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Dynamic Evidence Decoupling for Trusted Multi-view Learning
Anonymous Authors

ABSTRACT
Multi-view learning methods often focus on improving decision ac-
curacy, while neglecting the decision uncertainty, limiting their suit-
ability for safety-critical applications. To mitigate this, researchers
propose trusted multi-view learning methods that estimate clas-
sification probabilities and uncertainty by learning the class dis-
tributions for each instance. However, these methods assume that
the data from each view can effectively differentiate all categories,
ignoring the semantic vagueness phenomenon in real-world multi-
view data. Our findings demonstrate that this phenomenon signifi-
cantly suppresses the learning of view-specific evidence in exist-
ing methods. We propose a Consistent and Complementary-aware
trusted Multi-view Learning (CCML) method to solve this prob-
lem. We first construct view opinions using evidential deep neural
networks, which consist of belief mass vectors and uncertainty
estimates. Next, we dynamically decouple the consistent and com-
plementary evidence. The consistent evidence is derived from the
shared portions across all views, while the complementary evidence
is obtained by averaging the differing portions across all views. We
ensure that the opinion constructed from the consistent evidence
strictly aligns with the ground-truth category. For the opinion con-
structed from the complementary evidence, we only require it to
reflect the probability of the true category, allowing for potential
vagueness in the evidence. We compare CCML with state-of-the-art
baselines on one synthetic and six real-world datasets. The results
validate the effectiveness of the dynamic evidence decoupling strat-
egy and show that CCML significantly outperforms baselines on
accuracy and reliability. We promise to release the code and all
datasets on GitHub and show the link here.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Trusted Multi-view Learning, Uncertainty-aware Deep Learning,
Dynamic Multi-view Learning.

1 INTRODUCTION
In real-world scenarios, different data modalities or features could
be treated as multiple views. For example, in autonomous vehi-
cle systems, cameras and lidars collect images and points; in the
field of healthcare, a patient’s comprehensive condition can be as-
sessed through multiple types of examinations. Multi-view learning
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Figure 1: Visualization of the dynamic semantic vagueness
phenomenon. The ground-truth category of the first instance
is “apple pie”. When considering the image view alone, it
becomes challenging to differentiate between the categories
“waffles” and “apple pie”. For the second instance, both views
provide explicit differentiation between the categories.

aims to synthesize both consistent and complementary informa-
tion from these multiple views, leading to a more comprehensive
understanding of the data [4, 20, 32]. It has generated significant
and wide-ranging influence across multiple research areas, includ-
ing classification [17], clustering [13, 29], retrieval [41] and large
language models [22].

Most existing multi-view learning methods primarily empha-
size enhancing decision accuracy, often overlooking the crucial
aspect of decision uncertainty. This limitation significantly restricts
the applicability of multi-view learning in safety-critical scenarios,
such as autonomous vehicle systems. Therefore, to predict the reli-
ability of the results, researchers have proposed many multi-view
uncertainty quantification methods in recent years. The pioneering
work [9], Trusted Multi-view Classification (TMC), calculates and
aggregates the evidence [27] of all views. TMC utilizes this aggre-
gated evidence to parameterize the class distributions, enabling
the estimation of class probabilities and uncertainties. In order to
train the model effectively, TMC requires the estimated class prob-
abilities to align with the ground-truth labels. Building upon this
research, researchers have proposed novel evidence aggregation
paradigms such as sum [21], (weighted) average [35], element-wise
dot product [10], etc. These methods enhance the reliability and
robustness in the presence of various challenges, such as feature
noise [8, 25, 42], incomplete views [33], etc.

Regrettably, the evidence aggregation paradigms in these meth-
ods rely on an assumption: the data of each view can distinguish
all categories. However, real-world multi-view data exhibit the se-
mantic vagueness phenomenon, which means that one view may

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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exhibit ambiguity or uncertainty in its categorization. For exam-
ple, as shown in Figure 1, the ground-truth category of the first
instance is “apple pie”, while the image view is difficult to differ-
entiate between the categories “waffles” and “apple pie”. For this
view, existing evidence aggregation paradigms encourage only the
evidence of the category “apple pie” is large due to the common
evidence complying with this. This overlooks the fact that the ev-
idence for the category “waffles” is also substantial in the data,
which would significantly impact the overall learning process and
compromise its effectiveness. This motivates us to delve into the
semantic vagueness problem in trusted multi-view learning.

In this paper, we propose a Consistent and Complementary-
aware trusted Multi-view Learning (CCML) for this problem. First,
we construct view-specific evidential DeepNeural Networks (DNNs)
to learn the view-specific evidence, which represents the level of
support for each category obtained from the data. In the multi-
view fusion stage, we dynamically decouple the consistent and
complementary evidence. The consistent evidence is derived from
the consistent portions across all views, while the complementary
evidence is obtained by averaging the differing portions from all
views. This separation allows us to capture both the shared informa-
tion and the unique aspects of each view. In the training stage, we
enforce strict alignment between the opinion constructed from the
consistent evidence and the ground-truth category. This is achieved
by adjusting the probabilities of the true and false categories, as
well as enhancing the separation between them. As for the opinion
constructed from the complementary evidence, we only require it
to reflect the probability of the true category, allowing for poten-
tial vagueness in the evidence. In the test stage, we aggregate the
consistent and complementary evidence to make a decision.

The main contributions of this work are summarized as follows:
1) we identify the semantic vagueness phenomenon in multi-view
data, which can significantly suppress the learning of view-specific
evidence in existing trusted multi-view learning methods; 2) we
propose the CCMLmethod to tackle this problem. CCML effectively
addresses the negative impact of semantic vagueness through two
key strategies: dynamically decoupling the consistent and comple-
mentary evidence, and allowing potential vagueness in the comple-
mentary evidence; 3) we conduct empirical comparisons between
CCML and state-of-the-art trusted multi-view learning baselines
on a synthetic toy dataset and six real-world datasets. The experi-
mental results not only validate the effectiveness of the proposed
dynamic decoupling strategy but also demonstrate that CCML sur-
passes the baseline methods in terms of accuracy and reliability.

2 RELATEDWORK
The proposed CCML is a new uncertainty-aware multi-view fusion
methods. Therefore, in this section, we briefly review two lines
of related work, multi-view fusion and uncertainty-aware deep
learning, to better motivate this work.

2.1 Multi-view Fusion
Multi-view fusion is highly effective in a wide range of tasks,
as it combines information from multiple sources or modalities
[6, 12, 39]. Based on the fusion strategy employed, existing deep
multi-view fusion methods can be broadly categorized into two

main pipelines: feature fusion [1, 19] and decision fusion [14]. Fea-
ture fusion methods aim to capture the interactions between differ-
ent views at the feature level. For example, canonical correlation
analysis and its variants [1, 40] maximize the correlation of the
multi-view latent representations. Matrix factorization methods
[34] decode the multi-view common representation to view-specific
data via basis matrices. Following this line, Xu et al. explicitly model
consistent and complementary information [2] at the highest ab-
straction level by the group sparseness constraint [34]. More re-
cently, researchers have used deep neural networks to decouple the
complex consistent and complementary information at representa-
tion level [4, 37]. Amajor challenge of feature fusionmethods is that
low-quality views may adversely affect the representation of other
views. Decision fusion methods [5, 23, 26, 28] mitigate this problem
by integrating the decision results from different views. We follow
this line and propose a new method for decoupling consistent and
complementary information at the decision level.

2.2 Uncertainty-aware Deep Learning
Traditional deep learning methods have made remarkable progress
in various domains. However, they are unable to provide uncer-
tainty estimates in predictions, which is increasingly important
in real-world scenarios. To tackle this challenge, researchers have
proposed uncertainty-aware deep learning methods. One approach
is Bayesian Neural Networks [24], which considers the variation in
results caused by variations in the data distribution as uncertainty.
However, the high computational cost associated with Bayesian
neural networks limits their practical applications. As a result, re-
searchers begin to explore more efficient methods for estimating
uncertainty. The Monte Carlo dropout method [7] is one such ap-
proach. It involves using multiple instances of input data to ob-
tain multiple prediction results, from which uncertainty measures
can be calculated. Another method, EDL [27], calculates category-
specific evidence and considers the lack of evidence as a source of
uncertainty using a single deep neural network. Recently, TMC [9]
extends EDL to the multi-view learning area. Following this line,
researchers have proposed various evidence aggregation paradigms,
including sum [21], (weighted) average [35], element-wise dot prod-
uct [10], etc. However, these paradigms often overlook the phe-
nomenon of semantic vagueness present in real-world multi-view
data, which can significantly hinder the learning of view-specific
evidence. The proposed CCML effectively addresses the issue by
allowing for potential vagueness in the complementary evidence.

3 THE METHOD
In this section, we first introduce the trusted multi-view classifica-
tion problem and semantic vagueness phenomenon, then present
the pipeline and loss function of CCML in detail.

3.1 Notations and Problem Definition
In this section, we introduce the trusted multi-view classification
problem and semantic vagueness phenomenon in detail. For the 𝐶
classification problem, considering a dataset 𝐷 = {{𝒙𝑣𝑛}𝑉𝑣=1,𝒚𝑛}

𝑁
𝑛=1

has 𝑁 instances with𝑉 views, where 𝒙𝑣𝑛 denotes the feature vector
for the 𝑣-th view of the 𝑛-th instance, and the one-hot vector 𝒚𝑛 ∈
{0, 1}𝐶 denotes the ground-truth label of the 𝑛-th instance.
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Figure 2: Illustration of CCML. CCML initially constructs view-specific evidential DNNs to acquire the view-specific evidence
and subsequently dynamically decouples the consistent and complementary evidence. During training, CCML ensures precise
alignment between the opinion constructed from the consistent evidence and the ground-truth category. Regarding the
complementary evidence, CCML only necessitates reflecting the probability of the true category, accommodating potential
evidence vagueness. During testing, CCML combines consistent and complementary evidence to reach a decision.

The semantic vagueness phenomenon indicates that some el-
ements of {𝒙𝑣𝑛} may not well distinguish certain categories. For
example, as shown in Figure 1, the image view of the first instance
is hard to differentiate between the categories “waffles” and “apple
pie”. The goal is to accurately predict 𝒚𝑛 and provide the associ-
ated prediction uncertainties 𝑢𝑣𝑛 ∈ [0, 1] to measure the decision
reliability.

3.2 CCML Pipeline
As shown in Figure 2, the overall architecture is a decision-level fu-
sion pipeline, which consists of the view-specific evidence learning
stage and the evidential multi-view fusion stage. The view-specific
DNNs {𝑓 𝑣 (·)}𝑉

𝑣=1 learn the view-specific evidence, which indicates
the level of support for each category based on the data. In the fu-
sion stage, we dynamically decouple the consistent evidence (𝒆𝑐𝑜𝑛)
and complementary evidence (𝒆𝑐𝑚𝑝 ). 𝒆𝑐𝑜𝑛 is extracted from the
consistent portions across all views, while 𝒆𝑐𝑚𝑝 is obtained by av-
eraging the differing portions across all views. In the training stage,
we establish different principles for 𝒆𝑐𝑜𝑛 and 𝒆𝑐𝑚𝑝 , respectively. For
the testing stage, we aggregate 𝒆𝑐𝑜𝑛 and 𝒆𝑐𝑚𝑝 to make a decision.

3.2.1 View-specific Evidence Learning. Many conventional multi-
view learning methods utilize softmax layers to produce standard
outputs to address multi-classification problems in neural classifi-
cation networks. However, these methods only provide class proba-
bilities without considering the reliability of the results [11]. Due to
the single-point estimation paradigm of softmax scores, they tend
to produce overconfident outputs, even when the predictions are
incorrect. To address these issues and achieve accurate uncertainty
prediction, we employ EDL [27] by replacing the softmax layer
with a ReLU activation to obtain non-negative evidence.

We also introduce the subjective logic [15] framework to form
opinions. In this framework, the parameter 𝜶 of the Dirichlet dis-
tribution 𝐷𝑖𝑟 (𝒑 |𝜶 ) is associated with the belief distribution in the
framework of evidence theory, where 𝒑 is a simplex representing
the probability of class assignment. We collect evidence {e𝑣𝑛}, us-
ing view-specific evidential DNNs {𝑓 𝑣 (·)}𝑉

𝑣=1. The corresponding
Dirichlet distribution parameters are 𝜶 𝑣 = 𝒆𝑣 + 1 = [𝛼𝑣1 , · · · , 𝛼

𝑣
𝐶
]𝑇 .

After obtaining the distribution parameters, we can calculate the
subjective opinion, 𝝎𝑣 = (𝒃𝑣, 𝑢𝑣) of the view including the qual-
ity of beliefs 𝒃𝑣 and the quality measure of uncertainty 𝑢, where
𝒃𝑣 = (𝜶 𝑣 − 1)/𝑆𝑣 = 𝒆𝑣/𝑆𝑣 , 𝑢𝑣 = 𝐾/𝑆𝑣 , and 𝑆𝑣 =

∑𝐾
𝑘=1 𝛼

𝑣
𝑘
is the

Dirichlet intensity.
After training evidential DNNs to learn view-specific evidence,

we observe that the evidence produced by vagueness views contains
support for multiple categories. Among these categories, the true
categories would generate relatively higher amounts of evidence
than other categories. Therefore, we cannot require only the ground-
truth category has large evidence. We utilize this property in the
subsequent evidence fusion stage.

3.2.2 Consistent and Complementary-aware Multi-view Fusion. Ex-
isting trusted multi-view learning methods face limitations when
addressing the phenomenon of semantic vagueness. This is pri-
marily because, during the generation of view-specific evidence,
the indistinguishable error categories in vague views produce a
similar amount of evidence as the indistinguishable categories.
Many methods struggle to distinguish between equal amounts of
evidence for correct and incorrect categories. As a result, we are
motivated to tackle this problem by decoupling the consistent and
complementary evidence and allowing for potential vagueness in
the complementary evidence.
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For views 𝑣𝑖 and 𝑣 𝑗 , the view-specific deep learning network of
view 𝑣𝑖 will produce similar amounts of evidence for classes 𝑐1 and
𝑐2, while the network of view 𝑣 𝑗 will produce similar amounts of
evidence for classes 𝑐2 and 𝑐3 when classifying instances of class 𝑐2,
Effective classification should be achieved through complementary
information from view 𝑣𝑖 and 𝑣 𝑗 respectively (𝑣𝑖 determines that
the instance is one of 𝑐1 or 𝑐2, and 𝑣 𝑗 determines that the instance
is one of 𝑐2 or 𝑐3, the final classification result should be 𝑐2 utilizing
the complementary information of 𝑣𝑖 and 𝑣 𝑗 ).

Therefore, we need to decouple view-specific evidence of dif-
ferent views into consistent and complementary evidence. One
previous work [36] addresses the semantic vagueness phenomenon
by setting fixed relation degradation layers for semantic vague-
ness categories. However, the extent of semantic vagueness varies
among different instances, as reflected by the difference in con-
sistency and complementarity. It is necessary to use dynamic de-
coupling strategies according to the differences of consistency and
complementarity in the classification tasks, instead of using fixed
relations. For this purpose, we propose a dynamic consistent and
complementary evidence decoupling strategy.

Definition 3.1. (Consistent and Complementary Evidences). For
the view-specific evidences {𝒆𝑣 = (𝑒𝑣1 , . . . , 𝑒

𝑣
𝐶
)}𝑉
𝑣=1. The consistent

evidence 𝒆𝑐𝑜𝑛 and complementary evidence 𝒆𝑐𝑚𝑝 are defined as:

𝒆𝑐𝑜𝑛 = 𝑉 (𝑒𝑐𝑜𝑛1 , . . . , 𝑒𝑐𝑜𝑛𝐶 ), (1a)

𝑒𝑐𝑜𝑛𝑐 =𝑚𝑖𝑛(𝑒1𝑐 , . . . , 𝑒𝑉𝑐 ), 𝑐 = 1, . . . ,𝐶, (1b)

𝒆𝑐𝑚𝑝 =
1
𝑉

𝑉∑︁
𝑣=1

(𝒆𝑣 − 𝒆𝑐𝑜𝑛), (1c)

where 𝒆𝑐𝑜𝑛 denotes the minimum evidence of each class supported
by each view. 𝒆𝑐𝑚𝑝 denotes the complementary evidence.

The consistent evidence 𝒆𝑐𝑜𝑛 is obtained by aggregating the con-
sistent portions from all views, while the complementary evidence
𝒆𝑐𝑚𝑝 is calculated as the average of the differing portions across
all views. This distinction is made because the complementary evi-
dence of all views {𝒆𝑣 − 𝒆𝑐𝑜𝑛}𝑉

𝑣=1 capture the varying information
between different views, encompassing both complementarity and
conflict. It is important to note that this information does not always
enhance the accuracy of results; instead, it can introduce additional
uncertainty. Consequently, retaining the entire set of complemen-
tary evidence is not advisable. Instead, a more suitable approach is
to preserve it by taking the average [35]. By employing this strat-
egy, we dynamically separate the consistent and complementary
evidence from the view-specific evidence. Finally, we aggregate
the two pieces of evidence on average to form the final opinion,
which is used in the test stage. In the following section, we will
outline how our deep learning networks are trained using distinct
principles for handling consistent and complementary evidence.

3.3 Loss Function
In this section, wewill present the training process of CCML. The ob-
jective is to deal with view-specific, consistent, and complementary
evidence separately. Specifically, the consistent evidence should
closely approximate the true label, while the complementary ev-
idence serves as a supplementary component, allowing for more
relaxed constraints. We will elaborate on these components below.

3.3.1 View-specific Loss Function. The evidential DNNs are ob-
tained by converting the softmax layer of traditional DNNs into
ReLU. Therefore, we obtain the non-negative outputs as evidence.
We introduce an adjusted cross-entropy loss function to ensure
that all views can generate appropriate non-negative view-specific
evidence for classification:

L𝑎𝑐𝑒 (𝜶𝑛) =
∫ 

𝐶∑︁
𝑗=1

−𝑦𝑛𝑗 𝑙𝑜𝑔𝑝𝑛𝑗


1
𝐵(𝜶𝒏)

𝐶∑︁
𝑗=1

𝑝
𝛼𝑛𝑗−1
𝑛𝑗

𝑑𝒑𝑛

=

𝐶∑︁
𝑗=1

𝑦𝑛𝑗 (𝜓 (𝑆𝑛) −𝜓 (𝛼𝑛𝑗 )), (2)

where𝜓 (·) is the digamma function. The view-specific loss function
of 𝒙𝑣𝑛 is defined as:

L𝑣𝑠 (𝜶 𝑣𝑛 ) = L𝑎𝑐𝑒 (𝜶 𝑣𝑛 ), (3)

where 𝜶 𝑣𝑛 = 𝒆𝑣𝑛 + 1 is the parameters of the corresponding Dirichlet
distribution, 𝒆𝑣𝑛 = 𝑓 𝑣 (𝒙𝑣𝑛) represent the evidence vector predicted
by the network.

3.3.2 Consistent Loss Function. The consistent evidence is obtained
by aggregating the consistent portions of all views. Consequently,
we impose a stringent alignment between the opinion constructed
from the consistent evidence and the ground-truth category. To
accomplish this, we adjust the probabilities assigned to the true and
false classes while simultaneously enhancing the distinction be-
tween them. To achieve this objective, we introduce two principles:
the Error Reduction Principle and the Separability Principle.

Error Reduction Principle. The error reduction principle high-
lights that during the training process, the evidence generated for
incorrect categories may inadvertently increase due to the lim-
ited availability of counterexamples. This misleading evidence has
the potential to introduce challenges to the classification process.
Therefore, to reduce evidence for incorrect labels, we introduce the
Kullback-Leibler (KL) divergence into the loss function:

L𝐾𝐿 (𝜶𝑛) =𝜆𝑡𝐾𝐿[𝐷 (𝒑𝑛 |𝜶𝑛) | |𝐷 (𝒑𝑛 |1)]

=𝑙𝑜𝑔

(
Γ(∑𝐶𝑐=1 𝛼𝑛𝑐 )

Γ(𝐾)∏𝐶
𝑐=1 Γ(𝛼𝑛𝑐 )

)
+
𝐶∑︁
𝑐=1

(𝛼𝑛𝑐 − 1)
𝜓 (𝛼𝑛𝑐 ) −𝜓 (

𝐶∑︁
𝑗=1

𝛼𝑛𝑗 )
 , (4)

where𝐷 (𝒑𝑛 |1) is the uniform Dirichlet distribution, 𝜶𝑛 = 𝒚𝑛 + (1−
𝒚𝑛) ⊙ 𝜶𝑛 is the Dirichlet distribution parameter after removing the
evidence of the ground-truth category from the original parameter
𝜶𝑛 . 𝜆𝑡 =𝑚𝑖𝑛(1, 𝑡/𝑇 ) ∈ [0, 1] is annealing coefficient, acting as the
balance factor. As the training process progresses, 𝜆𝑡 continues
to increase, enhancing the influence of KL divergence, to prevent
premature convergence of misclassified instances to the uniform
distribution.

Separability Principle. The Separability Principle emphasizes the
importance of creating a significant distinction between the evi-
dence supporting different categories during the classification pro-
cess. This principle allows the classifier to more accurately dis-
tinguish between different categories. For instance, consider the
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belief masses of opinions 𝒃1 = (0.4, 0.4) and 𝒃2 = (0.3, 0). The
total amount of belief mass in 𝒃2 is more than 𝒃1. However, the
greater degree of separation of 𝒃2 makes it more contribution to
the classification result than 𝒃1. To enhance classification perfor-
mance, we need to increase the degree of separation during the
training process. Therefore, we quantify the degree of separation
of the belief masses supporting different classes in opinion using
the separation degree.

Definition 3.2. (Separation Degree). For the subjective opinion
𝝎 = (𝒃, 𝑢, 𝒂), where 𝒃 = (𝑏1, . . . , 𝑏𝐶 ), the separation degree can be
defined as:

𝑆𝐷 (𝒃) =
𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

|𝑏𝑖 − 𝑏 𝑗 |. (5)

Our goal is to increase the separation degree of consistent opin-
ions. There are two approaches to increase it: the first approach
involves adding a constraint to maximize the degree of separation.
However, this approach may lead to an increase in the total amount
of evidence across all categories. This is contrary to our original
intention of controlling uncertainty based on the total amount of
evidence. Therefore, we design the following method.

We first convert consistent evidence into consistent opinions
𝝎𝑐𝑜𝑛 = (𝒃𝑐𝑜𝑛, 𝑢𝑐𝑜𝑛, 𝒂𝑐𝑜𝑛) and adjust it to obtain the final consistent
opinion �𝝎𝑐𝑜𝑛 = (𝒃𝑐𝑜𝑛, 𝑢𝑐𝑜𝑛, 𝒂𝑐𝑜𝑛):

𝒃𝑐𝑜𝑛 =


∑𝐶

𝑐=1
�𝑏𝑐𝑜𝑛𝑐∑𝐶

𝑐=1 𝑏
𝑐𝑜𝑛
𝑐

(𝑏𝑐𝑜𝑛1 , . . . , 𝑏𝑐𝑜𝑛
𝐶

), ∑𝐶
𝑐=1 𝑏

𝑐𝑜𝑛
𝑐 ≠ 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(6)

where 𝑏𝑐𝑜𝑛𝑐 = 𝑝𝑜𝑤 (𝑏𝑐𝑜𝑛𝑐 , 𝛽) ∈ [0, 1] is the belief mass support-
ing classes 𝑐 , 𝛽 is a hyper-parameter which is bigger than 1. By
the power operation 𝑝𝑜𝑤 (𝑏𝑐𝑜𝑛𝑐 , 𝛽), the separation degree would
increase. The reason behind this is the increasing disparity in the
confidence mass that supports each category. We also demonstrate
theoretically that this approach can increase the separation de-
gree, which is elaborated in the appendix. Therefore, we only need
this simple operation to achieve the increase of separation degree
without changing the total amount of evidence.

Under the guidance of the above two principles, we can derive
the consistent loss function:

L𝑐𝑜𝑛 (𝜶𝑐𝑜𝑛𝑛 ) = L𝑎𝑐𝑒 (�𝜶𝑐𝑜𝑛) + 𝜂L𝐾𝐿 (�𝜶𝑐𝑜𝑛) . (7)

where �𝜶𝑐𝑜𝑛 represents the corresponding parameters of the final
Dirichlet distribution of the consistent opinion. The consistent loss
function can refine the consistent evidence. After increasing the
separation degree, the cross-entropy loss function minimizes the
model’s deviation from the true label, and the KL loss function
reduces the evidence for incorrect categories. The combination of
these two loss functions can maximize the impact of consistent
evidence on the model training process.

3.3.3 Complementary Loss Function.

Vagueness Principle. Complementary evidence usually represents
complementary or even conflicting information between different
views. Its reliability is generally lower than that of the consistent
evidence. As a supplement to the consistent evidence, the com-
plementary evidence need not necessarily enhance the degree of

separation or reduce false labels. It accounts for potential vague-
ness in multi-view data. Therefore, it is only required to reflect the
probability of the true category.

According to this principle, we define the complementary loss
function as follows:

L𝑐𝑚𝑝 (𝜶𝑐𝑚𝑝𝑛 ) =
𝐶∑︁
𝑗=1

𝑦𝑛𝑗 (𝜓 (𝑆𝑐𝑚𝑝𝑛 ) −𝜓 (𝛼𝑐𝑚𝑝
𝑛𝑗

)), (8)

where 𝜶𝑐𝑚𝑝𝑛 = 𝒆
𝑐𝑚𝑝
𝑛 + 1 is the corresponding Dirichlet parameter

of the complementary evidence.

3.3.4 Joint Loss. By synthesizing the above objectives, the overall
loss function for a specific instance {𝒙𝑣𝑛}𝑉𝑣=1 is formulated as:

L =

𝑉∑︁
𝑣=1

L𝑣𝑠 (𝜶 𝑣𝑛 ) + 𝛿L𝑐𝑜𝑛 (𝜶𝑐𝑜𝑛𝑛 ) + 𝛾L𝑐𝑚𝑝 (𝜶𝑐𝑚𝑝𝑛 ), (9)

where 𝛿,𝛾 > 0 are hyper-parameters.

4 EXPERIMENT
In this section, we show the empirical results of CCML in making
trusted decisions for multi-view inputs. We first apply CCML to a
synthetic toy example to investigate its performance in solving the
semantic vagueness problem, then we evaluate CCML on six real-
world multi-view datasets and compare it with existing multi-view
learning methods.

4.1 A Toy Example
The major advantage of CCML compared with pioneer uncertainty-
aware methods is the ability to perceive consistent and complemen-
tary information between different views. Therefore, we conducted
a set of comparative experiments with TMC in the Toy Dataset to in-
vestigate the effectiveness of CCML in solving semantic vagueness
questions and to explicitly achieve higher accuracy results.

We set view 1 cannot distinguish categories 𝑐2 and 𝑐3 and view
2 cannot distinguish categories 𝑐1 and 𝑐2, respectively. Specifically,
the toy dataset consists of 2 views, each with 1200 data instances
{𝒙𝑣𝑛}1200𝑛=1 belonging to 3 categories, 𝑐1, 𝑐2, and 𝑐3, with 400 data
instances in each category. The underlying latent space has 9 di-
mensions, with three for each category. The first 3 dimensions and
the last 3 dimensions are private to categories 𝑐1 and 𝑐3 respectively,
and the middle dimensions are a shared dimension for 𝑐2 and 𝑐3.
Each element of {𝒗𝑣𝑛}1200𝑛=1 is the sum of a number sampled from
a gamma-distributed Γ(1, 0.9), the noise sampled from Gaussian
distribution 𝑁 (0, 0.1), and a consistent term of 0.5. We randomly
generated 12 × 9 basis matrices 𝑾 𝑣 for the two views, with ele-
ments drawn from a uniform distribution𝑈 (0.4, 1), We randomly
set 30 percent of the elements to be zero to simulate the real-world
multi-view mapping pattern. Then we generated a noise matrix
𝒁 𝑣 , and the elements of 𝒁 𝑣 drawn from by the Gaussian distri-
butions 𝑁 (0, 0.5) and 𝑁 (0, 1), respectively. We use the equation
𝒙𝑣𝑛 =𝑾 𝑣𝒗𝑣𝑛 + 𝒛𝑣 to generate data instances.

In the Toy Dataset, we set the last 3 columns of 𝑾1 to be 0
and the first 6 columns of𝑾2 to be 0, respectively. Therefore, the
data instances in view 1 cannot distinguish between categories
𝑐2 and 𝑐3, and the data instances in view 2 cannot distinguish
between categories 𝑐1 and 𝑐2. The Toy Dataset represents a strong
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Table 1: Classification accuracy (%) and uncertainty on the
toy dataset.

Accuracy Uncertainty

TMC 94.73 ± 0.25 0.58

CCML 98.07 ± 0.28 0.23

complementarity between the two perspectives. To clarify, we use
t-SNE to visualize the multi-view data instances of the Toy Dataset,
as shown in Figure 3.

In addition, to obtain a better understanding of the advantages
of CCML over TMC in addressing semantic vagueness problems,
we have visualized the evidence produced by CCML and TMC for
instances in category 𝑐2, as illustrated in Figure 4.

Based on the experimental results, we can obtain the following
conclusions: (1) The accuracy rate of CCML on the Toy Dataset is
98.07%, which is significantly higher than the accuracy rate of TMC
on the same dataset, which is 94.73%. This indicates that CCML
demonstrates superior performance in addressing semantic vague-
ness problems. (2) Upon observation in Figure 4, it is evident that
when facing semantic vagueness problems, the evidence generated
by a single view in the TMC method is subdued due to the inherent
ambiguity of the view. Consequently, this results in insufficient
evidence. The insufficiency arises because vague views fail to dis-
tinguish between certain categories, resulting in decision conflicts
within the TMC framework, and ultimately, an inadequate evidence
supply for both categories. In contrast, CCML can effectively gen-
erate sufficient evidence from each view and effectively leverage
the information from vague views through the consistent evidence
component. As a result, CCML constructs accurate and effective
evidence supporting the 𝑐2 category.

4.2 Experiment on Real-world Datasets
4.2.1 Experimental Setup.

Datasets. HandWritten1 comprises 2000 instances of handwrit-
ten numerals ranging from ‘0’ to ‘9’, with 200 patterns per class.
It is represented using six feature sets. Scene152 includes 4485
images from 15 indoor and outdoor scene categories. We extract
three types of features HOG, LBP, and GIST. CUB [30] consists of
11788 instances associated with text descriptions of 200 different
categories of birds, we focus on the first 10 categories and extract
image features using GoogleNet and corresponding text features us-
ing doc2vec. LandUse [38] comprises 2100 images from 21 classes.
We extract HOG and SIFT features as two views. PIE3 contains 680
facial instances belonging to 68 classes. We extract intensity, LBP,
and Gabor as 3 views. Colored-MNIST4 includes 1200 instances of
numerals with RGB coloured backgrounds which consist of three
colours (red, green, blue) for each number. We extract RGB and
HOG features as two views.

1https://archive.ics.uci.edu/dataset/72/multiple+features
2https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177/1
3http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
4https://www.kaggle.com/datasets/youssifhisham/colored-mnist-dataset/
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Figure 3: Visualization of data instances in the toy dataset.

(a) TMC (b) CCML

Figure 4: The evidences of instances of 𝑐2 on the toy dataset.

Compared Methods. (1) Single-view uncertainty aware meth-
ods contain: EDL (Evidential Deep Learning) [27] and IEDL [3]
which is the SOTA method that combines Fisher’s information ma-
trix. (2) Multi-view feature fusion methods contain: DCCAE
(Deep Canonically Correlated AutoEncoders) [31] is the classical
method, which employs autoencoders to seek a common represen-
tation, DCP (Dual Contrastive Prediction) [18] is the SOTA method
that obtains a consistent representation. (3)Multi-view decision
fusion methods contain: CALM (Enhanced Encoding and Confi-
dence evaluating framework) [42] takes advantage of cross-view
consistency and diversity to improve the efficacy of the learned
latent representation, ETMC (Enhanced Trusted Multi-view Clas-
sification) [10], addresses the uncertainty estimation problem and
produces reliable classification results. RCML (Reliable Conflictive
Multiview Learning) [35] is the SOTA method that proposed a
fusion strategy for solving conflictive problems.

Implementation Details. We briefly introduce the details of the
experiment. We utilize fully connected networks with a ReLU layer
to extract view-specific evidence. The Adam optimizer [16] is used
to train the network, where L2-norm regularization is set to 1𝑒−5.
We employ 5-fold cross-validation to select the learning rate from
the options of 3𝑒−3, 1𝑒−3, 3𝑒−4, 1𝑒−4. In all datasets, 20% of the
instances are allocated as the test set. The average performance is
reported by running each test case five times.

4.2.2 Performance Comparison. We compare CCML with the other
classification methods, and the results are shown in Table 2. We can

https://archive.ics.uci.edu/dataset/72/multiple+features
https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177/1
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
https://www.kaggle.com/datasets/youssifhisham/colored-mnist-dataset/
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Table 2: Classification accuracy (%) on different datasets.

Data EDL IEDL DCCAE DCP CAML ETMC RCML CCML

Handwritten 97.00 ± 0.16 98.45 ± 0.43 97.05 ± 0.24 88.10 ± 1.09 98.10 ± 0.12 98.32 ± 0.22 98.70 ± 0.19 99.28 ± 0.08
Scene15 60.60 ± 0.13 65.40 ± 1.70 64.26 ± 0.42 72.08 ± 1.65 70.17 ± 0.13 66.87 ± 0.29 71.28 ± 0.32 74.76 ± 0.85
CUB 89.51 ± 0.24 92.67 ± 2.35 85.39 ± 1.36 93.00 ± 2.33 94.33 ± 0.73 90.81 ± 0.38 93.28 ± 2.75 94.58 ± 1.30

LandUse 47.10 ± 1.71 49.15 ± 0.28 50.42 ± 0.26 53.43 ± 3.67 58.18 ± 1.21 52.06 ± 0.71 53.55 ± 0.33 58.70 ± 1.75
PIE 87.99 ± 0.56 90.85 ± 3.31 81.96 ± 1.04 87.24 ± 2.48 93.38 ± 0.80 90.72 ± 0.21 93.89 ± 2.46 94.56 ± 1.83

Colored-MNIST 38.41 ± 0.43 44.83 ± 3.23 40.35 ± 0.67 87.15 ± .0.58 80.26 ± 0.39 83.76 ± 1.27 42.11 ± 2.01 91.54 ± 1.48
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Figure 5: The accuracy with different hyper-parameter 𝛽 .

obtain that: (1) multi-view methods generally outperform single-
view methods, which illustrates the necessity of using multiple
views in classification tasks. (2) There is a large difference in ac-
curacy among different methods on the Colored-MNIST dataset,
demonstrating significant variation in the ability of different meth-
ods to solve the semantic vagueness problem. (3) For the major-
ity of real-world datasets, CCML shows performance comparable
to state-of-the-art methods and has outstanding performance on
Colored-MNIST datasets. (4) This result indicates that CCML sig-
nificantly improves the ability to handle the semantic vagueness
phenomenon while ensuring good performance on general clas-
sification tasks. The reason would be attributed to the consistent
and complementary dynamic decoupling method, we would further
verify this in the next analysis and other experiments.

4.2.3 Analysis.

Ablation Study. To validate the effectiveness of the evidence de-
coupling strategy, separability principle, and error evidence reduc-
tion principle, we construct a detailed ablation study that performs
different combinations of these modules to achieve degradation
methods. Specifically, to verify the effectiveness of the evidence
decoupling module, we compared the approach with the three mod-
ules removed to using only that module. The effectiveness of the
other two modules was validated based on the decoupling module
respectively. We conduct the degradation methods above on the
dataset Colored-MNIST. The results are shown in Table 3. From the
result, we can observe the outstanding effectiveness of our dynamic
decoupling strategy. Therefore, to further validate the effectiveness

Table 3: The ablation study on the Colored-MNIST dataset.

Modules ACC(%)

Decoupling KL-divergence Separation Colored-MNIST

- - - 57.50 ± 2.77
✓ - - 80.37 ± 2.53
✓ ✓ - 85.50 ± 2.10
✓ - ✓ 89.79 ± 2.63
✓ ✓ ✓ 91.54 ± 1.48

of the evidence decoupling module, we propose 6 variants of the
CCML which Only use Consistent Evidence, Only Complementary
Evidence, simple Accumulation of Evidence, simple Average of
Evidence, Average of Evidence with Separation, and Accumulate
of Evidence with Separation, respectively. We conduct CCML and
variants on the CUB datasets and obtain experimental results as
shown in Table 4. Compared to other methods, CCML achieves
higher accuracy because it decouples and processes consistent and
complementary evidence separately, giving higher confidence and
increasing the separation degree for consistent evidence while av-
eraging complementary evidence. This allows CCML to adjust the
corresponding uncertainties based on the consistency between dif-
ferent views, instead of considering only one type of evidence or
applying the same separation processing strategy to both consistent
and complementary evidence. From the ablation study, we verified
the effectiveness of each module of CCML.

Parameter Analysis. The separation increasemodule can improve
the model’s performance in solving classification tasks. We verify
the influence of the separation increase module on the model by
changing the value of the hyperparameter 𝛽 . Specifically, we gradu-
ally increase the hyperparameter 𝛽 from 1 to 5 and observe CCML’s
performance on all datasets as shown in Figure 5. The results show
that the accuracy of the model increases first and then decreases
with the change of 𝛽 . In particular, the effectiveness of 𝛽 in the
semantic vagueness phenomenon is demonstrated on the dataset
Colored-MNIST by the significantly increased accuracy. We can
obtain the point that when the 𝛽 is too large, it will have a negative
impact on the model, and the appropriate 𝛽 value can improve the
performance of the model to a certain extent.

Uncertainty Estimation. To further evaluate the estimated uncer-
tainty, we used the original dataset CUB and constructed out-of-
distribution instances. We consider the original test instances as
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Table 4: Comparison of CCML and variants on the CUB dataset.

Data CUB

Consistent Evidence ✓ - ✓ ✓ ✓ ✓ ✓
Complementary Evidence - ✓ ✓ ✓ ✓ ✓ ✓

Aggregate Strategy - - Average Accumulate Average Accumulate CCML
Separation - - - - ✓ ✓ ✓

ACC(%) 90.08 ± 0.80 74.46 ± 3.24 90.07 ± 0.32 91.54 ± 0.83 92.51 ± 0.32 92.19 ± 0.64 94.58 ± 0.24
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(d) Colored-MNIST

Figure 6: Comparison of all baseline on noise datasets.

in-distribution data and add Gaussian noise 𝑁 (0, 𝑰 ) with intensity
𝜂 to the test instances in one view, constructing out-of-distribution
test instances. Specifically, given the noise vector 𝝐 sampled from
the Gaussian distribution, the out-of-distribution test instances
�̃�𝑖 = 𝒙𝑖 + 𝜂𝝐𝑖 . The uncertainty associated with out-of-distribution
data is expected to be higher compared to that of in-distribution
data. The noise intensity increases in the sequence (𝜂 = 0.1, 1, 2, 5).
We perform CCML on the data with added Gaussian noise and visu-
alize the uncertainty, as shown in Figure 7, where the blue curves
represent in-distribution instances and the red curves represent out-
of-distribution instances with noise intensity 𝜂. The results show
that as the intensity of noise increases, the overall distribution of
the uncertainty also increases, demonstrating that the data have
higher uncertainty with greater noise. This also demonstrates the
ability of our method to estimate uncertainty.

Noise Views Impact Analysis. To verify the robust classification
ability of CCML for noise views, we construct noise instances and
conduct CCML and other baseline methods. Specifically, we select
about half of the views and add Gaussian noise with distribution
𝑁 (0, 𝜎2) to the instances of these noise views, where 𝜎 is the stan-
dard deviation. The result is shown in Figure 6. From the experi-
mental results, we can observe that as the standard deviation of
Gaussian noise increases, the classification performance of all meth-
ods deteriorates. However, the deterioration in CCML’s accuracy
is noticeably smaller than that for other baseline methods in most
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Figure 7: Uncertainty comparison on noise datasets.

cases. The possible reason for this is that CCML can dynamically
adjust its evidence obtained between different views. In the case of
more noise within views, the consistency of evidence between view-
points decreases, which prevents the training process from overly
trusting the noise and thereby generating incorrect classification
results.

5 CONCLUSION
In this paper, we propose a CCML method to solve the semantic
vagueness problem in trusted multi-view learning. CCML tries to
dynamically decouple the consistent and complementary evidence
from the view-specific evidence. It further processes consistent
and complementary evidence according to different principles to
achieve classification results and reliability. The experimental re-
sults on the synthetic toy dataset and six real-world datasets verified
the effectiveness of the proposed decouple strategy and the perfor-
mance superiority of CCML.
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