
Under review as a conference paper at ICLR 2024

A ARCHITECTURE DETAILS

In our experiments, all the language models, regardless of encoding, adopt the main features of
GPT-2 (Radford et al., 2019). That is, we use absolute position encoding and the transformer blocks
have layer norms prior to the attention module and the MLP (i.e., after each residual connection).
We also set the width of the MLP hidden layer equal to 4 times the width of the embedding. We
deviate from GPT-2 in that we initialize all the weights of the transformer blocks with a normal
distribution with standard deviation given by (2× fan-in×num-layers)−1/2. The dependence of the
standard deviation on the number of transformer blocks is to counteract the effect of having a series
of residual connections. We also do not use any biases in the trunk of the transformer. As is standard,
after the transformer blocks, we have a token-head, comprised of a single linear layer, which maps
the latent embedding of each token into a distribution over the vocabulary. As in GPT-2, we tie this
weight to that of the embedding matrix which maps the tokens of the input to the embedding space.

For the LLMs using XVAL encoding and an MSE number-head in addition to the token head, we
promote both heads (number and token) to be MLPs with one hidden layer of width equal to the
embedding dimension. This was to allow the two different prediction types (the number and the
distribution over the vocabulary) to be processed separately before the final prediction. In particular,
we explore the possibility of having biases for the number-head and not in the token-head in Sec. B.4.

For all of our training runs, we use a cosine learning-rate schedule with warm-up. The scheduler is
adjusted such that it reaches the minimum learning rate at the end of the training run.

B FURTHER EXPERIMENTAL DETAILS

In our experiments, the hyperparameters for Learning Rate via a grid search coarse grid search in
log space with spacing given by a factor of 2. We chose the best performance on a validation set
and reported the results on an unseen test set. We have added this description to the supplementary
materials section. The result of the search can be seen in tables below.

B.1 TEMPERATURE FORECASTING

B.1.1 EXPERIMENT DETAILS

Dataset details. The ERA5 dataset (Hersbach et al., 2020) is a high-resolution, state-of-the-art
global atmospheric reanalysis product provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). It is the fifth generation of ECMWF atmospheric reanalyses and represents the
latest advancement in the ERA (ECMWF Re-Analysis) project. The dataset covers the period from
1979 to near-real-time and is updated regularly.

In our experiment, we take only the surface temperature of the dataset (field T2m) sampled at 8
hour intervals. For each sample, we randomly choose 60–90 of the ∼1-million spatial grid points
of the dataset, and include 8–16 temperature time points at 8-hour intervals (corresponding to 2–4
days), starting from a random time. We generate 1.25 million examples in this way and split it into
1 million train, 125 thousand validation and test set samples.

{‘description’:{‘coords’:[[1,-.32,.95] ... [.96,.61,.79]],
‘start’:[0,1,-.026,-1]}, ‘data’:[[-2.6,-2.6 ... -3.2,-3.1,-3]]}

The samples are individually preprocessed such that the temperature range across all samples has
mean zero and standard deviation equal to 1. We also include the lattitude longitude information.
To respect the periodicity of this information, we provide the sine of the lattitude and the sine and
cosine of the longitude. Furthermore, we specify the starting time for each sample as the day of year
and time of day. Again to respect the periodicity of these quantities, we provide the sine and cosine
of the phase of these quantities.

Architecture design hyperparameters. For all experiments done with this dataset, we use trans-
formers with 6 transformer blocks, each with 6 heads and each head having width 128, resulting in
a embedding width of 768 (43.5M parameters).

13



Under review as a conference paper at ICLR 2024

Training hyperparameters. For the equal samples training runs, we train each model for 500k
iterations with batch size equal to 64 samples. For the equal tokens runs, we increase the number
of iterations proportionately such that the total number of tokens seen is equal. This implies: 500k
samples for P10, 820k for P1000, 1.2M for B1999, and 2.3M for FP15 and XVAL. Since there
is non-numeric data in the samples, the ratio of the length of the equal tokens is slightly different
from the ratio of the length of each encoding scheme’s tokenization length for numbers. The other
hyperparameters in this task are given in Table 6.

Table 6: Training hyperparameters for the different encodings on the Temperature Forecast dataset.

Encoding Learning Rate Minimum LR Warmup Max Context Length

P10 2.5× 10−5 2.5× 10−6 2000 8222
B1999 10−4 10−5 2000 1251
P1000 10−4 10−5 2000 5010
FP15 10−4 10−5 2000 1798
XVAL 2× 10−4 2× 10−5 2000 1798

B.1.2 NON-TRANSFORMER BASELINES

To understand this task better, we trained a number of non-transformer baselines for comparison.
These models are reported just for comparison and by no means represent the best possible non-
transformer based baslines.

First, we looked at the performance of an MLP model when trained in a supervised way to predict
the next time step (All stations). To deal with the varying number of locations and varying number
of time-steps, we simply keep the number of locations/time-steps that is the minimum across all
samples (60 locations and 8 time-steps.) We then looked at the possibility of temperature forecast
based on a single reporting station (Single Station). And then on this single-station dataset, we
looked at the performance on the temperature data alone (Single Station - temp all), temperature
data + station coordinate (Single Station - temp + coord), and temperature data + first time step time
of year (Single Station - temp + ToY).

The MLPs acting on single stations have 3 hidden layers of width 256. The MLP looking at 60
stations simultaneously is larger to validate that the poorer performance is not because of limited
network size. We tried width from 256–8192 and up to 5 layers and the results remain similar.

Table 7: Temperature forecast MLP baselines

Method MSE Loss (C)

All Stations 2.31
Single Station 1.57
Single Station - Temp only 1.79
Single Station - Temp + Coord 1.65
Single Station - Temp + ToY 1.74

The results of these tests can be seen in Table 7. We see that for good performance, it is important for
the model to have access to both the time of year as well as the coordinate of the reporting station.
However, providing the information for multiple reporting stations at once makes the performance
worse.

This implies that for the transformer model to be able to predict the temperature with MSE less than
1.7, it needs to properly parse all this information that is scattered across the different parts of the
input string. XVAL was the only model to achieve MSE below that of the MLP model (Table 4)
meaning that it has likely learned to leverage the temperature of other reporting stations as well.

14



Under review as a conference paper at ICLR 2024

B.1.3 COMPARISON OF FINE-TUNING BEHAVIOR

In this section, we explore the fine-tuning behavior of the different encoding schemes in a simplified
setting.2 In this problem, we fine-tune a downstream model to predict whether or not the location
of the first reporting station in the sample is located on the ocean. As this is a binary classification
task, we train logistic regression on the final embedding of the transformer (the output of the last
transformer block). We use 500 training samples for this task. While this problem is in principle
solvable by looking at the latitude and longitude of the reporting station which is included in the
data, 500 samples is not enough to learn this map. Therefore, the model needs to leverage other
information in the temperature patterns to make this prediction. Table. 8 reports the performance of
these models. We report the ROC AUC as a more balanced metric, since the distribution of land vs
ocean on earth is not symmetric.

Table 8: Performance of the different number encoding schemes when fine-tuned on the binary task
of predicting whether the first reporting station is on the ocean or on land.

Method ROC AUC

P10 0.580
FP15 0.600
xVal 0.62

B.2 PLANETARY MOTION

Dataset details. In this dataset we use the REBOUND N-body simulation codebase (Rein, H. &
Liu, S.-F., 2012) and IAS15 integrator (Rein & Spiegel, 2015) to generate a number of planetary
systems (with a central mass m⊙ ≡ 1) and follow their orbits for a number of time points. Each
planetary property is drawn from a uniform prior: the number of planets n ∈ [2, 4], mass m/m⊙ ∈
[10−5, 5 · 10−5], semimajor axis equally spaced for the planets between 1 and af ∈ [1.5, 3] (i.e. if
3 planets and af = 1.8 then a1 = 1, a2 = 1.4 and a3 = 1.8), eccentricity e ∈ [0, 0.1], and starting
angle in the (x, y) plane equal to zero for 30% of the samples and uniform θ ∈ [−π/6, π/6] for the
remainder. These choices are made such that when generating the large number of samples required
for training, we do not come across instabilities or collisions. Finally, we use an integration step-size
sampled uniformly from {0.2, 0.3, 0.5, 0.8}.

We generate 1.25 million examples in this way and split it into 1 million train, 125 thousand val-
idation and test set samples. We normalize the masses such that they take value between 1 and 5
and the eccentricities such that they are between 0 and 2. We then construct a JSON format sample
including all of this information. A generic sample is given in this example.

{‘description’:{‘planet0’:{‘m’:2.38, ‘a’:2.96, ‘e’:1.73},
‘planet1’:{‘m’:1.35, ‘a’:2.96, ‘e’:1.73}, ... , ‘stepsize’:0.2},
‘data’:[[[2.60,-0.75],[0.81, 0.42]],[[2.63,-0.63],[0.70,0.60]]...]}

Architecture design hyperparameters. Similar to the Temperature Forecasting dataset, for all
experiments, we use transformers with 6 transformer blocks, each with 6 heads and each head having
width 128, resulting in a embedding width of 768 (43.5M parameters).

Training hyperparameters. We train each model for 500k iterations with batch size equal to 64
samples. The hyperparameters in this task are given in Table 9.

B.3 ERRATIC BEHAVIOR OF NUMBER ENCODINGS OF UNFIXED LENGTH

In many JSON formatted datasets, the data does not follow a causal pattern, i.e. earlier entries might
depend logically on latter entries. This is also the case for our JSON formatted samples. Because
of this we used Masked Language Modeling (MLM) for pretraining our models. In the context of

2We are grateful to reviewer qrLU for suggesting to look beyond evaluation on data present directly in
training samples.

15



Under review as a conference paper at ICLR 2024

Table 9: Training hyperparameters for the different encodings on the Planetary Motion dataset.

Encoding Learning Rate Minimum LR Warmup Max Context Length

P10 10−4 10−5 2000 2707
B1999 10−4 10−5 2000 1251
P1000 10−4 10−5 2000 1736
FP15 10−4 10−5 2000 767
XVAL 2.5× 10−5 2.5× 10−6 2000 767

MLM, number encodings that lead to encoding lengths that vary based on the number can prove
troublesome both during training and during testing. During train time, the length of the encoding
acts as a cue to help the model figure what the number is. This is an example of spurious correlations
that LLMs are known to exploit (Tu et al., 2020; Liu et al., 2022; Dziri et al., 2023). Similarly at test
time, the length of the mask can bias the model toward predicting one number or another.

As a demonstration of this feature, we first preprocessed the Temperature Forecast dataset such that
every number has only two significant figures and drop leading zeros for efficiency (e.g. 0.12 →
.12).3 We then used a tokenizer that included single and double digits as well as ±, the decimal
point and exponents ranging from (E-8 to E+2). In this dataset, Positive and negative floats with
magnitude between 0.1 and 1 (e.g. .23 and -.34) would have encoding lengths equal to 2 and 3 and
Positive and negative floats with magnitude between 0.01 and 0.1 (e.g. -.034 = 3.4E-2) would have
encoding lengths 4 and 5. There are exceptions however. For example in this scheme 0.030=3E-2
has encoding length 2.

The results of this experiment can be seen in Fig. 8. We see that even though the model’s overall
performance is not great, it can tell with very high accuracy the numbers sign, whether or not it has
absolute value greater/less than 1, or greater/less than 0.1. This is due to the fact that the model
is exploiting the correlation of the numbers with the length of the encoding. We verify this by
highlighting in orange the cases where in the range between 0.01 and 0.1, the number has encoding
length 2, that is it does not follow the general trend mentioned above. We see that the model believes
that these numbers are greater than 0.1 (which as we saw generally had encoding length 2).

Figure 8: LLMs can exploit spurious correlations in the data. In this case, the model has learned the
correlation between the number signs/values with the length of the encoding. Highlighted in orange
are numbers between 0 and 0.1 that do not have the encoding length equal to 2..

B.4 ARCHITECTURAL EXPLORATIONS

There are a number of engineering choices that we made regarding the architecture and hyperpa-
rameters of the transformer models trained with XVAL and the number head. Here, we explore the
effect of these on the Temperature Forecast task. Because of the large exploration space and the high

3In the experiments of the Sec. 3, the numbers have three significant figures. Therefore the results of this
section are not directly comparable to those of the main text.

16



Under review as a conference paper at ICLR 2024

amount of compute required, we do the ablation tests on a shorter run, 100k iterations compared to
500k iterations of the main text. For this exploration, we first run all of the configurations with 4
different learning rates (2.5E-5, 5E-5, 1E-4, 2E-4). We then choose the best performing learning
rate for each configuration and then run each configuration two more times with this learning rate.
The result of this exploration is given in Table 10.

Table 10: Ablation tests for the various design choices. Here Normal refers to min-LR/lr=0.1,
Weight decay = 0.1 and MLM probability = 0.2, and the opposite dichotomy for the other choices.

Configuration Best Validation Loss Learning Rate

Normal (6.8± 0.2)× 10−3 0.0002
min-LR/LR = 0.01 (7.0± 0.1)× 10−3 0.0002
First Layer Norm = False (6.8± 0.5)× 10−3 0.0002
MLP Layer Norm = False (9.0± 0.1)× 10−3 0.0001
MLM probability = 0.1 (8.2± 0.6)× 10−3 0.0002
MLM probability = 0.3 (6.4± 0.4)× 10−3 0.0002
Weight decay = 0.0001 (8.2± 0.6)× 10−3 0.0002
Weight decay = 1 (5.3± 0.3)× 10−3 0.0002
Trunk bias = True (6.2± 0.4)× 10−3 0.0002
Num-head bias = False (6.9± 0.1)× 10−3 0.0002

We summarize the various configurations that we run this experiments in and their effects as follows:

• Ratio of the final learning rate of the cosine scheduler to the initial learning rate
(min-LR/LR). We found decreasing this ratio from 0.1 to 0.01 does not affect performance
in this experiment. But we found that it does increase stability in longer runs.

• Turning off the layer norm prior to the MLP of the first transformer block (First Layer
Norm = False). This change does not affect average performance. This is not surprising
since the effect of the layer norm at this stage is simply to normalize the numbers and the
numbers in this dataset are in the regime where the normalization discussed in Sec. 2.1 is
linear.

• Turning off the layer norm prior to the MLPs of all transformer blocks
(MLP Layer Norm = False) This change had a significant negative impact on the perfor-
mance of the model.

• Changing the masking probability to 10% or 30% (default is 20%). Decreasing (resp.
increasing) this probability lead to performance deterioration (resp. improvement) in this
experiment. However, this seems to be dependent on the dataset as in other instances 30%
seems to be too high for effective learning.

• Changing the weight decay to 0.0001 or 1 (default is 0.1). Increasing this value lead to the
largest improvement. However, similar to the masking probability, this seems to be dataset
dependent. The effect of increased weight decay can also depend on the length of the run.

• Including a bias in the modules of the transformer block (they are absent by default). In-
cluding this bias improved performance at the cost of increased variability.

• Turning off the bias in the number head (present by default). This change did not affect the
performance significantly.

B.5 LEARNED EMBEDDINGS FOR TEXT-BASED NUMBER ENCODINGS

Figure 9 shows the structure of number embeddings learned on different datasets for different en-
codings. For P10 the models learn rotary structure which is reminiscent of other works such as
grokking (Power et al., 2022), and allows recovering relative numbers from inner products. It is
also interesting to see how different datasets can lead to different learned encoding structures, for in-
stance the arithmetic tasks seem to induce a more precise curve structure, while the planet data leads
to more spread out embeddings, perhaps because the task is less sensitive to small perturbations of
the numbers.

17



Under review as a conference paper at ICLR 2024

0
123

4

5

6
7 8

9

Figure 9: Two-dimensional PCA projection of the learned embeddings for mantissa tokens.
(left) P10 encoding trained on the planet dataset; (center) P1000 encoding trained on the planet
dataset; (right) P1000 encoding trained on the arithmetic dataset. Brighter colors denote higher
number values.

B.6 A NUMBER LOOK-UP EXPERIMENT

In order to explore potential deleterious effects of using XVAL which encode the values of the
numbers multiplicatively we set up a simple number lookup experiment.4 In this problem, we train
the model on textual samples that demonstrate a dictionary lookup task:

"{d:1.53, e:-1.33, a:2.53, i:0.0232} e=-1.33"

In this experiment, we sample the number between -3 and 3 but we withhold a small region be-
tween 0.3 and 0.5 such that they do not appear in the dataset. As with our other experiments, we
train a transformer model using self-supervised learning, in this case mask-filling with a masking
probability of 30%.

In this experiment, we evaluate two metrics. The first is the Mean Square Error between the looked
up number and the actual number. The second is the accuracy of reconstructing the number exactly
as it appeared in the dictionary. Because our comparison textual number encodings have only 3
significant figures, we evaluate the accuracy of this lookup up to 3 significant figures and also pro-
vide the 2 significant figure accuracy for comparison. The results of the in-distribution and out of
distribution evaluations are given in Tabs. 11 and 12. XVAL performs well on MSE but is unable
to reconstruct the number exactly. The text encodings do better on accuracy but because of out-
liers, their performance on the MSE suffers. Furthermore, the text based encodings’ performance
drastically degrades on the held-out set whereas XVAL’s does not degrade to the same extent.

Note. Because of the residual connections of the transformer, the information regarding the number
value is principle present at readout time. Because of this, the network can in principle recover the
value in context.

Table 11: Performance of the different encodings on the number lookup experiment. FP15 provides
the best accuracy and XVAL provides the best MSE.

Accuracy

Method MSE 3 Sig Figs 2 Sig Figs

P10 (2.1± 0.4)× 10−2 91%± 3% 94%± 2%
FP15 (7± 0.7)× 10−3 99.9%± 0.1 99.9%± 0.1%
XVAL (3± 0.5)× 10−3 6%± 1% 55%± 5%

4We are grateful to reviewer iRZg for suggesting looking into cases where a language model needs to
reference a previously mentioned number in context.

18



Under review as a conference paper at ICLR 2024

Table 12: Out of distribution performance of the different encodings on the number lookup experi-
ment. Neither textual encoding schemes generalize to unseen values.

Accuracy

Method MSE 3 Sig Figs 2 Sig Figs

P10 (3.8± 0.3)× 10−1 65.7%± 2% 66.5%± 1%
FP15 (0.9± 0.4)× 10−1 34.5%± 0.5 34.5%± 0.5%
XVAL (3.5± 0.5)× 10−3 1.5%± 1% 12%± 2%

19


	Introduction
	Methods
	xVal: A Continuous Number Encoding
	Numerical value inference

	Experiments
	Learning Arithmetic
	Temperature forecasting
	Predicting planetary orbits
	Results summary

	Discussion
	Architecture details
	Further experimental details
	Temperature forecasting
	Experiment details
	Non-transformer baselines
	Comparison of fine-tuning behavior

	Planetary motion
	Erratic behavior of number encodings of unfixed length
	Architectural explorations
	Learned embeddings for text-based number encodings
	A number look-up experiment


