Table 6: SPP-SAC Algorithm hyperparameters

17

