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1 SAMPLE COMPLEXITY WITH UNKNOWN SUPPORT

Proposition 1.1 (Sample Complexity with Unknown Support). Let N > M ≥ 2, ϵ > M
4N , and θi ∈ R

for i ∈ [N ]. The number of samples required to learn a distribution of the form Z = 1
N

∑N
i=1 δθi to

within total variation distance ϵ is Ω
(M
ϵ2

)
.

Proof. Let M ≥ 2 and D = {1, 2, · · · ,M} ⊆ R. First we will show that any distribution p(z)
supported on z ∈ D is within total-variation distance k

4N of a distribution of a random variable of the
form Z = 1

N
∑N

i=1 δθi for numbers θi ∈ D. Indeed we can construct such a distribution as follows.
First let p̃(z) be the rounded distribution obtained by rounding each probability p(z) to the nearest
integer multiple of 1

N . The total variation distance between p(z) and p̃(z) is given by

1

2

M∑
z=1

|p(z)− p̃(z)| ≤ 1

2

M∑
z=1

1

2N
≤ M

4N
. (1)

Next partition the set of θi into M groups G1,G2, . . . ,GM, where group Gz has size N p̃(z) (this size
is an integer by construction of p̃). Finally, for each θi ∈ Gz assign θi = z. Thus for Z = 1

N

∑N
i=1 δθi

we have for each z ∈ D

P[Z = z] =
1

N

N∑
i=1

1[θi = z] =
1

N
|Gz| = p̃(z). (2)

Therefore, any distribution p(z) can be approximated to within total variation distance M
4N by a

distribution Z of the prescribed form. Thus, by the sample complexity lower bounds for learning a
discrete distribution with known support, for any ϵ > M

4N at least M
ϵ2 samples are required to learn a

distribution of the form Z = 1
N

∑N
i=1 δθi .

2 MEAN ESTIMATION VERSUS LEARNING THE DISTRIBUTION

To get a fundamental understanding of the additional cost of learning the state-action value distribution,
we compare the sample complexity of learning the distribution of a finitely supported random variable
with that of estimating the mean.
Proposition 2.1 (Canonne (2020)). Let X be a real-valued random variable with support on exactly
k known values. Further, assume |X | < 1 and let ϵ > 0. Any algorithm that learns the distribution
P(X ) within total variation distance ϵ requires Ω(k/ϵ2) samples, while there exists an algorithm to
estimate E[X ] to within error ϵ using only O(1/ϵ2) samples.

Proof. Learning a distribution with known discrete support of size k requires Ω(k/ϵ2) samples to
achieve total variation distance at most ϵ with constant probability (Canonne, 2020). On the other
hand, let X1, . . . ,Xn be independent samples of the random variable X and consider the sample mean
X̄ = 1

n

∑n
i=1 Xi. The expectation is given by E[X̄ ] = E[X ] and the variance is σ2(X̄ ) = 1

nσ
2(X ).

Further, since |X | < 1 we have that σ2(X) < 1 and so σ2(X̄ ) ≤ 1
n . Hence, by Chebyshev’s

inequality

P
[
|X̄ − E[X ]| > ϵ

]
≤ 1

ϵ2n
. (3)

Thus with n = O( 1
ϵ2 ) samples, X̄ is within ϵ of E[X ] with constant probability.
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3 REPRODUCIBILITY AND CONFIGURATION DETAILS

The hyperparameter settings of all of the algorithms in our paper, double-Q, dueling, QRDQN,
and IQN for the high-data regime are exactly the same with the original papers that proposed these
algorithms in the high-data regime. See the hyperparameter settings in Hasselt et al. (2016) for
double-Q, Wang et al. (2016) for dueling architecture, Bellemare et al. (2017) for C51, Dabney et al.
(2018a) for QRDQN, and Dabney et al. (2018b) for IQN.

Table 1: Hyperparameter settings and architectural details for the dueling algorithm, double-Q
learning, C51, QRDQN, and IQN in the low-data regime of the Arcade Learning Environment.

Hyperparameters Settings

Grey-scaling True
Observation down-sampling (84, 84)
Action repetitions 4
Frames stacked 4
Batch Size 32
Update Double-Q
Max Frames per episode 108000
Evaluation exploration epsilon 0.01
Min replay size for sampling 1600
Max gradient norm 10
Discount factor 0.99
Maximum absolute rewards 1
Training steps 100000
Evaluation steps 125000
Exploration epsilon decay frame fraction 0.0125
Gradient error bound 0.03125
Optimizer Adam
Replay period every 1
n-step length 10
Exploration ϵ-greedy
ϵ-decay 5000
Number of atoms 51
Number of quantiles 201
vmax 10

Q-Network channels 32,64,64
Q-Network filter size 8× 8, 4× 4, 3× 3
Q-Network stride (4, 4), (2, 2), (1, 1)
Q-Network hidden units 512

For a fair and transparent comparison, we kept the hyperparameters exactly the same with the
DRQICLR paper for all of the baseline Q algorithms in the low-data region. Note that DRQ is
an observation regularization study; hence the hyperparameters in the DRQ paper are specifically
tuned for the purpose of the paper besides tuning for the Arcade Learning Environment 100K low-
data regime. We did not tune any of the hyperparameters for the baseline algorithms (i.e. dueling
architecture). Hence, it is even further possible to conduct hyperparameter tuning and get better
performance profile results with the simple baseline dueling architecture. For the purpose of this
paper we kept the hyperparameters exactly the same with the DRQICLR paper. However, we would
strongly encourage further research to conduct hyperparameter optimization to obtain better results
from the baseline dueling architecture in the low-data regime.

We have also tried the hyperparameter settings reported in the data efficient Rainbow (DER) paper for
C51, IQN and QRDQN in the low-data regime. The performance results are provided in Table 2 for
the hyperparameter settings of DER. As can be seen, the hyperparameter settings of DRQICLR gave
better performance results also for C51, IQN and QRDQN in the low-data region. The results in Table
2 also align with the claims of the DER paper in which there has not been extensive hyperparameter
tuning conducted to achieve the results provided, and it is possible to obtain better results by further
hyperparameter tuning.
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Table 2: Human normalized mean, human normalized median, and human normalized 20th percentile
results for the C51 algorithm, QRDQN, and IQN in the low-data regime of the Arcade Learning
Environment with the hyperparameter settings reported in the DER paper.

Algorithms Human Normalized Median Human Normalized Mean Human Normalized 20th Percentile

C51 0.0490±0.0038 0.1352±0.0057 0.0163±0.0029
QRDQN 0.0203±0.0033 0.0778±0.0101 -0.0012±0.0053
IQN 0.0202±0.0020 0.0590±0.0139 -0.0035±0.0031

4 RESULTS ON THE COMPLETE LIST OF GAMES FROM THE ARCADE
LEARNING ENVIRONMENT 100K BASELINE

Table 3: Average returns for human, random, dueling Wang et al. (2016), C51, QRDQN and IQN
across all the games in the Arcade Learning Environment 100K benchmark.

Games Human Random C51 QRDQN IQN Dueling

Alien 7127.7 227.8 547.16 509.57 330.81 705.58
Amidar 1719.5 5.8 78.41 55.70 74.98 199.31
Assault 742.0 222.4 465.30 314.58 488.55 503.82
Asterix 8503.3 210.0 475.90 367.32 286.26 705.16
BankHeist 753.1 14.2 22.81 21.53 18.17 243.19
BattleZone 37187.5 2360.0 2728.52 6238.27 3105.70 6880.37
Boxing 12.1 0.1 9.60 2.03 12.41 1.68
Breakout 30.5 1.7 11.35 16.50 15.09 8.28
ChopperCommand 7387.8 811.0 831.83 752.51 629.04 1313.90
CrazyClimber 35829.4 10780.5 71776.14 21366.42 22649.44 17039.44
DemonAttack 1971.0 152.1 789.09 198.01 1035.17 694.42
Freeway 29.6 0.0 20.42 5.98 19.37 5.93
FrostBite 4334.7 65.2 215.25 218.11 192.33 259.18
Gopher 2412.5 257.6 791.83 576.19 466.81 429.85
Hero 30826.4 1027.0 7097.42 1108.44 1322.63 8210.53
Jamesbond 302.8 29.0 43.85 108.71 26.23 296.46
Kangaroo 3035.0 52.0 301.01 120.60 294.46 1914.86
Krull 2665.5 1598.0 3744.04 2040.50 2319.74 2867.78
KungFuMaster 22736.3 258.5 6877.62 11574.02 1526.76 5367.90
Mspacman 6951.6 307.3 917.78 749.29 533.98 1355.21
Pong 14.6 -20.7 11.17 -7.49 -10.86 -4.20
PrivateEye 69571.3 24.9 -103.30 -6.32 33.83 100.00
Qbert 13455.0 163.9 528.30 590.05 582.72 1710.23
RoadRunner 7845.0 11.5 3993.34 400.59 1202.20 6031.80
Seaquest 42054.7 68.4 163.69 183.25 213.87 351.10
UpNdDown 11693.2 533.4 1970.28 1622.67 1552.27 3553.12

Table 3 reports the average scores obtained by the human player, random player, baseline Q-based
algorithm dueling architecture, baseline algorithm C51 that focuses on learning the distribution,
QRDQN and IQN across all the games in the Arcade Learning Environment 100K baseline. These
results once more demonstrate that the baseline Q-based algorithm performs significantly better than
any algorithm that aims to learn the distribution as has also been explained in detail in Section 5 in
the main body of the paper.

Figure 1 reports the learning curves of the complete list of the games in the Arcade Learning
Environment 100K benchmark; in particular, for Alien, Amidar, Asterix, BankHeist, BattleZone,
Boxing, Breakout, ChopperCommand, Hero, CrazyClimber, JamesBond, Kangaroo, PrivateEye,
MsPacman, FrostBite, Qbert, RoadRunner, Seaquest, Pong, Gopher, DemonAttack, Krull, and
UpNDown with dueling architecture Wang et al. (2016), C51 (Bellemare et al., 2017), IQN (Dabney
et al., 2018a) and QRDQN (Dabney et al., 2018b; Bellemare et al., 2023) algorithms with 100K
environment interaction training. Note that the results for deep double-Q learning (Hasselt et al.,
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Alien Amidar Assault Asterix

BankHeist BattleZone Boxing BreakOut

ChopperCommand DemonAttack Hero JamesBond

Kangaroo Krull CrazyClimber MsPacman

FrostBite RoadRunner Seaquest UpNDown

Pong Gopher Qbert PrivateEye

Figure 1: The learning curves of Alien, Amidar, Asterix, BankHeist, BattleZone, Boxing, Breakout,
ChopperCommand, Hero, CrazyClimber, JamesBond, Kangaroo, PrivateEye, MsPacman, FrostBite,
Qbert, RoadRunner, Seaquest, Pong, Gopher, DemonAttack, Krull, and UpNDown with dueling archi-
tecture Wang et al. (2016), C51, IQN and QRDQN algorithms in the Arcade Learning Environment
with 100K environment interaction training.

2016), prior (Schaul et al., 2016) and DQN (Mnih et al., 2015) are reported in the main body of the
paper.

The learning curves reported in Figure 1 demonstrate that the number of samples required to obtain
the performance level achieved via the simple base dueling architecture is significantly higher for any
reinforcement learning algorithm that learns the distribution. Note that the baseline reinforcement
learning algorithm C51 focusing on learning the distribution represents the state-action value distri-
bution as a discrete probability distribution supported on 51 fixed atoms evenly spaced between a
pre-specified minimum and maximum value. In contrast, QR-DQN represents the value distribution
as the uniform distribution over a larger number of atoms with variable positions on the real line. Thus,
QR-DQN is able to more accurately approximate a broader class of state-action value distributions.
Finally, IQN parameterizes the quantile function of the state-action value distribution via a deep
neural network, leading to a yet more flexible representation of the state-action value distribution. As
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discussed in Section 4, more complex representations for broader classes of distributions come at the
cost of a higher sample complexity required for learning.
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