
Supplementary Materials

A Theoretical proofs

A.1 Proof of Theorem 1

Theorem 1. Let Z ∈ RD and T ∈ Rd be two random variables that have moments. Z and T are
statistically independent if and only if SI(Z;T) = 0, where SI(Z;T) is defined as follows1

SI(Z;T) = sup
h,g,θ,ϕ

ρ(h(θ⊤Z), g(ϕ⊤T)),

where ρ is the Pearson correlation, h, g : R→ R are Borel-measurable non-constant functions, and
θ ∈ SD−1, ϕ ∈ Sd−1 are vectors on the surfaces of D-dimensional and d-dimensional hyperspheres.

Proof. We first prove the direction Z ⊥ T ⇒ SI(Z;T) = 0, which is equivalent to prove
I(Z;T) = 0 ⇒ SI(Z;T) = 0. By the data processing inequality, we know that I(Z;T) =
0 ⇒ I(h(θ⊤Z), g(ϕ⊤T)) = 0,∀h, g, θ, ϕ. This immediately yields ρ(h(θ⊤Z), g(ϕ⊤T)) = 0.

We now consider the direction SI(Z;T) = 0 ⇒ Z ⊥ T . Since suph,g,θ,ϕ ρ(h(θ
⊤Z), g(ϕ⊤T)) = 0

for θ ∈ SD−1, ϕ ∈ Sd−1, we know that ∀h, g, θ ∈ SD−1, ϕ ∈ Sd−1, ρ(h(θ⊤Z), g(ϕ⊤T)) = 0. Now
consider the moment generating functions. Z ⊥ T if and only if ∀t1 ∈ RD, t2 ∈ Rd

E[et
⊤V] = E[et

⊤
1 Z]E[et

⊤
2 T],

V1:D = Z, VD+1:D+d = T, t1:D = t1, tD+1:D+d = t2

Assuming that now E[et⊤V] ̸= E[et⊤1 Z]E[et⊤2 T] for some t1, t2, so that E[et⊤V]−E[et⊤1 Z]E[et⊤2 T] =
λ ̸= 0. Then by setting h, g, θ, ϕ as follows

h(θ⊤Z) = λeZ
⊤θ·∥t1∥, θ =

t1
∥t1∥

, g(ϕ⊤T) = eT
⊤ϕ·∥t2∥, ϕ =

t2
∥t2∥

we will have
E[h(θ⊤Z)g(ϕ⊤T)]− E[h(θ⊤Z)]E[g(ϕ⊤T)] = λ2 > 0

This suggests that ρ(h(θ⊤Z), g(ϕ⊤T)) > 0 for the chosen h, g, θ, ϕ (since h, g are not con-
stant functions). However, this result contradicts with the condition ∀h, g, θ ∈ SD−1, ϕ ∈ Sd−1,
ρ(h(θ⊤Z), g(ϕ⊤T)) = 0. Therefore we must have E[et⊤V] = E[et⊤1 Z]E[et⊤2 T] ∀t1 ∈ RD, t2 ∈
R

d, meaning that Z ⊥ T .

A.2 Proof of Theorem 2

Theorem 2. Provided that each hi, gj in (5) are K-order polynomials, given the sampled slices, we
have ŜI(Z;T) ≤ ϵ ⇒ supi,j suphi,gj ρ(hi(θ

⊤
i Z), gj(ϕ

⊤
j T)) ≤ ϵ.

Proof. We prove the contrapositive, i.e. rather than show LHS =⇒ RHS, we show that
¬RHS =⇒ ¬LHS.

Since each hi, gj are K-order polynomials, we can rewrite suphi,gj ρ(hi(θ
⊤
i Z), gj(ϕ

⊤
j T)) as

sup
wi,vj

ρ(w⊤
i Z

′
i, v

⊤
j T

′
j)

1According to our definition SI is always non-negative. This is because for any h, g that satisfy ρ(h, g) ≤ 0,
we can always flip the sign of ρ(h, g) by replacing h by −h or g by −g, so that the value of ρ(h, g) is higher.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

whereas the expression of ŜI(Z;T) is

sup
w,v

ρ(w⊤Z ′, v⊤T ′)

where Z ′ and T ′ are fixed values (w.r.t w and v) defined as follows:
Z ′
i = [σ(θ⊤i Z)k]Kk=1, T ′

j = [σ(ϕ⊤
j T)

k]Kk=1,

with σ(·) defined as in the main text l.103. Now assume that supwi,vj ρ(w
⊤
i Z

′
i, v

⊤
j T

′
j) > ϵ for

some i, j. Then by setting those elements in w, v unrelated to Z ′
i, T

′
j to zero, and those related to

Z ′
i, T

′
j exactly the same as wi, vj , we know that supw,v ρ(w

⊤Z ′, v⊤T ′) > ϵ. This contradicts with
supi,j suphi,gj ρ(hi(Z

′
i, gj(T

′
j)) ≤ ϵ .

A.3 Proof of the claim about the accuracy of polynomial approximation

Proposition 3. Consider approximating the supreme functions hi, gj : R → R in ρ∗ij =

ρ(hi(θ
⊤
i Z), gj(ϕ

⊤
j T) by K-order polynomials, i.e.

hi(a) ≈ ĥi(a) =

K∑
k=0

wikσ(a)
k, gj(a) ≈ ĝj(a) =

K∑
k=0

vjkσ(a)
k.

And assuming that hi, gj and ĥi, ĝj are the maximisers of ρ(hi(θ
⊤
i Z), gj(ϕ

⊤
j T)) and

ρ(ĥi(θ
⊤
i Z), ĝj(ϕ

⊤
j T)) respectively. Without loss of generality we assume E[hi] = E[ĥi] = E[gj] =

E[ĝj] = 0 and V[hi] = V[ĥi] = V[gj] = V[ĝj] = 1.

If ∀i, j, a, |ĥi(a)− hi(a)| ≤ ϵ and |ĝj(a)− gj(a)| ≤ ϵ , then we will have |ρ∗ij − ρ̂∗ij | = o(ϵ) where
ρ̂∗ij is the K-order polynomial approximation to ρ∗ij .

Proof. For simplicity we below drop the subscripts i, j. Notice that

|ρ(h, g)− ρ(ĥ, ĝ)| = |E[hg]− E[ĥĝ]| = |E[hg − ĥĝ]| ≤ E[|hg − ĥĝ|]
where the second equality comes from LOTUS. Now assume that f = f̂ + ϵ1, g = ĝ + ϵ2. Then

|hg − ĥĝ| = | − ϵ2f − ϵ1g + ϵ1ϵ2| ≤ |ϵ2||f |+ |ϵ1||g|+ |ϵ1ϵ2| ≤ ϵ|f |+ ϵ|g|+ ϵ2

which yields
E[|hg − ĥĝ|] ≤ ϵE[|f |] + ϵE[|g|] + ϵ2 ≤ 4ϵ+ ϵ2

The last step is due to E[|f |] ≤ 2, which holds whenever E[f] = 0 and E[f2] = 1, as shown below:

E[|f |] =
∫ ∞

−∞
p(f)|f |df =

∫ −1

−∞
p(f)|f |df +

∫ 1

−1

p(f)|f |df +

∫ ∞

1

p(f)|f |df ≤ E[f2] + 1 = 2

Therefore E[|hg − ĥĝ|] = o(ϵ) as ϵ → 0. This yields |ρ(h, g)− ρ(ĥ, ĝ)| = o(ϵ) as ϵ → 0.

A.4 Proof of the claim that a neural attribute predictor maximises a lower bound of MI

Proposition 4. Let T ∈ N be a discrete random variable. Training a predictor T̂ = h(Z) by
optimising the logistic regression loss: J(h) = Ep(Z,T)

[
log ehT (Z)∑

k ̸=T ehk(Z)

]
w.r.t h is equivalent to

maximise a lower bound of I(Z;T) up to a constant C, i.e.
J(h) ≤ I(Z;T)− C,∀h

Proof. Let qh(T |Z) = ehT (Z)∑
k ̸=T ehk(Z) . The loss above can then be rewritten as

J(h) = Ep(Z,T)

[
log qh(T |Z)

]
=

∫
p(Z)p(T |Z) log qh(T |Z)dTdZ

On the other hand, we have

I(Z;T) =

∫
p(Z, T) log

p(T |Z)

p(T)
dZdT =

∫
p(Z)

∫
p(T |Z) log p(T |Z)dZdT + C

where C is a constant unrelated to h. Subtracting the two formulas above, ignoring the constant C,
we see that I(Z;T)− J(h) =

∫
p(Z)KL[p(T |Z)∥qh(T |Z)]dZ ≥ 0.

2

(a) a (b) a2 (c) sin(a) (d) tanh(a)

Figure 1: The true Rényi correlation and its neural network estimate. x-axis is the noise level α
(which controls the dependence between X and Y) and the y-axis is the true/estimated values of
ρ∗(X,Y). Neural is the case when the neural network has been trained to converge and Neural’ is
the case when the network is trained using the same time as our method (i.e. it is not yet converged).

B Experiment details

We suggest readers to check the newest code on our github repo: github.com/cyz-ai/infomin.

B.1 Details for neural networks

Optimiser. All neural networks are trained by Adam with its default settings and a learning rate
η = 0.001. For adversarial approaches, we have also tried a learning rate of 0.01 when training the
adversary during minmax learning. The motivation for using a larger learning rate in the max step
is that a larger η can compensate for the (presumably) insufficient training time allocated. However,
we discover that an overly large learning rate in the max step often hurts the quality of the trained
adversary, therefore we recommend to use η = 0.001 for the both the min step and the max step.

Early stopping. Early stopping is an useful technique for avoiding overfitting, however it needs
to be carefully considered when applied to adversarial methods. This is because in early stage of
learning, the adversary t in adversarial methods is often not trained thoroughly. In such cases, the
estimate to validation error is often underestimated. If will use this inaccurate validation error to
guide early stopping, we will prefer early iterations as the mutual information It(Z;T) estimated
by t is low in these iterations. In fact, we find that disabling early stopping in adversarial methods
often yields better performance. Due to these reasons we do not apply early stopping in adversarial
methods. Our method does not has such issue, so in principle we can freely apply early stopping.

Architectures. Except stated otherwise, leaky ReLU is used as the nonlinearity in the hidden layer.

• Networks used in the fairness tasks. For the encoder Z = f(X), we use a architecture of
[H, 10H, 10H, 80] where H is the dimensionality of X . For the predictor Y = r(Z), we use
a architecture of [80, 50, 50, |Y |]. For the output layer of the encoder, we apply a non-linearity
sin(·) operation to map Z to [−1, 1]. Other functions such as tanh(·) can also be used and work
similarly but empirically we found that sin(·) works slightly better.

• Network for computing Neural Rényi . For the networks used to calculate Rényi correlation we
use networks with 1 hidden layers with 200 hidden units;

• Network for computing Neural TC. For the network used to calculate total correlation we use an
architecture of [D+K, 100, 100, 1] where D and K is the dimensionality of Z and T respectively.

• Feature adaptation layer in autoencoder. We use a [D + K, 200, 200, D + K] fully connected
architecture for this network where D and K are the dimensionalities of Z and T respectively.

B.2 Additional results and discussions

On neural approximation to Rényi correlation. We here investigate the reliability of using neural
network to calculate Rényi correlation: ρ∗(Z, T) = suph,g ρ(h(Z), g(T)) i.e. we approximate the
supreme functions h, g by two neural networks. In Figure 1, we show the true Rényi correlation for
the independence test task considered in section 5.1 in the main text, along with their neural network
approximation under different training conditions. Two conclusions can be made from the figure:

3

Table 1: Algorithmic fairness
USCensus

S 5 20 100 200
ρ∗(Z;Y) 0.95± 0.00 0.95± 0.00 0.95± 0.00 0.95± 0.00

ρ∗(Z;T) 0.07± 0.02 0.06± 0.02 0.05± 0.02 0.07± 0.02

UCIAdult

S 5 20 100 200
ρ∗(Z;Y) 0.98± 0.01 0.98± 0.01 0.98± 0.01 0.98± 0.01

ρ∗(Z;T) 0.21± 0.06 0.19± 0.04 0.15± 0.03 0.08± 0.02

Table 2: Disentangled representation learning
DSprites

S 10 50 100 200
MSE 0.46± 0.04 0.48± 0.06 0.55± 0.02 0.50± 0.01

ρ∗(Z;T) 0.51± 0.05 0.26± 0.04 0.13± 0.02 0.08± 0.02

CMU-PIE

S 10 50 100 200
MSE 1.92± 0.11 2.00± 0.10 2.05± 0.09 2.15± 0.07

ρ∗(Z;T) 0.30± 0.03 0.08± 0.02 0.05± 0.01 0.06± 0.01

Table 3: Ablation study: how the number of slices affects the performance of the proposed method.

• When trained thoroughly, the neural network approximation to Rényi correlation is fairly accurate,
though it slightly overestimates ρ∗(X,Y) in weak dependence scenarios (i.e. when α ≥ 0.80);

• When the network is not trained sufficiently (denoted as Neural’ in the figure), the estimate bias
to the truth is large and the estimate values are indistinguishable for different dependence level α.
This indeed reveals one typical failure mode of adversarial methods (insufficient training time).

From the figure, we also see that when α ≥ 0.80 the mutual information I(X;Y) between X and Y
is indeed very small, as can be seen from the low ρ∗(X,Y) values in such cases which are ≤ 0.10;

Discussion on further baselines. We here discuss how the considered baseline (in particular, Neural
TC) is related to other baselines for infomin learning such as DANN/LAFTR. In DANN/LAFTR, a
classifier is trained to distinguish whether a representation Z belongs to the class T = 0 or T = 1,
resulting in the following minmax objective for infomin learning:

min
f

max
t

L(Z, Y)− β · Ep(Z,T)[CEt(t(Z);T)]

where CE is the cross-entropy loss and t(·) is a classifier which classifies whether T = 0 or T = 1.
The optimal classifier t∗ above satisfies (here tk(Z) denotes the softmax probability for class k)

t∗k(Z) = p(T = k|Z)

This is indeed very related to the Neural TC baseline considered in our experiment. In neural TC, a
classifier t is trained to distinguish samples (Z, T) from p(Z, T) v.s. p(Z)p(T):

TC(Z;T) = Ep(Z,T)[CEt(t(Z, T); 0)] + Ep(Z)p(T)[CEt(t(Z, T), 1)]

It can be shown that upon convergence, the optimal classifier t∗ satisfies:

t∗(Z, T) = log
p(Z, T)

p(Z)p(T)
= log p(T |Z) + C.

where C = − log p(T) is a constant unrelated to Z and needs not to learn during network training.

By comparing the optimal t∗ in Neural TC and that in DANN/LAFTR, one can see that they are
indeed equivalent to each other: both neural networks learns to estimate the conditional distribution
p(T |Z) either explicitly (DANN/LAFTR) or implicitly (Neural TC), despite the differences in loss
functions and neural architectures. In addition, Neural TC is applicable to both discrete or continu-
ous cases, whereas DANN/LAFTR can only be applied to the case where T is discrete. Due to these
reasons, we mainly compare with Neural TC rather than DANN/LAFTR in our experiments.

Ablation study on the number of slices. We investigate how the number of slices namely S affect
the performance of the proposed slice-based infomin learning method on two tasks. Table 1 and 2
show the results. From the tables, we see that in general, more slices S leads to better information
removal (as quantified by ρ∗(Z;T)). This is because with more slice we can more effectively detect
dependence. We also see that S = 200 is generally sufficient to reach a low level of ρ∗(Z;T) in
various tasks. We therefore adopt S = 200 as the default setting and keep it fixed in all experiments.

4

Table 4: Algorithmic fairness: US Census
Neural Rényi

L2 ρ∗(Z, Y) ρ∗(Z, T) time (sec./max step)
2 0.95± 0.02 0.23± 0.10 0.092

10 0.95± 0.02 0.19± 0.06 0.642

50 0.95± 0.01 0.06± 0.02 2.456

Slice 0.95± 0.01 0.07± 0.02 0.102

Neural TC

L2 ρ∗(Z, Y) ρ∗(Z, T) time (sec./max step)
3 0.95± 0.02 0.27± 0.03 0.097

10 0.95± 0.02 0.21± 0.02 0.362

20 0.95± 0.01 0.08± 0.02 2.146

Slice 0.95± 0.00 0.07± 0.02 0.102

Table 5: Algorithmic fairness: UCI Adult
Neural Rényi

L2 ρ∗(Z, Y) ρ∗(Z, T) time (sec./max step)
4 0.98± 0.01 0.17± 0.08 0.107

10 0.97± 0.01 0.12± 0.06 0.194

50 0.97± 0.01 0.06± 0.02 1.242

Slice 0.98± 0.01 0.08± 0.03 0.112

Neural TC

L1 ρ∗(Z, Y) ρ∗(Z, T) time (sec./max step)
2 0.98± 0.02 0.36± 0.13 0.131

10 0.98± 0.01 0.20± 0.03 0.854

20 0.98± 0.01 0.07± 0.03 2.032

Slice 0.98± 0.01 0.08± 0.03 0.112

Table 6: Disentangled representation learning: Dsprite
Neural Rényi

L2 MSE ρ∗(Z, T) time (sec./max step)
6 0.61± 0.04 0.48± 0.05 0.791

50 0.87± 0.05 0.12± 0.04 1.903

Slice 0.50± 0.01 0.08± 0.02 0.602

Neural TC

L1 MSE ρ∗(Z, T) time (sec./max step)
8 0.49± 0.03 0.34± 0.06 0.812

50 0.83± 0.01 0.31± 0.03 2.013

Slice 0.50± 0.01 0.08± 0.02 0.602

Table 7: Disentangled representation learning: CMU-PIE
Neural Rényi

L2 MSE ρ∗(Z, T) time (sec./max step)
6 2.46± 0.06 0.36± 0.04 0.750

50 2.51± 0.08 0.26± 0.06 5.67

Slice 2.15± 0.07 0.07± 0.01 0.581

Neural TC

L1 MSE ρ∗(Z, T) time (sec./max step)
8 1.99± 0.12 0.39± 0.06 0.841

50 2.45± 0.09 0.36± 0.05 6.59

Slice 2.15± 0.07 0.07± 0.01 0.581

Ablation study on the number of adversarial steps. We here investigate how the number of
gradient steps in inner loop optimisation (i.e. the hyperparameter L2 in eq.2 and Algorithm 1) affect
the performance of adversarial methods. Tables 4-7 show the results. The utility-fairness balancing
factor β for Neural Rényi and Neural TC are tuned in the way mentioned in the main text. The
learning rate of the adversarial steps is the same as that of the outer loop and is set to be η = 0.001.

Overall, we see that the proposed slice method is more scalable than the two adversarial training
methods. To achieve the same level of fairness/disentanglement, adversarial methods typically re-
quire a much longer time. For fairness tasks, we see that adversarial training methods can catch up
with our method when sufficient time budget is given. For disentanglement tasks, this is not true,
as by increasing the time budget adversarial methods can still not outperform our method. We con-
jecture this is due to optimisation difficulties in minmax problem. The results identify two typical
failure modes of adversarial methods: (a) insufficient training time and (b) optimisation difficulties.

Details for tuning the v-CLUB method. We here share some experience for tuning the v-CLUB
method, which is a strong baseline but needs careful hyperparameter tuning. We discover that a
larger batch size (e.g. ≥256), a smaller learning rate (e.g. η = 0.0001) and a smaller balancing
factor (e.g. β ≤ 0.01) are generally more preferable in v-CLUB. We conjecture that this is because
when the batch size is small, the estimation variance of mutual information V[Î(Z;T)] in v-CLUB
is high (which is a known issue of most neural mutual information estimators), resulting in unstable
optimisation. Such optimisation instability will further be strengthen if η and β are not small enough.

5

	Theoretical proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of the claim about the accuracy of polynomial approximation
	Proof of the claim that a neural attribute predictor maximises a lower bound of MI

	Experiment details
	Details for neural networks
	Additional results and discussions

