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ABSTRACT

Dynamic feature selection, where we sequentially query features to make accurate
predictions with a minimal budget, is a promising paradigm to reduce feature
acquisition costs and provide transparency into a model’s predictions. The problem
is challenging, however, as it requires both predicting with arbitrary feature sets
and learning a policy to identify valuable selections. Here, we take an information-
theoretic perspective and prioritize features based on their mutual information with
the response variable. The main challenge is implementing this policy, and we
design a new approach that estimates the mutual information in a discriminative
rather than generative fashion. Building on our approach, we then introduce several
further improvements: allowing variable feature budgets across samples, enabling
non-uniform feature costs, incorporating prior information, and exploring modern
architectures to handle partial inputs. Our experiments show that our method
provides consistent gains over recent methods across a variety of datasets.

1 INTRODUCTION

Many machine learning applications rely on high-dimensional datasets with significant data acqui-
sition costs. For example, medical diagnosis can depend on a range of demographic features, lab
tests and physical examinations, and each piece of information takes time and money to collect
(Kachuee et al., 2018} [Erion et al.|, [2022} He et al.,2022)). To improve interpretability and reduce data
acquisition costs, a natural approach is to adaptively query features given the current information, so
that each prediction relies on only a small number of features. This approach is referred to as dynamic
feature selection (DFS)E] and it is a promising paradigm considered by several works in recent years
(Kachuee et al., 2018; Janisch et al.,|2019; |Chattopadhyay et al., [2022; [2023; [Covert et al., 2023)).

Among the existing methods that address this problem, two main approaches have emerged. One
idea is to formulate DFS as a Markov decision process (MDP) and use reinforcement learning (RL)
(Dulac-Arnold et al.l 2011; Mnih et al., [2014; [Kachuee et al., |2018; Janisch et al., 2019). This
approach theoretically has the capacity to discover the optimal policy, but it faces training difficulties
that are common in RL (Henderson et al., |2018). Alternatively, another line of work focuses on
greedy approaches, where features are selected based on their conditional mutual information (CMI)
with the response variable (Chen et al.,[2015; Ma et al.;,2019). While less flexible than RL, the greedy
approach is near-optimal under certain assumptions about the data distribution (Chen et al.,[2015)
and represents a simpler learning problem; as a result, it has been found to perform better than RL in
several recent works (Erion et al.| 2022} |Chattopadhyay et al., 2023} |Covert et al., 2023)).

Nevertheless, the greedy approach is non-trivial to implement, because calculating the CMI requires
detailed knowledge of the data distribution. Many recent works have explored approximating the
CMI using generative models (Ma et al.||2019; Rangrej and Clarkl 2021; |Chattopadhyay et al., [2022;
He et al.,|[2022), but these are difficult to train and lead to a slow CMI estimation process. Instead,
two recent works introduced a simpler approach, which is to directly estimate the feature index with
maximum CMI (Chattopadhyay et al.| 2023} |Covert et al.l[2023). These methods rely on simpler
learning objectives, are faster at inference time, and often provide better predictive accuracy. They can
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be thought of discriminative alternatives to earlier generative methods, because they directly output
the required value rather than modeling the data generation process (Ng and Jordan, 2001). Their
main downside is that they bypass estimating the CMI, which can be useful for multiple purposes,
such as determining when to stop selecting new features.

Here, our goal is to advance the greedy DFS approach by combining the best aspects of current
methods: building on recent work (Chattopadhyay et al., 2023} |(Covert et al.| [2023)), we aim to
estimate the CMI itself in a discriminative fashion. We aim to do so without requiring additional
labels, making strong assumptions about the data distribution, or fitting generative models. We
accomplish this by designing a suitable learning objective, which we prove recovers the CMI if our

model is trained to optimality (Section 4.

Based on our new learning approach, we then explore a range of capabilities enabled by accurately
estimating the CMI: these include allowing variable per-sample feature budgets, accounting for
non-uniform feature costs, and leveraging modern architectures to train models with partial input
information. In real-world settings, acquisition costs are not identical for all features, and we can use
multiple low-cost features in lieu of one high-cost feature to get the same diagnostic performance.
Although these capabilities are supported by certain RL methods (Kachuee et al., 2018} Janisch et al.}
2019), they are not supported by prior discriminative approaches that do not estimate the CML

We find that our proposal offers a promising alternative to available methods: it enables the capabilities
of generative methods while retaining the simplicity of discriminative methods, and it shows improved
performance in our experiments. The contributions of this work are the following:

1. We develop a learning approach to estimate the CMI in a discriminative fashion. Our method
involves training a network to score candidate features based on their predictive utility, and we
prove that training with our objective recovers the exact CMI at optimality.

2. We generalize our approach to incorporate prior information beyond the main features. Here, we
again prove that our procedure recovers a modified version of the CMI at optimality.

3. Taking inspiration from adaptive submodular optimization, we show how to adapt our CMI-based
approach to scenarios with non-uniform feature costs.

4. We analyze the role of variable feature budgets and how they enable an improved cost-accuracy
tradeoff. We show that a single instantiation of our method can be evaluated with multiple
stopping criteria, and that a policy with a flexible per-prediction budget performs best.

5. We investigate the role of modern architectures in improving performance in DFS. In particular,
we find that for image data, our method benefits from using ViTs rather than standard CNNs.

Our experiments demonstrate the effectiveness of our approach across a range of applications,
including several tabular and image datasets. We compare our approach to many recent methods, and
we find that our approach provides consistent gains across all the datasets we tested.

2 PROBLEM FORMULATION

Notation. Let x denote a vector of input features and y a response variable for a supervised learning
task. The input consists of d separate features x = (x1,...,%X4), and weuse S C [d] = {1,...,d} to
denote a subset of indices and xg = {x; : i € S} a subset of features. Bold symbols x, y represent
random variables, the symbols x, y are possible values, and p(x,y) denotes the data distribution.

Our goal is to select features given the currently available information, and do so on a per-instance
basis to rapidly arrive at accurate predictions. In doing so, we require a predictor f(xg) that makes
predictions given any set of available features; for example, if y is discrete then our predictions lie in
the simplex, or f(xs) € AX~1 for K classes. We also require a selection policy 7(xg) € [d], which
takes a set of features as its input and outputs the next feature index to observe. We next discuss how
to design these models, focusing on an approach motivated by information theory.

Dynamic feature selection. The goal of DFS is to select features separately for each prediction,
and achieve both low acquisition cost and high predictive accuracy. Previous work has explored
several approaches to design a selection policy, including training the policy with RL (Kachuee
et al.,2018; Janisch et al.,2019), imitation learning (He et al., [2012; [2016a), and following a greedy
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policy based on CMI (Ma et al.,[2019; (Covert et al., 2023)). We focus here on the latter approach,
where the idealized policy selects the feature with maximum CMI at each step, or where we define
7 (zg) = argmax; I(y;x; | zg). Intuitively, the CMI represents how much observing x; improves
our ability to predict y when a subset of the features x g is already observed, and it is defined as the
following KL divergence (Cover and Thomas| |[2012):

I(y;x; | vs) = Dxr. (p(%i,y | zs) || p(xi | 5)p(y | 75)) - €]

The idealized selection policy is accompanied by an idealized predictor, which is the Bayes classifier
f*(xzs) = p(y | xg) for classification problems, and under certain assumptions it is known that
this provides performance within a multiplicative factor of the optimal policy (Chen et al.| 2015).
However, the CMI policy is difficult to implement because it requires oracle access to the data
distribution: computing requires both the distributions p(y | xs) and p(x; | zg) for all
(S, 1), which presents a challenging modeling problem. For example, some works have approximated
I(y;x; | zs) using generative models (Ma et al.,[2019; |[Rangrej and Clark} 2021; He et al.; 2022),
while others have directly modeled 7*(xg) (Chattopadhyay et al., {2023} |[Covert et al., 2023).

When we follow the greedy CMI policy, another question that arises is how many features to select
for each prediction. Previous work has focused mainly on the fixed-budget setting, where we stop
when |S| = k for a specified budget k£ < d (Ma et al.,|2019;|Rangrej and Clark, [2021; |Chattopadhyay
et al.| 2023} |Covert et al.,2023)). We instead consider variable budgets in this work (Kachuee et al.,
2018 Janisch et al.||2019)), where the goal is to achieve high accuracy given a low average feature
cost. Unlike many works, we also consider distinct, or non-uniform costs for each feature. As we
discuss in[Section 4] these goals are made easier by estimating the CMI in a discriminative fashion.

3 RELATED WORK

One of the earliest works on DFS is|Geman and Jedynak] (1996)), who used the CMI as a selection
criterion but made simplifying assumptions about the data distribution. |(Chen et al.|(2015)) analyzed the
greedy CMI approach theoretically and proved conditions where it achieves near-optimal performance.
More recent works have focused on practical implementations: among them, several use generative
models to approximate the CMI (Ma et al., [2019; Rangrej and Clark, [2021}; |Chattopadhyay et al.,
2022;|He et al., [2022), and two works proposed predicting the best feature index in a discriminative
fashion (Chattopadhyay et al., 2023} Covert et al.,|2023)). Our work develops a similar discriminative
approach, but to estimate the CMI itself rather than the argmax among candidate features.

Apart from these CMI-based methods, other works have addressed DFS as an RL problem (Dulac{
Arnold et al., [2011;Shim et al.| 2018 Kachuee et al., [2018}; Janisch et al., [2019; 20205 [L1 and Olival,
2021). For example, Janisch et al.|(2019) formulate DFS as a MDP where the reward is the 0-1
loss minus the feature cost, while considering both variable budgets and non-uniform feature costs.
RL theoretically has the capacity to discover better policies than a greedy approach, but it has not
been found to perform well in practice, seemingly due to training difficulties that are common in
RL (Erion et al.| 2022} |Chattopadhyay et al., 2023} |Covert et al., 2023)). Beyond these approaches,
other works have instead explored imitation learning by mimicking an oracle policy (He et al., 2012}
2016a), minimizing expected misclassification costs at each step (Liyanage et al., 2021b)), and making
selections based on a Bayesian network fit to the joint data distribution (Liyanage et al., 2021al).

Static feature selection has been an important subject in statistics and machine learning for decades;
see (Guyon and Elisseeffl |2003; L1 et al., | 2017} |Cai et al., [2018)) for reviews. CMI is also the basis
of some static methods, and its estimation has been studied by many works (Fleuret, |2004; [Peng
et al.,|2005; |Shishkin et al., [2016). Greedy methods perform well under certain assumptions about
the data distribution and are popular for simple models (Das and Kempe, |201 1} [Elenberg et al., 2018)),
but feature selection with nonlinear models is more challenging. For neural networks, methods now
exist that leverage either group sparse penalties (Feng and Simonl, 2017; Tank et al., 2021; Lemhadri
et al., [2021) or differentiable gating mechanisms (Chang et al.| [ 2017; Balin et al.l 2019; Lindenbaum
et al.,[2021)). Unlike recent DFS methods (Chattopadhyay et al., 2023} |Covert et al.l 2023), our work
bypasses these techniques by using a simpler regression objective.

Finally, mutual information estimation with deep learning has been an active topic in recent years
(Oord et al.|, 2018} Belghazi et al., 2018} |Poole et al., [2019; Song and Ermon, [2019; [Shalev et al.,
2022). Unlike prior works, ours focuses on the CMI between features and a response variable,
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our method can condition on arbitrary feature sets, and we estimate many CMI terms via a single
predictive model rather than training separate networks to estimate each mutual information term.

4 PROPOSED METHOD

In this section, we introduce our method to dynamically select features by estimating the CMI in
a discriminative fashion. We then discuss how to incorporate prior information into the selection
process, handle non-uniform feature costs, and enable variable budgets across predictions.

4.1 ESTIMATING THE CONDITIONAL MUTUAL INFORMATION

We parameterize two networks to implement our selection policy. First, we have a predictor network
f(xs;0), e.g., a classifier with predictions in AX !, Next, we have a value network v(xs; ¢) € R?
designed to estimate the CMI for each feature, or v;(zs; ¢) ~ I(y;x; | zs). These are implemented
with zero-masking to represent missing features, and we can also pass the mask as a binary indicator
vector. Once they are trained, we make selections according to arg max; v;(Xgs; ¢), and we can make
predictions at any time using f(xg; ). The question is how to train the networks, given that prior
works required generative models to estimate the CMI (Ma et al.l 2019; Chattopadhyay et al., 2022).

Our main insight is to train the models jointly but with their own objectives, and to design an objective
for the value network that recovers the CMI at optimality. Specifically, we formulate a regression
problem whose target is the incremental improvement in the loss when incorporating a single new
feature. We train the predictor to make accurate predictions given any feature set, or

mein IExyIEs [6 (f(xs; 6)7 y)] s 2)
and we simultaneously train the value network with the following regression objective,
min Exy BB | (0:(xs: 0) — Alte, x0,¥))°) 3)

where we define the loss improvement as A(zg, z;,y) = £(f(zs;0),y) — £(f(xsui;0),y). The
regression objective infeq. (3)]is motivated by the following property, which shows that if we assume
an accurate predictor f(xg;6) (i.e., the Bayes classifier), the value network’s labels are unbiased

estimates of the CMI (proofs are in[Appendix A).

Lemma 1. When we use the Bayes classifier p(y | xg) as a predictor and € is cross entropy loss, the
incremental loss improvement is an unbiased estimator of the CMI for each (xg,x;) pair:

Ey xizs [A(xs,xi,y)] = I(y;x; | x5). 4)

Based on this result and the fact that the optimal predictor does not depend on the selection policy
(Covert et al.,[2023)), we can make the following claim about jointly training the two models. We
assume that both models are infinitely expressive (e.g., very wide networks) so that they can achieve
their respective optimizers.

Theorem 1. When { is cross entropy loss, the objectives|eq. (2) and|eq. (3)| are jointly optimized by a
predictor f(xg;0%) = p(y | xs) and value network where v;(xs; ¢*) = I(y;x; | xg) fori € [d).

This allows us to train the models in an end-to-end fashion using stochastic gradient descent, as
depicted in [Figure 1} In|[Appendix Al we prove a similar result for regression problems: that
the policy estimates the reduction in conditional variance associated with each candidate feature.
Additional analysis in shows how suboptimality in the classifier can affect the learned
CMI estimates; however, even if the learned estimates v;(xs; ¢) are imperfect in practice, we expect
good performance because the policy replicates selections that improve the loss during training.

Several other steps are important during training, and these are detailed in[Appendix C|along with
pseudo-code for the training algorithm and the inference procedure. First, like several prior methods,
we pre-train the predictor with random feature sets before beginning joint training (Rangrej and
Clark} [202 1} |Chattopadhyay et al., 2023; |Covert et al.| |2023)). Next, we generate training samples
(zs,x;,y) by executing the current policy with a random exploration probability € € [0, 1], which
can be decayed throughout training. Finally, we sometimes share parameters between the models,
particularly when they are large networks; this helps in our experiments with image data, which use
either CNNs or ViTs (Dosovitskiy et al., 2020).
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Figure 1: Diagram of our training approach. At each selection step n, the value network v(zg; @)
predicts the CMI for all features, and a single feature x; is chosen for the next prediction f(zgu;;6).
The prediction loss is used to update the predictor (seefeq. (2)), and the loss improvement is used to
update the value network (seefeq. (3)). The networks are trained jointly with SGD.

4.2 INCORPORATING PRIOR INFORMATION

A further direction is utilizing prior information obtained before beginning the selection process.
We view such prior information as a separate random variable z, and it can be either an exogenous
input, a subset of features that are available with no associated cost, or even a noisy or low-resolution
version of the main input x (Ranzato| 2014} [Ba et al| [2014; [2015). Situations of this form arise in
multiple applications, e.g., a patient’s demographic features in a medical diagnosis setting.

Given such prior information, our idealized DFS policy must be modified as follows. First, the
selections should be based on I(y; x; | g, z), which captures how informative x; is given knowledge
of both x g and z. Next, the predictions made at any time are given by p(y | s, z), because z provides
information that can improve our predictions. As for our proposed CMI estimation procedure from
it is straightforward to modify. The two models must take the prior information z as an
additional input, and we can train them with modified versions of and[(3)]

Hgl’l ]ExyzEs [é (f(xsv Z; 9)7 y)] ) Hgn ExyzEs]Ei [(Ui(xsv Z; ¢) - A(XS7 X, 2, Y))2:| 3 (5)

where A(zg, z;, 2,y) = U(f(xs,2,;0),y) —L(f(zsui, z;0), y) is the incremental loss improvement.
We then have the following result for jointly training the two models.

Theorem 2. When ( is cross entropy loss, the objectives inleq. (5)|are jointly optimized by a predictor
flzs,z,0%) = p(y | x5, 2) and value network where v;(zg, z; ¢*) = I(y; x; | xg,2) forall i € [d].

The same implementation details discussed in apply here, and[Section 5.2]discusses how

the prior information z is incorporated into the value and predictor networks in practice.

4.3 ALLOWING A VARIABLE FEATURE BUDGET

Given our approach for estimating each feature’s CMI, a natural question is how to trade off informa-
tion with feature acquisition costs. We now consider two challenges related to features costs: (1) how
to handle non-uniform costs between features, and (2) when to stop collecting new features.

Non-uniform costs. For the first challenge, consider medical diagnosis as a motivating example.
Diagnoses can be informed by heterogeneous data, including demographic variables, questionnaires,
physical examinations, and lab tests; each measurement requires a different amount of time or money

(Kachuee et al.l 2018}, [Erion et al.|,[2022), and feature costs must be balanced with the information

they provide. We consider here that each feature has a cost ¢; > 0 and that costs are additive.

There are multiple ways to trade off cost with information, but we take inspiration from adaptive sub-
modular optimization, where costs are accounted for via the ratio between the expected improvement
and cost. Here, this suggests that our selections should be arg max; I(y; x; | xs)/c;. For adaptive
submodular objectives, this criterion guarantees near-optimal performance (Golovin and Krause,
[201T); the DFS problem is known to not be adaptive submodular (Chen et al., 2015), which means
that we cannot offer performance guarantees, but we find that this approach works well in practice.
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Variable budgets. Next, we consider when to stop acquiring new features. Many previous works
focused on the budget-constrained setting, where we adopt a budget k for all predictions (Chen
et al.,[2015; |Ma et al., 2019; Rangrej and Clarkl, 2021; |Covert et al., 2023). This can be viewed as a
stopping criterion, and it generalizes to non-uniform costs: we can keep collecting new information
as long as > ;¢ ¢; < k. Alternatively, we can adopt a confidence-constrained setup (Chattopadhyay
et al., [2023), where selection terminates once the predictions have low uncertainty. For classification
problems, a natural approach is to stop collecting features when H(y | zg) < m.

In general, it is unclear whether we should follow a budget- or confidence-constrained approach, or
whether another option offers a better cost-accuracy tradeoff. We resolve this by considering the
optimal performance achievable by non-greedy policies, and we present the following insight: that
policies with per-prediction constraints are Pareto-dominated by those that satisfy their constraints on
average. We state this claim here in a simplified form, and we defer the formal version to[Appendix Al

Proposition 1. (Informal) For any feature budget k, the best policy to achieve this budget on average
achieves lower loss than the best policy with a per-prediction budget constraint. Similarly, for any
confidence level m, the best policy to achieve this confidence on average achieves lower cost than the
best policy with a per-prediction confidence constraint.

Intuitively, when designing a policy to achieve a given average cost or confidence level, it should help
to let the policy violate that level for certain predictions. For example, for a patient whose medical
condition is inherently uncertain and will not be resolved by any number of tests, it is preferable
from a cost-accuracy perspective to stop early rather than run many expensive tests.
suggests that we should avoid adopting budget or confidence constraints and instead seek the optimal
unconstrained policy, but because we assume that we only have CMI estimates (Section 4.1}, we
opt for a simple alternative: we adopt a penalty parameter A > 0, we make selections at each step
according to I(y; x; | s)/c;, and we terminate the algorithm when max; I(y;x; | xg)/c; < A.

Following this approach, we see that a single instantiation of our model can be run with three different
stopping criteria: we can use the budget k, the confidence m, or the penalty A. In contrast, prior
methods that penalize feature costs required training separately for each penalty strength (Janisch
et al.}[2019). Although our penalized criterion is not the optimal one alluded to in we
find empirically that it consistently improves performance relative to a fixed budget.

5 EXPERIMENTS

We refer to our approach as DIMEE] (discriminative mutual information estimation) and explore
two data modalities to evaluate its performance. Our tabular datasets include two medical diagnosis
tasks, which represent natural and valuable use cases for DFS; we also use MNIST, which was
considered in prior works (Ma et al.| 2019; |Chattopadhyay et al.| 2022; 2023). As for our image
datasets, we include these because they are studied in several earlier works and represent challenging
DEFS problems (Karayev et al.,|2012; Mnih and Gregor, [2014; Janisch et al., 2019; |Rangrej and Clark,
2021). We also design an experiment to test the CMI estimation accuracy in[Appendix G|

In terms of baselines, we compare DIME to both static and dynamic feature selection methods. As a
strong static baseline, we compare to a supervised Concrete Autoencoder (CAE) (Balin et al., 2019),
which outperformed several dynamic methods in recent work (Covert et al., 2023). We also compare
to two more static baselines that statistically estimate the CMI for feature selection, mRMR (Peng
et al., 2005) and CMICOT (Shishkin et al., |2016). For dynamic baselines, we consider multiple
approaches: first, we compare to the recent discriminative methods that directly predict the CMI’s
argmax (Chattopadhyay et al.,|2023} |Covert et al.| [2023)), which we refer to as Argmax Direct. Next,
we consider EDDI (Ma et al.}2019), a generative approach that uses a partial variational autoencoder
(PVAE) to sample unknown features. Because EDDI does not scale as well beyond tabular datasets,
we compare to probabilistic hard attention (Hard Attention) (Rangrej and Clark, [2021)), a method
that adapts EDDI to work with image data. Finally, we also compare the tabular datasets to two
RL approaches: classification with costly features (CwCF) (Janisch et al.| 2020) and opportunistic
learning (OL) (Kachuee et al., 2018), which both design rewards based on features’ predictive utility.
provides more information about the baseline methods.

2Code is available at ht tps://github.com/suinleelab/DIME
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Figure 2: Evaluation with tabular datasets for varying feature acquisition budgets. Results are
averaged across 5 trials, and shaded regions indicate the standard error for each method.

5.1 TABULAR DATASETS

Our first medical diagnosis task involves predicting whether a patient requires endotracheal intubation
for respiratory support in an emergency medicine setting (d = 112) (Covert et al.,2023)). The second
uses cognitive, demographic, and medical history data from two longitudinal aging cohort studies
(ROSMAP, |A Bennett et al.[2012ab) to predict imminent dementia onset (d = 46). In both scenarios,
it is difficult to acquire all features due to time constraints, making DFS a promising paradigm. The
third is the standard MINIST dataset (LeCun et al.,|1998)), which we formulate as a tabular problem by
treating each pixel as a feature (d = 784). Across all methods, we use fully connected networks with
dropout to reduce overfitting (Srivastava et al., 2014), and the classification performance is measured
using AUROC for the medical tasks and top-1 accuracy for MNIST. provides more
details about the datasets, and [Appendix E| provides more information about the models.

Uniform feature costs. We first consider the scenario with equal costs for all features, and [Figure 2]
shows results with a range of feature budgets. DIME with the penalized stopping criterion achieves
the best results among all methods for both medical diagnosis tasks. It also performs the best on
MNIST, where we achieve above 90% accuracy with an average of ~10/784 features (1.27%).
Among the baselines, Argmax Direct is the strongest dynamic method, CAE is a competitive static
method that outperforms both CMICOT and mRMR, and EDDI usually does not perform well. The
RL approaches (CwCF, OL) are not as competitive, as expected from results in prior work (Rangrej
and Clark, 2021 (Chattopadhyay et al.l|2023 |Covert et al.,|2023)). DIME generally shows the greatest
advantage for moderate numbers of features, and the gap reduces as the performance saturates. The
variability between trials for the baselines is typically low, as shown by our uncertainty estimates; for
DIME, we show results from five independent trials in[Appendix G|because it is difficult to ensure
identical budgets with separate training runs.
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Figure 3: Evaluation with non-uniform feature costs for medical diagnosis tasks. Costs are relative
for Intubation and expressed in seconds for ROSMAP. The results show the classification performance
for varying levels of average feature acquisition cost.

Non-uniform feature costs. Our CMI estimation approach lets us incorporate non-uniform feature
costs into DIME, and we demonstrate this with the Intubation and ROSMAP datasets. For ROSMAP,
we use costs expressed as the time required to acquire each feature, and for Intubation we use relative
costs estimated by a board-certified physician (Appendix D). For comparisons, we use EDDI and
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Figure 4: Evaluation of DIME on image datasets with different vision architectures.

CwCeF to accommodate non-uniform feature costs. We also compare to two ablations of our approach:
(1) using uniform costs during training but the true costs during inference (Inference Costs), which
tests DIME’s robustness to changing feature costs after training; and (2) using uniform costs during
both training and inference (Uniform Costs), which demonstrates the importance of using correct
costs. All methods are compared here with the budget-constrained stopping criterion.

shows the results with non-uniform feature costs. DIME outperforms EDDI and CwCF by a
substantial margin, echoing the earlier results, and reflecting the improved CMI estimation with our
discriminative approach. Comparing to the variations of DIME, using the true non-uniform costs
during both training and inference outperforms both variations, showing that considering costs when
making selections is important. The version that uses costs only during inference slightly outperforms
ignoring costs on ROSMAP, indicating a degree of robustness to changing feature costs between
training and inference, but both versions give similar results on Intubation.

Additional results. Due to space constraints, we defer several additional results to

5.2 IMAGE DATASETS

Next, we applied our method to three image classification datasets. The first two are subsets of
ImageNet (Deng et al., [2009), one with 10 classes (Imagenette, [Howard) and the other with 100
classes (ImageNet-100, Ambityga)). The third is a histopathology dataset (MHIST, Wei et al.[2021),
comprising hematoxylin and eosin (H&E)-stained images obtained by extracting diagnostically-
relevant tiles from whole-slide images (WSIs). The task is to predict the histological pattern as either
a benign or precancerous lesion. WSIs have extremely high resolution and are infeasible for direct use
in any classification task, making them a potential use case for DIME to identify important patches.
The images in all three datasets are 224 x 224, and we view them as d = 196 patches of size 16 x 16.
We explore different architectures for the value and predictor networks, namely ResNets (He et al.}
2016b) and Vision Transformers (ViTs) (Dosovitskiy et al., [ 2020). We use a shared backbone in both
cases, with each component having its own output head. Classification performance is measured
using top-1 accuracy for both ImageNet subsets, and with AUROC for the histopathology task.
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Figure 5: Evaluation with image datasets for varying numbers of average patches selected. Results
are averaged across 5 trials, and shaded regions indicate the standard error for each method.
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Figure 6: Evaluation of DIME with prior information for histopathology classification. Left: Original
MHIST image. Center: Canny edge image. Right: Results for varying number of average patches.

Exploring modern architectures. As an initial experiment, compares the ResNet and ViT
architectures for the Imagenette and ImageNet-100 datasets. We use DIME to conduct this analysis
because its discriminative approach lets us seamlessly plug in any network architecture. Across both
datasets, DIME’s penalized version outperforms the budget-constrained version, and we find that
ViTs significantly outperform ResNets. This can be attributed to the ViT’s self-attention mechanism:
this architecture is better suited to handle information spread across an image, a property that has
made ViTs useful in other applications with partial inputs (Naseer et al.l, 2021 Jain et al., 2021}
Salman et al., 2022)). Given their superior performance, we use ViTs as backbones in subsequent
experiments where possible. This includes DIME, CAE and Argmax Direct, but Hard Attention lacks
this flexibility because it uses a recurrent module to process subsets of image regions.

Next, compares DIME to the baselines across multiple feature budgets. DIME with the
penalized stopping criteria outperforms the baselines for all feature budgets, with the largest gains
observed for Imagenette. Notably, we achieve nearly 97% accuracy on Imagenette with only ~15/196
patches (7.7%). The Argmax Direct baseline is competitive with DIME, but the Hard Attention
baseline shows a larger drop in performance.

Incorporating prior information. Next, we explored the possibility of incorporating prior infor-
mation into DIME’s selection process for the histopathology dataset. To simulate informing our
selections with a less exact but easily acquirable version of the tissue, we use the Canny edge image
as a sketch (Canny, |1986), which can help generate more valuable selections than a blank image.
We use separate ViT backbones for the original and edge images, and we concatenate the resulting
embeddings before estimating the CMI or making class predictions (see for details).
shows example images, along with the results obtained with DIME for various feature
budgets. The results show that the prior information is incorporated successfully, leading to improved
performance for both the penalized and budget-constrained versions. To verify that the improvement
is not solely due to the predictive signal provided by the edge image, we conduct an ablation where
the sketch is integrated into the predictor only for a pre-trained and otherwise frozen version of DIME.
This middle ground improves upon no prior information, but it generally performs well below the
version that uses prior information both when making selections and predictions.

6 CONCLUSION

This work presents DIME, a new DFS approach enabled by estimating the CMI in a discriminative
fashion. Our approach involves learning value and predictor networks, trained in an end-to-end fashion
with a straightforward regression objective. From a theoretical perspective, we prove that our training
approach recovers the exact CMI at optimality. Empirically, DIME accurately estimates the CMI
and enables an improved cost-accuracy tradeoff, exceeding both the generative and discriminative
methods it builds upon (Chattopadhyay et al., 2023} |Covert et al., 2023). Our evaluation considers a
range of tabular and image datasets and demonstrates the potential to implement several additions to
the classic greedy CMI selection policy: these include allowing non-uniform features costs, variable
budgets, and incorporating prior information. The results also show that DIME is robust to higher
image resolutions, scales to more classes, and benefits from modern architectures. Future work may
focus on promising applications like MRIs and region-of-interest selection within WSIs, using DIME
to initialize RL methods, and otherwise accelerating or improving DIME’s training.
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A PROOFS
In this section, we re-state and prove our results from the main text.
A.1 ESTIMATING CONDITIONAL MUTUAL INFORMATION

Lemma 1. When we use the Bayes classifier p(y | xs) as a predictor and { is cross entropy loss, the
incremental loss improvement is an unbiased estimator of the CMI for each (xg,X;) pair:

Ey,xikcs [A(SES,X“y)} = I(yax’b | LES).

Proof. Consider the expected cross entropy loss given the prediction p(y | zg):

K
Eyjas [((p(y | 5),9)] = =Y _p(y =y | x5)logp(y =y | x5)

y=1

= H(y | zs).

Next, consider the loss given the prediction p(y | xg, z;), taken in expectation across x; and y’s
conditional distribution p(y, x; | zs):

Ey,xl\rs[g(p(y | xvai)ay)] = Exi|mSEy\ms,xq,:xi [g(P(y | Ts,X; = fﬂz)d’)]
= Exi|:vs [H(y | xrs,X; = I1)]
= H(y | i, x;).

We therefore have the following expectation for the incremental loss improvement:

Ey,xtlzs [A(irSaXhY)} = Ey#i\ms['e(p(y | xs)’y) - f(p(y | xS’Xi)’y)]
— H(y | s) — Hy | 25.%)
=I(y;x; | zs).

Thus, the loss improvement A(xg,x;,y) is an unbiased estimator of the CMI I (y;x; | zg). O

Theorem 1. When £ is cross entropy loss, the objectives|eq. (2) andeq. (3) are jointly optimized by a
predictor f(xg;0%) = p(y | xs) and value network where v;(xgs; ¢*) = I(y;x; | xg) for i € [d).

Proof. Similar to (Covert et al.| [2023), our proof considers both models’ optimal predictions for
each input. Beginning with the predictor, consider the output given the input zg. The selections
were made given only xg, so observing this input conveys no information about y or the remaining
features x[4)\ 5. The expected loss is therefore

]Ey|:vs [é(f(iESa 0)7 Y)]

Assuming that ¢ is cross entropy loss, we can decompose the expected loss as follows:

Mw

IEY|9Bs V(f(QCS» =Y | xS) logfy(xS; )

_Jylesi0)
py=ylrs)

H(y | zs) + Dxn(p(y | zs) || f(7s;0)).

;
Zp =y |ws)logp(y =y | zs)

@
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Due to the non-negative KL divergence term, we see that the optimal prediction is p(y | zs). We can
make this argument for any input g, so we say that the optimal predictor is f(xg;0*) = p(y | xs)
for all xg. Notably, this argument does not depend on the selection policy: it only requires that the
policy has no additional information about the response variable or unobserved features.

Next, we consider the value network while assuming that we use the optimal predictor f(xg;6*).
Given an input z s, we once again have no further information about y or X4} 5, s0 the expected loss
is taken across the distribution p(y,x; | xg) as follows:

Ey xles [(U(xSQQb) - A($S7Xi,y))2] .

The expected loss can then be decomposed,

Ey x:|2s [(v(x.% ?) — Alzs, x;, Y))Q} = Ey xilas [(v(fs; ¢) — By xilos [Alws,xi, Y)])Q}
+ Var (A(zg,x;,y)] | zs),

which reveals that the optimal prediction is Ey 1. [A(zs, X;,y)]. Following|[Lemma 1} we know
that this is equal to 7(y; x; | £s). And because we can make this argument for any x g, we conclude
that the optimal value network is given by v(zg; ¢*) = I(y;x; | xg). O

A.2 PRIOR INFORMATION

Before proving we first present a preliminary result analogous to[Cemma 1}

Lemma 2. When we use the Bayes classifier p(y | Xs,z) as a predictor and { is cross entropy loss,
the incremental loss improvement is an unbiased estimator of the CMI for each (xg, z,X;) tuple:

]Eyq,xi\ws [A(m57x’ia Z7Y)} = I(Yaxz | s, Z)

Proof. The proof follows the same logic as where we consider the expected loss before
and after incorporating the additional feature x;. The only difference is that each expectation must
also condition on z = z, so the terms to analyze are

Ey\ws,z[z(p(y ‘ 37872’)7}’)}
]Ey,xl'\zs,zw(p(y | x5, 2,%:),¥)]-

We now prove the main result for incorporating prior information.

Theorem 2. When { is cross entropy loss, the objectives inleq. ()| are jointly optimized by a predictor
flzs,z,0%) = p(y | x5, 2) and value network where v;(zgs, z; ¢*) = I(y; x; | xg,2) forall i € [d].

Proof. The proof follows the same logic as For the predictor with input zg, we can

decompose the expected loss as follows:

Eyles.z[0(f(z5,2:0),y)] = H(y | 5,2) + DxL(p(y | ©s,2) || f(zs,2;0)).

This shows that the optimal predictor is f(xg,2;0*) = p(y | xs, z). Next, assuming we use the
optimal predictor, the value network’s expected loss can be decomposed as follows:

Ey,xi|w5,z [(U(I37 Z3 ¢) - A(:Cs, Xis 2, y))2 = Ey,xi|w5,z [(U(:Z?S7 Z3 ¢) - Ey,xi|ws,z[A(x57 Xiy 2, Y)])Z]
+ Var (A(zs,xi,2,¥)] | ©s,2).
Based on this, [Lemma 2|implies that the optimal value network is v(zs, 2; ¢*) = I(y;x; | zs, 2).
O
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A.3 REGRESSION VERSION

Before proving our main result for regression models, we first present a preliminary result analogous
to

Lemma 3. When we use the conditional expectation Ely | xs| as a predictor and { is mean
squared error, the incremental loss improvement is an unbiased estimator of the expected reduction
in conditional variance for each (xg,%;) pair:

]Ey7xi\ws [A(x57xiaY)] = Var(y | Qfs) - Exi\ms[var(y | J?S,Xi)]
= Var(Ely | zs,x;] | zs).

Proof. Consider the expected loss given the prediction Ely | zs]:

Eyos [(Ely | 5] — y)z} = Var(y | zg).

Next, consider the loss given the prediction E[y | zg, z;], taken in expectation across x; and y’s
conditional distribution p(y, X; | zs):

2 2
]Ey7xi‘$s (E[y ‘ xvai] - Y) = EXz‘\wsEﬂwsmizm |:(]E[y | JTSyxi} - Y) :|
= Ex,jas[Var(y | 25, x;)].

We therefore have the following expectation for the incremental loss improvement:

E)':Xi\ﬂls[A(mS:xiv}’)] = Var(y | IS) - ]EXi\a:s[Var(y | xS’Xi)]'

Using the law of total variance, we can simplify this difference as follows:

]EY7xi‘zS[A(xS7xi7y)] = Var (E[y | ‘TSVX%'} ‘ .%‘5) .

This provides a measure similar to the CMI: it quantifies to what extent different plausible values of
x; affect our best estimate for the response variable. O

‘We now present our main result for regression models.

Theorem 3. When { is mean squared error, the objectivesleq. (2)|and|eq. (3)|are jointly optimized by
a predictor f(xg;0*) = Ely | x5] and value network where for i € [d] we have

v(rg; ¢*) = Var(Ely | zs,xi] | xs).

Proof. We follow the same proof technique as in The expected loss for the predictor with
input g can be decomposed as follows,

Eyjes [£(f (@5:0),3)] = Eyjos [(/(25:6) = y)?]

= Byjus [(f(25:6) — Ely | s])?] + Var(y | ),

which shows that the optimal predictor network is f(xzg;0*) = E[y | zs]. Assuming we use the
optimal predictor, the expected loss for the value network can then be decomposed as
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Ey,xrilws [(U($S; o) — Alzs, x;, y))ﬂ - EY,xrilws [(U(x5§ ®) — Ey,xi\ws [Alzs, xi, Y)])ﬂ
+ Var (A(zs,%,y)] | zs)

which shows that the optimal value network prediction is Ey x, |, [A(2s, X;,y)]. [Lemma 3|lets us
conclude that the optimal value network is therefore v(xg; ¢*) = Var(E[y | xs,x;] | zg). O

A.4 ALLOWING A VARIABLE FEATURE BUDGET

We first re-state our informal claim, and then introduce notation required to show a formal version.

Proposition 1. (Informal) For any feature budget k, the best policy to achieve this budget on average
achieves lower loss than the best policy with a per-prediction budget constraint. Similarly, for any
confidence level m, the best policy to achieve this confidence on average achieves lower cost than the
best policy with a per-prediction confidence constraint.

In order to account for a policy’s stopping criterion, we generalize our earlier notation so that policies
are functions of the form m(xzg) € {0} U [d], and we say a policy terminates (or stops selecting new
features) when m(xg) = 0. Given an input z, we let S(, z) C [d] denote the set of indices selected
upon termination. The cost for this prediction is ¢(7, ) = ) Ci» and there is also a notion of

expected loss ¢(7, =) that we define as follows:

€S (m,x

6(777 l‘) = Eylms(mm) [E(f(xS(w,m)% y)] (6)

For example, if £ is cross entropy loss and we use the Bayes classifier f(zs) = p(y | zs), we have
¢(m,x) = H(y | zg); due to this interpretation of the expected loss, we refer to constraints on ¢(7, )
as confidence constraints. For example, Chattopadhyay et al.[(2023)) suggests selecting features until
H(y | zs) < m for a confidence level m. In comparing policies, we must consider the tradeoff
between accuracy and feature cost, and we have two competing objectives — the average loss and the
average cost:

{(m) = E[¢(m, x)] c(m) = Ele(m, x)]. ©)

Now, there are three types of policies we wish to compare: (1) those that adopt a budget constraint
for each prediction, (2) those that adopt a confidence constraint for each prediction, and (3) those
with no constraints. These classes of selection policies are defined as follows:

1. (Budget-constrained) These policies adopt a budget &k that must be respected for each input z.
That is, we have ¢(m, z) < k for all z. This can be ensured by terminating the policy when the
budget is exactly satisfied (Ma et al.,2019; |[Rangrej and Clark, 2021} |Covert et al.,|2023) or when
there are no more candidates that will not exceed the budget. Policies of this form are said to
belong to the set 11j.

2. (Confidence constrained) These policies adopt a minimum confidence m that must be respected
for each input m. That is, we must have £(7,z) < m for all . Technically, we may not be able
to guarantee this for all predictions due to inherent uncertainty, so we can instead keep making
predictions as long as the expected loss exceeds m (Chattopadhyay et al.| [2023)). Policies of this
form are said to belong to the set I1,,.

3. (Unconstrained) These policies have no per-prediction constraints on the feature cost or expected
loss. These policies are said to belong to the set I, where we have 11, C II and II,,, C II.

With these definitions in place, we now present a more formal version of our claim.

Proposition 2. (Formal) For any average feature cost k, the best unconstrained policy achieves
lower expected loss than the best budget-constrained policy:

i £(m) < min £(m). 8
ream e {0 < Tip Am) ®)
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Similarly for any average confidence level m, the best unconstrained policy achieves lower expected
cost than the best confidence-constrained policy:

min c(m) < min ¢(7). 9
mell:l(m)<m ( ) mell,, ( ) ©)
In other words, for any desired average feature cost or confidence level, it cannot help to adopt that
level as a per-prediction constraint. The best policy to achieve these levels on average can violate the
constraint for some predictions, and as a result provide either a lower average cost or expected loss.

Proof. The proof of this claim relies on the fact that II;, C II and II,,, C II. It is easy to see that
I, C {m € I : ¢(m) < k}. This implies the inequality infeq. (8)|because the right-hand side takes the
minimum over a smaller set of policies. Similarly, it is easy to see that II,,, C {m € IT : £(7) < m},
which implies the inequality in

B PREDICTOR SUBOPTIMALITY

Consider a feature subset xg where the ideal prediction from the Bayes classifier is p(y | zg), but
the learned classifier instead outputs ¢(y | zs). The incorrect prediction can result in a skewed loss,
which then provides incorrect labels to the value network v(zg; ¢). Specifically, the expected loss
assuming many data points (x,y) such that xg = xg becomes

Eyjos[l(a(y | 25),y)] = H(y | xs) + Dxr (p(y | z5) || a(y | 5)) - (10)

The loss is therefore higher on average than it should be given the Bayes classifier, with the extra
loss being equal to the KL divergence between the ideal and actual predictions. However, this does
not imply that v(zg; ¢) systematically overestimates the CMI, because its labels are based on the
expected loss reduction.

Consider that the above situation with incorrect predictions occurs not only for zg, but also for all
values of x;: that is, the classifier outputs ¢(y | xg, ;) rather than p(y | zgs, z;) for each value z;.
Now, the expected loss reduction is the following:

By xijzs[A(@s, x5, ¥)] = I(y;xi | 2s) + Dxu(p(y | @s) || a(y | #5))
— By jos [DxL(p(y | 23, %) || a(y | 25,%5))]- (1)
This implies that given infinite data and a value network that perfectly optimizes its objective, the
learned CMI estimates are biased according to a difference in KL divergence terms. Notably, the

difference can be either positive or negative, so the CMI estimates can be incorrect in either direction.
And intuitively, the bias shrinks to zero as the classifier approaches p(y | xg) for all predictions.
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C TRAINING ALGORITHM

Algorithm 1| summarizes our learning approach, where we jointly train the predictor and value
networks according to the objectives inleq. (2)|andjeq. (3)} We implemented it in PyTorch (Paszke
et al.,[2017) using PyTorch Lightningﬂ Note that the algorithm requires a dataset of fully observed x
samples with corresponding labels y.

Algorithm 1: Training algorithm

Input: Data distribution p(x, y), learning rate -, budget k, exploration € € (0, 1), costs ¢ € Ri

Output: Predictor f(xg;6), value network v(xg; ¢)

// Prepare models
initialize v(xg; ¢), pre-train f(xg;#) with random masks

while not converged do

// Initialize variables
initialize S = {}, Loy =0, Ly =0
sample z,y ~ p(X,y)

// Initial prediction
calculate Jprey = f(2(3;0)
update Lo < Lo + (Jprev, Y)

while ), c; < kdo

// Determine next selection
calculate I = v(xg; @)

set j = argmax;¢g [;/c; with probability 1 — ¢, else sample j from [d] \ S
// Update predictor loss
update S < SUj

calculate § = f(zg;0)

update Lo < Lo + (7, y)

// Update value loss

calculate A = (Jprev, ¥) — (4, )
update Ly + L+ (I; — A)?

set gprev = :g

end

// Gradient step
update 0 <— 0 —YVgLy, ¢ ¢ —7VyLly

end

*https://www.pytorchlightning.ai
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Next, shows how features are selected at inference time. For simplicity, we show only
the penalized stopping criterion, which requires a penalty term A > 0. To implement either the budget
or confidence constraints described in we only need to change the stopping criterion.

Algorithm 2: Inference algorithm

Input: Test instance (z, y), predictor f(xg;6), value network v(xg; ¢), penalty parameter A > 0
Qutput: Prediction g

// Initialize feature set
initialize S = {}

fori=1,...,ddo

// Estimate current CMI
calculate I = v(zs; ¢)

// Check stopping criterion
if max;¢g I;/c; < A then

| break
end

// Determine next selection
set j = argmax;gg [;/c;
update S <— S U j

end

// Make prediction
calculate § = f(zg;0)

To incorporate prior information into|Algorithm 1|and [Algorithm 2|(denoted by z), we can simply
update I = v(zsg, 2;¢) and § = f(zg, 2;0) during both training and inference.

is simplified to omit several details that we implement in practice, and these details are
discussed below.

Masked pre-training. When pre-training the predictor f(xg;6), we sample feature subsets as
follows: we first sample a cardinality {0, ...,d} uniformly at random, and we then sample the
members of the subset at random. This distribution ensures even coverage of different subset sizes
|S|, whereas treating each feature’s membership as an independent Bernoulli variable biases the
subsets towards a specific size.

Minibatching. As is conventional in deep learning, we calculate gradients in parallel for multiple
inputs. In[Algorithm I} this means that we take gradient steps calculated over multiple data samples
(x,y) and multiple feature budgets.

Learning rate schedule. Rather than train with a fixed learning rate v > 0, we reduce its value over
the course of training. To avoid setting a precise number of epochs for each dataset, we decay the
learning rate when the loss reaches a plateau, and we perform early stopping when the learning rate
is sufficiently low. The initial learning rate depends on the architecture, but we use values similar to
those used for conventional training (e.g., ViTs require a lower learning rate than CNNs or MLPs).

Annealing exploration probability. Setting a large value for € helps encourage exploration, but at
inference time we set € = (. To avoid the mismatch between these settings, we anneal e towards zero
over the course of training. Specifically, we train the model with a sequence of e values, warm-starting
each model with the output from the previous value.

Parameter sharing. As mentioned in we sometimes share parameters between the
predictor and value network. We implement this via a shared backbone, e.g., a sequence of self-
attention layers in a ViT (Dosovitskiy et al.| [2020). The backbone is initialized via the predictor
pre-training with random masks, and it is then used for both f(xg;6) and v(xg; ¢) with separate
output heads for each one.
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Scaling value network outputs. To learn the optimal value network outputs, it is technically
sufficient to let the network make unconstrained, real-valued predictions. However, given that the
true CMI values are non-negative, or I(y;x; | g) > 0 for all (xg,x;), it is sensible to constrain the
predictions: for example, we can apply a softplus output activation. Similarly, we know that the true
CMI values are upper bounded by the current prediction entropy H(y | zs) (Cover and Thomas),
2012). These simultaneous bounds can be summarized as follows:

0<I(y;xi|zs) < H(y|zs).

To enforce both inequalities, we apply a sigmoid operation to the unconstrained value network
prediction v(zg; ¢), and we multiply this by the empirical prediction entropy from f(zg;6). An
ablation showing the effect of this approach is in|Figure 9|

Prior information. We found that an issue with using prior information (as discussed in [Section 4.2)
is overfitting to z. This is perhaps unsurprising, particularly when z is high-dimensional, because the
same input is used repeatedly with different feature subsets xg and the same label y. To mitigate
this, we applied the following simple fix: for the separate network that processes the prior variable z,
we detached gradients when using the learned representation to make classifier predictions, so that
gradients are propagated only for the value network’s CMI predictions. An ablation demonstrating

this approach is in

Inference time. At inference time, we follow a similar procedure as in[Algorithm T|but with € = 0,
so that we always make the most valuable selection. demonstrates the pseudo-code for
inference. In terms of stopping criteria for making a prediction, we explore multiple approaches,
as discussed in (1) a budget-constrained approach with parameter k, (2) a confidence
constrained approach with parameter m, and (3) a penalized approach with parameter A. Our results
are generated by evaluating a single learned policy with several values for each of these parameters.
The range of reasonable values for the confidence parameter m and penalty parameter A depend on
the dataset, so these are tuned by hand.

Feature grouping. Several of our datasets involve grouped features: for example, we group pixels in
the image datasets into patches, and our medical diagnosis datasets have grouped one-hot indicators
for categorical variables (Intubation, ROSMAP). To implement this grouping structure in our method,
we simply predict the CMI for each group, and then calculate the value network’s objective based on
the loss improvement after revealing the group’s values.

D DATASETS

This section provides details about the datasets used in our experiments. The size of each dataset is

summarized in

Table 1: Summary of datasets used in our experiments.

Dataset # Features  # Feature Groups # Classes # Samples
MNIST 784 - 10 60,000
Intubation 112 35 2 65,515
ROSMAP 46 43 2 13,438
ImageNette 50,176 196 10 13,395
ImageNet-100 50,176 196 100 135,000
Histopathology 50,176 196 2 3152

MNIST. This is the standard digit classification dataset (LeCun et al., |1998). We downloaded it
with PyTorch and used the standard train and test splits, with 10,000 training samples held out as a
validation set.

Intubation. This is a privately curated dataset from a university medical center, gathered over
a 13-year period (2007-2020). Our goal is to predict which patients require respiratory support
upon arrival in the emergency department. We selected 112 pre-hospital clinical features including
dispatch information (injury date, time, cause, and location), demographic information (age, sex),
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and pre-hospital vital signs (blood pressure, heart rate, respiratory rate). The outcome is defined
based on whether a patient received respiratory support, including both invasive (intubation) and
non-invasive (BiPap) approaches. We excluded patients under the age of 18, and because many
features represent one-hot encodings for categorical variables, we grouped them into 35 feature
groups. Feature acquisition costs were obtained by having a board-certified emergency physician
estimate the relative cost of obtaining each feature. The dataset is not publicly available due to patient
privacy concerns.

ROSMAP. The Religious Order Study (ROS) and Memory Aging Project (MAP) (A Bennett et al.,
2012agb) are complementary epidemiological studies that enroll participants to study dementia.
ROS is a logitudinal study that enrolls clergy without known dementia from across the United
States, including Catholic nuns, priests, and brothers aged 65 years and older. Participants agree
to annual medical and psychological evaluation and pledge their brain for donation. MAP is a
longitudinal study that enrolls participants encompassing a wider community from 40 continuous
care retirement facilities around the Chicago metropolitan area. Participants are without known
dementia and agree to annual clinical evaluation and donation of brain, spinal cord and muscle after
death. While entering the study, participants share demographic information (e.g. age, sex) and
also provide their blood samples for genotyping. At each annual visit, their medical information
is updated and they take a series of cognitive tests, which generate multiple measurements over
time. This results in 46 different variables, grouped into 43 feature groups to account for one-hot
encodings. The task is to predict dementia onset within the next three years given the current medical
information and no prior history of dementia. In total, the data contains 3,194 individuals with
between 1 and 23 annual visits. Following the preprocessing steps used in (Beebe-Wang et al.|
2021)), we applied a four-year sliding window over each sample, thereby generating multiple samples
per participant. Each sample is split into an input window consisting of the current year visit ¢
and a prediction window of the next three years (t + 1,¢ + 2,¢ + 3). To avoid overlap between
the training, validation, or testing sets, we ensured that all samples from a single individual fell
into only one of the data splits. Feature acquisition costs expressed in terms of time taken were
borrowed from (Beebe-Wang et al.| 2021) for the cognitive tests and rough estimates were assigned
to the remaining features using prior knowledge. We discarded the genotypic feature (APOE e4
allele) from the feature set since it is highly predictive of dementia and it is difficult to assign an
appropriate cost. The dataset can be accessed at https://dss.niagads.org/cohorts/
religious—-orders—-study-memory-and—-aging-project—-rosmap/.

Imagenette and ImageNet-100. These are both subsets of the standard ImageNet dataset (Deng
et al., 2009). Imagenette contains 10 classes and was downloaded using the Fast.ai deep learning
library (Howard), ImageNet-100 contains 100 classes and was downloaded from Kaggle (Ambitygal)),
and in both cases we split the images to obtain train, validation and test splits. Images were resized
to 224 x 224 resolution for both architectures we explored, ResNets (He et al., [2016b) and ViTs
(Dosovitskiy et al., 2020).

MHIST. The MHIST (minimalist histopathology) (Wei et al., 2021} dataset comprises 3,152 hema-
toxylin and eosin (H&E)-stained Formalin Fixed Paraffin-Embedded (FFPE) fixed-size images of
colorectal polyps from patients at Dartmouth-Hitchcock Medical Center (DHMC). The task is to
perform binary classification between hyperplastic polyps (HPs) and sessile serrated adenomas
(SSAs), which is a challenging prediction task with significant variation in inter-pathologist agree-
ment (Abdeljawad et al.| 2015} [Farris et al., |2008; Glatz et al., | 2007; Khalid et al., | 2009; Wong et al.,
2009). HPs are typically benign, while SSAs are precancerous lesions that can turn into cancer if
not treated promptly. The fixed-size images were obtained by scanning 328 whole-slide images and
then extracting regions of size 224 x 224 representing diagnostically-relevant regions of interest for
HPs or SSAs. For the ground truth, each image was assigned a gold-standard label determined by the
majority vote of seven board-certified gastrointestinal pathologists at the DHMC. The dataset can be
accessed by filling out the form athttps://bmirds.github.io0/MHIST/.
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E MODELS

Here, we briefly describe the types of models used for each dataset. The exploration probability € for
all models is set to 0.05 at the start with an annealing rate of 0.2.

Tabular datasets. For all the tabular datasets, we use multilayer perceptrons (MLPs) with two hidden
layers and ReLU non-linearity. We use 128 neurons in the hidden layers for the ROSMAP and
Intubation datasets, and 512 neurons for MNIST. The initial learning rate is set to 10~2 at the start
and we also use dropout with probability 0.3 in all layers to reduce overfitting (Srivastava et al., 2014).
The value and predictor networks use separate but identical network architectures. The networks are
trained on a NVIDIA RTX 2080 Ti GPU with 12GB of memory.

Image datasets: ResNet. We use a shared ResNet-50 backbone (He et al., 2016b) for the predictor
and value networks. The final representation from the backbone has shape 7 x 7, and the output heads
for each network are specified as follows. The predictor head contains a Conv — Batch Norm —
ReLU sequence followed by global average pooling and a fully connected layer. The value network
head consists of an upsampling block with a transposed convolutional layer, followed by a 1 x 1
convolution and a sigmoid to scale the predictions (see . The learning rate starts at 107>,
and the networks are trained on a NVIDIA RTX 2080 Ti GPU with 12GB of memory.

Image datasets: ViT. We use a shared ViT backbone (vit_small_patchl6_224) (Dosovitskiy.
et al., [2020) for the predictor and value networks. We use ViT and ResNet backbones having a similar
number of parameters for a fair comparison: ResNet-50 has approximately 23M parameters, and
ViT-Small has 22M parameters. The predictor head contains a linear layer applied to the class token,
and the value network head contains a linear layer applied to all tokens except for the class token,
followed by a sigmoid function. When incorporating prior information, a separate ViT backbone is
used for both the predictor and value networks to generate an embedding, which is then concatenated
with the masked image embedding to get either the predicted CMIs or the class prediction. The
learning rate starts at 10~?, and the networks are trained on a NVIDIA Quadro RTX 6000 GPU with
24GB of memory.

F BASELINES

Here, we provide more details here on our baseline methods.

Concrete autoencoder. This is a static feature selection method that optimizes a differentiable
selection module within a neural network (Balin et al.,|2019). The layer can be added at the input
of any architecture, so we use this method for both tabular and image datasets. The original work
suggested training with an exponentially decayed temperature and a hand-tuned number of epochs,
but we use a different approach to minimize the tuning required for each dataset: we train with a
sequence of temperature values, and we perform early stopping for each one based on the validation
loss. We return the features that are selected after training with the lowest temperature, and we
evaluate them by training a model from scratch with only those features provided.

CMICOT. This is a static feature selection method that scores features based on their mutual
information with the response variable. To identify joint interactions between several features, the
authors build a scoring function using a min-max optimization objective (Shishkin et al.| |2016).
To make the method practically feasible, binary representations of features are used. To adapt this
method to our setting, for each feature budget, we use CMICOT to select the best subset and then fit
a classifier on the selected features to get the final performance. We ensure that the classifier used has
the same architecture as the one used for DIME.

mRMR. This is a static feature selection method that identifies a subset of features from a larger set
that maximizes the relevance to the target variable while minimizing redundancy among selected
features (Peng et al. [2005)). In other words, it aims to find a set of features that are individually
informative for predicting the target variable and, at the same time, not highly correlated with each
other. Similar to CMICOT, we fit a separate classifier on the subset identified for each feature budget.

EDDI. This is a DFS method that uses a generative model to sample the unobserved features (Ma
et al.,[2019). We implement a PVAE to sample the unknown features, and these samples are used to
estimate the CMI for candidate features at each selection step. We separately implement a classifier
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that makes predictions with arbitrary feature sets, similar to the one obtained after masked pre-training
in[Algorithm T| We use this method only for our tabular datasets, as the PVAE is not expected to work
well for images, and the computational cost at inference time is relatively high due to its iteration
across candidate features.

Probabilistic hard attention. This method extends EDDI to work for images by imputing unobserved
features within a low-dimensional, learned feature space (Rangrej and Clark, 2021)). To ensure that
the method operates on the same image regions as DIME, we implemented a feature extractor that
separately computes embeddings for non-overlapping 14 x 14 patches, similar to a ViT (Dosovitskiy
et al.| |2020) or bag-of-features model (Brendel and Bethgel [2019). Specifically, our extractor consists
of a 16 x 16 convolutional layer, followed by a series of 1 x 1 convolutions. The features from each
patch are aggregated by a recurrent module, and we retain the same structure used in the original
implementation.

Argmax Direct. This is a DFS method that directly estimates the feature index with maximum CMI.
It is based on two concurrent works whose main difference is how gradients are calculated for the
selector network (Chattopadhyay et al., 2023} |Covert et al., [2023])); for simplicity, we only use the
technique based on the Concrete distribution from|Covert et al.|(2023). As a discriminative method,
this baseline allows us to use arbitrary architectures and is straightforward to apply with either tabular
or image datasets.

Classification with costly features (CwCF). This is an RL-based approach that converts the DFS
problem into a MDP, considering the expected utility of acquiring a feature given its cost and impact
on the classification accuracy (Janisch et al.,2019). A variant of deep Q-learning is implemented as
the RL solver, and the method is adapted to work with sparse training datasets with missing features.
We used the budget-constrained implementation, we added support for feature grouping, and we
use the same architectures as DIME for the Q-network. We train and evaluate separate models for
each target budget. We limit comparison to tabular datasets because the method does not scale well
and high performance is not expected for images. CwCF initially suffered in our evaluation with
the medical diagnosis datasets because we use AUROC to measure performance: CwCF produces
hard classifications rather than predicted probabilities, so it can suffer on a ranking-based metrics
like AUROC that are more meaningful for clinical prediction tasks. To account for this discrepancy,
we followed an approach from [Erion et al.|(2022) and used the Q-values for classes as proxies for
pseudo predicted probabilities, since the Q-values for a “class” action can be interpreted as a score
of how confident the model is in predicting that class. This resulted in improved performance for
the ROSMAP and the Intubation datasets. However, we still observe that CwCF underperforms
compared to the other methods.

Opportunistic learning (OL). This is another RL-based approach to solve DFS (Kachuee et al.|
2018). The model consists of two networks: a Q-network that estimates the value associated
with each action, where actions correspond to features, and a P-network responsible for making
predictions. These are similar to the value and predictors network used in DIME, so we use the
same architectures as our approach, and OL shares parameters between the P- and Q-networks. We
use the implementation from (Covert et al., [2023), which modifies the method by preventing the
prediction action until the pre-specified budget is met, and supports pre-defined feature groups. We
limit comparison to tabular datasets since the method does not scale well and high performance is not
expected for images.

G ADDITIONAL RESULTS

Here, we present the results of several additional experiments and ablations on the different datasets.

Figure 7|shows the prediction calibration of the predictor network by plotting DIME’s performance
at different levels of confidence for a specific budget of & = 15, along with the density of the
samples at those confidence levels across multiple datasets. This shows that the predictor network is
well calibrated and does not systematically overestimate or underestimate its predicted probabilities.
Proper calibration is important to achieve accurate loss values, because these are then used to train

the value network (seefeq. (3)).

shows the calibration of the predicted CMIs by the value network for both a tabular and an
image dataset by plotting the difference in entropy or losses against the predicted CMI. A linear trend
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showcases that the CMIs predicted by the value network align well with the difference in either the
entropy or the loss. Since we do not have ground truth CMI values to evaluate the accuracy of our
value network, this serves a viable alternative for real-world datasets, and we can verify that the CMI
predictions correctly represent the expected reduction in either loss or prediction entropy.

Figure 9|shows the effect of constraining the predicted CMIs using the current prediction entropy, as
described in Without the constraint, there are some samples with unrealistically high
CMI estimates that are greater than the prediction entropy. After applying the sigmoid activation on
the value network predictions, this issue is corrected.

[Figure T0|shows multiple trials for the penalized policy on the tabular datasets. This provides a simple
way to represent variability between trials when we cannot precisely control the budget between
separately trained policies. Similarly, [Figure 12|and [Figure 13|show multiple trials while considering
non-uniform feature costs, and [Figure 11|shows multiple trials for the image datasets. The relative
results stay the same across all trials, as the performance variability between trials is generally small.

Figure 14{shows the confidence distribution of full input predictions in the tabular datasets. Across
all datasets, we observe that the model has high confidence in many of the samples, but there are
some that remain uncertain even after observing all the features. This provides motivation for using
the penalized approach, because a confidence-constrained approach could suffer here by expending
the entire feature acquisition budget only to remain at high uncertainty.

shows the effectiveness of detaching gradients for the predictor network of the sketch z in
the histopathology dataset, as described in[Appendix C| The penalized policy performs significantly
better when we propagate gradients only for CMI predictions, which we attribute to reduced overfitting
to the prior information.

[Figure 16| compares the penalized stopplng criterion with the confidence- and budget-constrained
versions for the i image datasets. Similarly, 0|and[TT]include the budget-constrained approach
in comparisons with the baselines. The penahzed stopping criterion introduced in
consistently achieves the best results.

compares the training times (in hours) of DIME with the baselines. It is difficult to compare
exact training times across methods because each has hyperparameters that can be tuned to make it
converge faster, but we compared them under the hyperparameters used to generate our results. We
observe that DIME trains slightly faster than Argmax Direct for both the tabular and image datasets.
Compared to EDDI and Hard Attention, we see that these generative methods are actually somewhat
faster to train; however, because they must generate a large number of samples at inference time and
iterate over candidate features, their evaluation time is far slower. The total training and inference
time for EDDI is 48.26 hours with MNIST, and for Hard Attn is 25.45 hours on Imagenette, whereas
the evaluation time for DIME is negligible compared to its training. As expected, the RL method
CwCeF is very slow to run on MNIST, taking almost 29 hours to train models for all target budgets.

Finally, shows example feature selections for the MNIST dataset, and shows

feature selection frequencies for ROSMAP, to verify the distinct selections made across predictions.
This capability differs from static selection methods like the CAE (Balin et al.}[2019), which select
the same features for all predictions.

Table 2: Training times for each method (in hours).

Method MNIST  Imagenette
DIME 4.88 27.14
Argmax Direct 6.02 43.67
EDDI 0.39 -
Hard Attn - 18.25
CwCF 28.91 -
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Figure 7: Evaluation of prediction calibration for a fixed budget of £ = 15. The left column shows
the prediction calibration of the predictor network by plotting the accuracy for different confidence
levels. The right column shows the distribution of confidences across all samples.
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Figure 8: Evaluation of CMI calibration. The x-axis shows different values for the predicted CMI

throughout the selection process, and the y-axis shows the reduction in either loss or entropy after the
corresponding feature is selected.
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Figure 9: Predicted CMIs with and without the entropy trick to scale value network outputs.
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Figure 10: Multiple trials using the penalized policy and the budget constraint for tabular datasets.
DIME with penalized policy remains the best method across five independent trials.
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Figure 11: Multiple trials using DIME’s penalized policy and the budget constraint for image
datasets. DIME with penalized policy remains the best method across five independent trials.
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Figure 12: Multiple trials when using non-uniform feature costs for the ROSMAP dataset.
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Figure 13: Multiple trials when using non-uniform feature costs for the intubation dataset.
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Figure 14: Confidence distribution on full-input predictions across the tabular datasets.
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Figure 15: Ablation of stop-gradients trick when using prior information for the histopathology

dataset (Appendix C).
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Figure 16: Comparison of the budget-constrained, confidence-constrained and penalized stopping
criteria.
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Figure 17: Examples of MNIST feature selections across several samples, with budget & = 10.
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Figure 18: Feature selection frequency for ROSMAP. Each entry shows the fraction of samples in
which a feature is selected when we use the budget-constrained stopping criterion for the specified

number of features.
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Figure 19: Evaluation with tabular datasets for varying feature acquisition budgets. Results are
averaged across 5 trials, and shaded regions indicate the standard error for each method.
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