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We show the proof and visualization of the separation degree in-
crease, more experiments about the semantic vagueness phenome-
non, and hyper-parameter settings in this appendix.

A PROOF
Proposition A.1. For a belief mass 𝒃 = (𝑏1, 𝑏2, . . . , 𝑏𝐶 ) which

has 𝐶 classes, and each belief mass is non-negative. After the process
of the separation degree increase operation, we obtain the result 𝒃̃ ,
then the separation degree of 𝒃̃ is always bigger than or equal to 𝒃 :

(1)
∑𝐶
𝑐=1 𝑏

𝑐𝑜𝑛
𝑐 = 0,

𝑆𝐷 (𝒃̃) = 𝑆𝐷 (𝒃) = 0.

(2)
∑𝐶
𝑐=1 𝑏

𝑐𝑜𝑛
𝑐 > 0,

𝑆𝐷 (𝒃̃) =
𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

�����∑𝐶
𝑐=1 𝑏𝑐∑𝐶
𝑐=1 𝑏𝑐

𝑏𝑖 −
∑𝐶
𝑐=1 𝑏𝑐∑𝐶
𝑐=1 𝑏𝑐

𝑏 𝑗

�����
=

∑𝐶
𝑐=1 𝑏𝑐∑𝐶
𝑐=1 𝑏𝑐

𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

|𝑏𝑖 − 𝑏 𝑗 |

≥
𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

|𝑏𝑖 − 𝑏 𝑗 | = 𝑆𝐷 (𝒃).

Proof. We will prove the above preposition in the following
two cases:

(1)
∑𝐶
𝑐=1 𝑏

𝑐𝑜𝑛
𝑐 = 0:

When all belief mass is equal to 0, we have

𝑆𝐷 (𝒃̃) = 𝑆𝐷 (𝒃) = 0.

(2)
∑𝐶
𝑐=1 𝑏

𝑐𝑜𝑛
𝑐 > 0:

Swapping 𝑏𝑖 and 𝑏 𝑗 at any two positions in 𝒃 does not change the
value of 𝑆𝐷 (𝒃), then we can assume that 𝑏1 ≤ 𝑏2 ≤ . . . ≤ 𝑏𝐶 ,
therefore the proposition can be equivalently expressed as follows:

𝑆𝐷 (𝒃̃) ≥ 𝑆𝐷 (𝒃)

⇔
∑𝐶
𝑐=1 𝑏𝑐∑𝐶
𝑐=1 𝑏𝑐

𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

|𝑏𝑖 − 𝑏 𝑗 | ≥
𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

|𝑏𝑖 − 𝑏 𝑗 |

⇔
∑𝐶
𝑖=1

∑𝐶
𝑖≠𝑗 |𝑏𝑖 − 𝑏 𝑗 |∑𝐶
𝑐=1 𝑏𝑐

≥
∑𝐶
𝑖=1

∑𝐶
𝑖≠𝑗 |𝑏𝑖 − 𝑏 𝑗 |∑𝐶
𝑐=1 𝑏𝑐

.

We then convert this to the following formula and eliminate the
absolute value symbol:∑

1≤𝑖≤ 𝑗≤𝐶 (𝑏 𝑗 − 𝑏𝑖 )∑𝐶
𝑖=1 𝑏𝑖

≥
∑
1≤𝑖≤ 𝑗≤𝐶 (𝑏 𝑗 − 𝑏𝑖 )∑𝐶

𝑖=1 𝑏𝑖
,

we also eliminate 𝑗 for each term and keep only 𝑖:

∑𝐶
𝑖=1 (2𝑖 −𝐶 − 1)𝑏𝑖∑𝐶

𝑖=1 𝑏𝑖
≥

∑𝐶
𝑖=1 (2𝑖 −𝐶 − 1)𝑏𝑖∑𝐶

𝑖=1 𝑏𝑖

⇔− (𝐶 − 1)
∑𝐶
𝑖=1 2𝑖𝑏𝑖∑𝐶
𝑖=1 𝑏𝑖

≥ −(𝐶 − 1)
∑𝐶
𝑖=1 2𝑖𝑏𝑖∑𝐶
𝑖=1 𝑏𝑖

⇔
∑𝐶
𝑖=1 2𝑖𝑏𝑖∑𝐶
𝑖=1 𝑏𝑖

≥
∑𝐶
𝑖=1 2𝑖𝑏𝑖∑𝐶
𝑖=1 𝑏𝑖

.

As
∑𝐶
𝑖=1 𝒃

𝑐𝑜𝑛
𝑖 > 0 and

∑𝐶
𝑖=1 𝒃

𝑐𝑜𝑛
𝑖 > 0 accordingly, we can move

the denominators on both sides of the formula to the other side
separately:

𝐶∑︁
𝑖=1

2𝑖𝑏𝑖
𝐶∑︁
𝑗=1

𝑏 𝑗 ≥
𝐶∑︁
𝑖=1

2𝑖𝑏𝑖
𝐶∑︁
𝑗=1

𝑏 𝑗

⇔
𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

2𝑖𝑏𝑖𝑏 𝑗 ≥
𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

2𝑖𝑏𝑖𝑏 𝑗

⇔
𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑖𝑏𝑖𝑏 𝑗 ≥
𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑖𝑏𝑖𝑏 𝑗 .

For the above formula, we can swap the sign 𝑖 and 𝑗 . Then we
obtain the following formula:

𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑖𝑏𝑖𝑏 𝑗 ≥
𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑗𝑏𝑖𝑏 𝑗

⇔
𝐶∑︁
𝑖=1

𝐶∑︁
𝑗=1

(𝑖 − 𝑗)𝑏𝑖𝑏 𝑗 ≥ 0.

For this formula, with the different relation of 𝑖 and 𝑗 , we can divide
the left side into the sum of the two formulas:

𝐶∑︁
1≤𝑖< 𝑗≤𝐶

(𝑖 − 𝑗)𝑏𝑖𝑏 𝑗 +
𝐶∑︁

1≤ 𝑗<𝑖≤𝐶
(𝑖 − 𝑗)𝑏𝑖𝑏 𝑗 ≥ 0

⇔
𝐶∑︁

1≤𝑖< 𝑗≤𝐶
(𝑖 − 𝑗)𝑏𝑖𝑏 𝑗 +

𝐶∑︁
1≤𝑖< 𝑗≤𝐶

( 𝑗 − 𝑖)𝑏 𝑗𝑏𝑖 ≥ 0

⇔
𝐶∑︁

1≤𝑖< 𝑗≤𝐶
(𝑖 − 𝑗) (𝑏𝑖𝑏 𝑗 − 𝑏𝑖𝑏 𝑗 ) ≥ 0,

and the 𝑏𝑖 = 𝑝𝑜𝑤 (𝑏𝑖 , 𝛽), where 𝛽 > 1. Then when 1 ≤ 𝑖 < 𝑗 ≤
𝐶,𝑏𝑖 ≤ 𝑏 𝑗 , we can obtain the following result:

𝑏𝑖𝑏 𝑗 − 𝑏𝑖𝑏 𝑗 =(𝑏𝑖 )𝛽𝑏 𝑗 − 𝑏𝑖 (𝑏 𝑗 )𝛽

=((𝑏𝑖 )𝛽−1 − (𝑏 𝑗 )𝛽−1)𝑏𝑖𝑏 𝑗 ≤ 0
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Figure 1: The visualization of separation degree before and
after the separation degree increases operation.

Figure 2: Category examples of Colored-MNIST dataset

and we can obtain that
𝐶∑︁

1≤𝑖< 𝑗≤𝐶
(𝑖 − 𝑗) (𝑏𝑖𝑏 𝑗 − 𝑏𝑖𝑏 𝑗 ) ≥ 0,

this formula is equivalent to the proposition

𝑆𝐷 (𝒃̃) ≥ 𝑆𝐷 (𝒃).

□

B SEPARATION DEGREE VISUALIZATION
To further understand the separation degree increase stage, we
visualize the separation degree on the belief mass 𝒃 = (0.2, 0.4, 0.3)
which has three categories, and the parameter 𝛽 is set to 3. As
shown in figure 1, The left and right parts show the separation
degree before and after the separation degree increase operation,
respectively. The separation degree is increased from 0.80 to 2.04.

C SUPPLEMENTARY EXPERIMENTAL
CONTENT

C.1 Introduction of Colored-MNIST Dataset
Colored-MNIST is a dataset of handwritten digits with RGB col-
ored Backgrounds consisting of 3 colors (red, green, blue) for each
number (‘0’ to ‘9’) with a total of 30 categories. We extract two
types of features RGB and HOG which can distinguish the shape
of digits and the color of the background, respectively. Therefore,
this dataset is a typical semantic vagueness problem. The figure 2
shows the sample of the Colored-MNIST dataset.

C.2 Visualization of Evidence on Semantic
Vagueness Phenomenon

To obtain a more intuitive understanding of how CCML tackles
the semantic vagueness problem, we visualized the evidence of
CCML on the training process of the Colored-MNIST dataset. This
dataset consists of 30 categories, with categories 1 to 10 represent-
ing blue digits ‘0’ to ‘9’, categories 11 to 20 representing green
digits ‘0’ to ‘9’, and categories 21 to 30 representing red digits ‘0’
to ‘9’. Here, we visualize samples of category 1 (digit ‘0’ with blue
background). As shown in figure 3, we can see that view 1 can dis-
tinguish between different background colors, resulting in stronger
evidence for categories 1 to 10 as it recognizes the blue background.
On the other hand, view 2 can only differentiate shapes of digits
based on grayscale, leading to higher evidence for specific cate-
gories (categories 1, 11, 21) compared to others in view 2. Finally,
accurate classification results are obtained through the fusion of
evidence by CCML, demonstrating CCML’s ability to effectively
utilize complementary information across views and tackle the
semantic vagueness phenomenon.

C.3 Different Method for Increase Separation
Degree

To further explain the advantage of the method for increasing
separation degree, we compared the results of the two methods
on all datasets. Specifically, for the first method, we convert the
separation degree to a negative value and add 1 to ensure that
adding it to the overall loss function increases the separation degree:

L𝑆𝐷 =

𝐶∑︁
𝑖=1

𝐶∑︁
𝑖≠𝑗

(1 − |𝑏𝑖 − 𝑏 𝑗 |) . (1)

We have conducted these two methods on all datasets and ob-
tained the result, As shown in the table 1. We observe higher ac-
curacy on all datasets by using our method instead of adding the
negative separation degree to the loss function and variation by
only reserving separation degree increase in the training process.
The possible reason is that the first method can not improve the
separation degree of the test set at the evidence level. When the
trained model is used to obtain the evidence of the test sample,
the separation degree of the consistent evidence of test samples
cannot be improved, and the accuracy of the final result is affected.
Our method can ensure that while improving the separation degree
of consistent evidence of test samples, the total amount of overall
evidence remains unchanged, and the final uncertainty remains
unchanged to avoid the impact on the reliability of results.

C.4 Hyper-parameters Detail
We observe that different datasets have different sensitivities to the
hyper-parameters, appropriate parameter values can improve the
overall performance of the model. Therefore, we set different hyper-
parameters for each dataset based on the experiments. The table
2 shows the details of the hyper-parameters on different datasets,
and the hyperparameter 𝛿 is set to 1.
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Figure 3: The visualization of evidence on the instance of category 1 on the Colored-CNIST dataset.

Table 1: Different Methods for increasing separations degree

Method Handwritten Scene15 CUB LandUse PIE Colored-MNIST

Add to Loss Function 98.55 ± 0.33 72.81 ± 1.81 91.24 ± 2.21 56.71 ± 1.74 91.03 ± 1.94 87.00 ± 2.06
Ours 99.28 ± 0.08 74.76 ± 0.85 94.58 ± 1.30 58.70 ± 1.75 94.56 ± 1.83 91.54 ± 1.48

Table 2: Hyperparameters of CCML

Hyperparameter Handwritten Scene15 CUB LandUse PIE Colored-MNIST

𝜂 1 0.5 0.3 0.5 1 1
𝛾 0.1 0.1 0.1 1 0.1 0.1
𝛽 1.5 1.5 1.5 1.5 1 3
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