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ABSTRACT

Learning an accurate value function for a given policy is a critical step in solving
reinforcement learning (RL) problems. So far, however, the convergence speed
and sample complexity performances of most existing policy evaluation algorithms
remain unsatisfactory, particularly with non-linear function approximation. This
challenge motivates us to develop a new path-integrated primal-dual stochastic
gradient (PILOT) method, that is able to achieve a fast convergence speed for RL
policy evaluation with nonlinear function approximation. To further alleviate the
periodic full gradient evaluation requirement, we further propose an enhanced
method with an adaptive-batch adjustment called PILOT+. The main advantages
of our methods include: i) PILOT allows the use of constant step sizes and achieves
the O(1/K) convergence rate to first-order stationary points of non-convex policy
evaluation problems; ii) PILOT is a generic single-timescale algorithm that is
also applicable for solving a large class of non-convex strongly-concave minimax
optimization problems; iii) By adaptively adjusting the batch size via historical
stochastic gradient information, PILOT+ is more sample-efficient empirically
without loss of theoretical convergence rate. Our extensive numerical experiments
verify our theoretical findings and showcase the high efficiency of the proposed
PILOT and PILOT+ algorithms compared with the state-of-the-art methods.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has achieved enormous successes in a large number of
areas, including healthcare (Petersen et al., 2019; Raghu et al., 2017b), financial recommendation
(Theocharous et al., 2015), ranking system (Wen et al., 2023), resources management (Mao et al.,
2016) and robotics (Levine et al., 2016; Raghu et al., 2017a), to name just a few. In RL, an agent
interacts with an environment and repeats the tasks of observing the current state, performing a policy-
based action, receiving a reward, and transitioning to the next state. Upon collecting a trajectory of
action-reward sample pairs, the agent updates its policy with the aim of maximizing its long-term
accumulative reward. In this RL framework, a key step is the policy evaluation (PE) problem, which
aims to learn the value function that estimates the expected long-term accumulative reward for a given
policy. Value functions not only explicitly provide the agent’s accumulative rewards, but are also able
to update the current policy so that the agent can visit valuable states more frequently (Lagoudakis &
Parr, 2003). Regarding PE, two of the most important performance metrics are convergence rate and
sample complexity. First, since PE is a subroutine of an overall RL task, developing fast-converging
PE algorithms is of critical importance to the overall efficiency of RL. Second, due to the challenges
in collecting a large number of training samples (trajectories of state-action pairs) for PEs in RL,
reducing the number of samples (i.e., sample complexity) can significantly alleviate the burden
of data collection for solving PE problems. These two important aspects motivate us to pursue a
fast-converging PE algorithm with a low sample complexity in this work.

1



Published as a conference paper at ICLR 2024

Among various algorithms for PE, one of the simplest and most effective methods is the temporal
difference (TD) learning approach (Sutton, 1988). In TD learning, instead of focusing on the predicted
and actual outcomes, the key idea is to make the difference between temporally successive predictions
small. Specifically, the TD learning approach learns the value function using the Bellman equation
to bootstrap from the currently estimated value function. To date, there have been many algorithms
proposed within the family of TD learning (Dann et al., 2014). However, most of these methods suffer
from either unstable convergence performance, (e.g., TD(λ) (Sutton, 1988) for off-policy training) or
high computational complexity (e.g., the least-squares temporal difference (LSTD) (Boyan, 2002)) in
training with massive features. One reason of the unstable convergence performance of these early
attempts is that they do not leverage the gradient-oracle in PE. Thus, in recent years, gradient-based
PE algorithms have attracted increasing attention.

However, when working with nonlinear DNN models, the convergence performance of the con-
ventional single-timescale TD algorithms may not be guaranteed (Tsitsiklis & Van Roy, 1996). To
address this issue, some convergent two-timescale algorithms (Maei et al., 2009; Chung et al., 2018)
have been proposed at the expense of higher implementation complexity. Second, modern PE tasks
could involve a large amount of state transition data. To perform PE, algorithms typically need to
calculate full gradients that require all training data (e.g., gradient temporal difference (GTD) (Sutton
et al., 2008) and TD with gradient correction (TDC) (Sutton et al., 2009)], which entails a high
sample complexity. To the best of our knowledge, all existing works on PE either focus on linear
approximation, such as GTD2 (Sutton et al., 2009), PDBG (Du et al., 2017), SVRG (Du et al., 2017),
SAGA (Du et al., 2017) or they exhibit slower theoretical convergence performance, as observed
in STSG (Qiu et al., 2020), VR-STSG (Qiu et al., 2020), nPD-VR (Wai et al., 2019) in the sense
of achieving a convergence rate that is slower than O(1/K), where K is the number of iterations.
Please see detailed discussions in Section. 2. In light of the above limitations, in this paper, we ask
the following critical question:

Can we develop a fast-converging single-timescale algorithm for PE with nonlinear function
approximation?

In this paper, we give an affirmative answer to the above question. Specifically, we propose an efficient
path-integrated primal-dual stochastic gradient algorithm (PILOT) to tackle the PE problem with
nonlinear function approximation, which we recast as a minimax optimization problem. The proposed
PILOT algorithm admits a simple and elegant single-timescale algorithmic structure. Besides, we
further enhance PILOT by proposing PILOT+, which uses adaptive batch sizes to avoid the periodic
full gradient evaluation to further reduce sample complexity. The major contribution of this paper
is that our proposed algorithms achieve the first O(1/K) convergence rate (K is the number of
iterations) with constant step-sizes for PE with nonlinear function approximation, which is the best
result in the literature so far. Our main results are highlighted below:

• Utilizing a variance reduction technique, our PILOT algorithm facilitates the use of constant
step-sizes while maintaining a low sample complexity. We demonstrate that, under reasonable
mild assumptions and suitable parameter selections, PILOT attains an O(1/K) convergence rate
to a first-order stationary point for a class of nonconvex-strongly-concave (NCX-SCV) minimax
problems encountered in RL. To establish this outcome, our convergence analysis employs new
proof techniques and resolves an ambiguity present in the current state-of-the-art convergence
analyses of Variance Reduction (VR)-based PE methods.

• Our PILOT+ algorithm leverages adaptive batch sizes, effectively integrating historical information
throughout the optimization process without necessitating backtracking or condition verification.
We demonstrate that PILOT+ leads to a substantial reduction in both sample requirements and
gradient computation loads. This reduction is made possible by our innovative adaptive batch size
technique, which eliminates the need for full gradient evaluation.

• Our comprehensive experimental results provide strong evidence of the superior performance of
our algorithms compared to state-of-the-art gradient-based PE methods. Additionally, PILOT+

exhibits the capability to further reduce the sample complexity of the PILOT algorithm. It
is worth noting that while our primary focus is on PE, the design of our algorithms and the
proof techniques developed also hold potential significance in the broader domain of minimax
optimization, presenting independent theoretical interest.
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Table 1: PE algorithms comparison: M is the size of the dataset and K is the total iteration.

Algorithm Function Approx. Problem Step-size Convergence Rate

GTD2 Sutton et al. (2009) Linear - O(1) -
PDBG Du et al. (2017) Linear Convex-Concave O(1) O(1/K)
SVRG Du et al. (2017) Linear Convex-Concave O(1) O(1/K)
SAGA Du et al. (2017) Linear Convex-Concave O(1) O(1/K)

TATD Patil et al. (2023) Linear - - O(1/K)

STSG Qiu et al. (2020) Nonlinear Stochastic/ NCX-SCV O(1) O(1/K1/2)

VR-STSG Qiu et al. (2020) Nonlinear Stochastic/ NCX-SCV O(1) O(1/K2/3)
nPD-VR Wai et al. (2019) Nonlinear Finte-Sum / NCX-SCV O(1/M) Slower than1 O(1/K)

PILOT [Ours.] Nonlinear Finte-Sum / NCX-SCV O(1) O(1/K)
PILOT+ [Ours.] Nonlinear Finte-Sum / NCX-SCV O(1) O(1/K)

1 The convergence rate of nPD-VR is ambiguous. See the detailed discussions in Sections 2 below and 4.

2 RELATED WORK

1) TD Learning with Function Approximation for PE: TD learning with function approxima-
tion plays a vital role in PE. The key idea of TD learning is to minimize the Bellman error for
approximating the value function. However, most existing TD learning algorithms with theoretical
guarantees focus on the linear approximation setting (e.g., (Sutton et al., 2008; Srikant & Ying, 2019;
Xu et al., 2019; Touati et al., 2018; Patil et al., 2023; Li et al., 2021)). Existing works in (Doan
et al., 2019; Liu et al., 2015; Macua et al., 2014; Zhang & Xiao, 2019; Patil et al., 2023; Li et al.,
2021) provided a finite-time analysis for the distributed TD(0) and showed that the convergence
rates of their algorithms are O(1/K). It was shown in (Du et al., 2017) that PE with linear function
approximation by TD(0) can be formulated as a strongly convex-concave or convex-concave problem,
and can be solved by a primal-dual method with a linear convergence rate. Unfortunately, the linearity
assumption cannot be applied to a wide range of PE problems with nonlinear models. TD learning
with nonlinear (smooth) function approximation is far more complex. The work in (Maei et al., 2009)
was among the first to propose a general framework for minimizing the generalized mean-squared
projected Bellman error (MSPBE) with smooth and nonlinear value functions. Despite their use
of two-timescale step-sizes, it’s important to note that this approach yielded slow convergence per-
formance. Other TD methods with nonlinear function approximations for PE include (Wang et al.,
2017; 2016). Nonlinear TD learning was also investigated in Qiu et al. (2020), which proposed two
single-timescale first-order stochastic algorithms. However, the convergence rates of their STSG and
VR-STSG methods are O(1/K1/4) and O(1/K1/3), while our PILOT algorithm achieves a much
faster O(1/K) convergence rate, matching the standard one in the linear case.

In PE with non-linear function approximation, the state-of-the-art and the most related work is
(Wai et al., 2019), which showed that minimizing the generalized MSPBE problem is equivalent to
solving a non-convex-strongly-concave (NCX-SCV) minimax optimization problem by applying
the Fenchel’s duality. However, their best convergence results only hold for a small step-size that is
O(1/M), where M denotes the size of the dataset. This will be problematic for RL problems with
a large state-action transition dataset. Furthermore, it is worth highlighting that their convergence
rate bound takes the form of F (K)+Constant1

K·Constant2 (cf. Theorem 1, Eq. (26) in Wai et al. (2019)). Here,
the term F (K) in the denominator inherently relies on the primal and dual values θ(K) and ω(K) at
the K-th iteration. However, the bounding of ω(K) in (Wai et al., 2019) remains unclear, leading
to ambiguity when attempting to guarantee an O(1/K) convergence rate. Therefore, whether an
O(1/K) convergence rate is achievable in single-timescale PE with nonlinear function approximation
and constant step-sizes remains an open question thus far. The key contribution and novelty in this
paper is that we resolve the above open question by proposing two new algorithms, both achieving
an O(1/K) convergence rate. To establish this result, we propose a new convergence metric (cf.
Eq. (6) in Section 4), which necessitates new proof techniques and analysis. For easy comparisons,
we summarize our algorithms in a comparison with the related existing works in Table 1.

2) Relations with NCX-SCV minimax Optimization: Although the focus of our paper is on PE,
our algorithmic techniques are also related to the general area of NCX-SCV minimax optimization
due to the primal-dual MSPBE formulation (cf. Eq. (1) in Section 3) 1. Early attempts in (Nouiehed

1We note that solving the MSPBE-based PE problem is one of the most fitting motivating applications
for NCX-SCV minimax optimization problems. As discussed in Section 3, the MSPBE-based PE problem
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et al., 2019; Lin et al., 2020b; Lu et al., 2019) developed gradient descent-ascent algorithms to solve
the NCX-SCV minimax problems. However, these methods suffer from a high sample complexity
and slow convergence rate. To overcome this limitation, two variance-reduction algorithms named
SREDA (Luo et al., 2020) are proposed for solving NCX-SCV minimax problems, which share some
similarities to our work. SREDA was later enhanced in Xu et al. (2020) to allow larger step-sizes.
However, our algorithms differ from SREDA in the following key aspects: (i) Our algorithms are
single-timescale algorithms (see Section 4 for the notions of single-timescale and two-timescale
algorithms), which are much easier to implement. In comparison, SREDA is a two-timescale
algorithm that also requires solving an inner concave maximization subproblem. To a certain extent,
SREDA can be viewed as a triple-loop structure, and hence the implementation complexity of SREDA
is higher than ours; (ii) In the initialization stage, SREDA uses a subroutine called PiSARAH to help
the SREDA algorithm achieve the desired accuracy at the initialization step and can be seen as an
additional step to solve an inner concave maximization subproblem. Thus, SREDA has a higher
computation cost than our algorithm. (iii) The number of hyperparameters in SREDA is more than
ours and it requires the knowledge of the condition number to set the algorithm’s parameters for
good convergence performance. By contrast, our algorithms only require step-sizes α and β to be
sufficiently small (smaller than the upper bounds we provide in our theorems), which is easier to tune
in practice. (iv) SREDA does not provide an explicit convergence rate in their paper (it is also unclear
what their convergence rate is from their proof). Yet, we show that our PILOT algorithm has a lower
sample complexity than that of SREDA.

Another related work in NCX-SCV minimax optimization is (Zhang et al., 2021), which provided
sample complexity upper and lower bounds. However, there remains a gap between the sample
complexity lower and upper bounds in (Zhang et al., 2021). By contrast, the sample complexity of
our PILOT algorithm is the first to match the lower bound O(M +

√
Mϵ−2) in (Zhang et al., 2021)2.

Furthermore, the algorithm in (Zhang et al., 2021) contains an inner minimax subproblem (cf. Line 6
of Algorithm 1 in Zhang et al. (2021)). Solving such a subproblem in the inner loop incurs high
computational costs. Due to this reason, the algorithm in (Zhang et al., 2021) had to settle for an
inexact solution, which hurts the convergence performance in practice. In contrast, our algorithm
does not have such a limitation.

3 PRELIMINARIES AND PROBLEM STATEMENT

We start by introducing the necessary background of RL, with a focus on the PE problem based on
nonlinear function approximation.

1) Policy Evaluation with Nonlinear Function Approximation: RL problems are formulated
using the Markov decision process (MDP) framework defined by a five-tuple {S,A, P, γ,R}, where
S denotes the state space and A is the action space; P : S × A → S represents state transition
probabilities after taking actions; R denotes the space of the received rewards, where each reward
corresponds to the agent taking a specific action a ∈ A from the set of possible actions when the
system is in a particular state in the state space s ∈ S (in this paper, we assume that the state
and action spaces are finite but their dimensionality could be large); and γ ∈ [0, 1) is a time-
discount factor. For RL problems over an infinite discrete-time horizon {t ∈ N}, the learning
agent executes an action at according to the state st and some policy π : S × A → [0, 1]. The
system then transitions into a new state st+1 in the next time slot, and the agent receives a reward
R(st, at) through its interaction with the environment. The trajectory generated by a policy π
is a sequence of state-action pairs denoted as {s1, a1, s2, a2, . . .}. Specifically, for a policy π
(could be a randomized policy), the expected reward received by the agent at state s in any given
time slot can be computed as Rπ(st) = Ea∼π(·|s)

[
Rπ(st, a)

]
. The value function V π (s0) =

E [
∑∞

t=0 γ
tR (st) | s0, π] indicates the long-term discounted reward of policy π over an infinite

horizon with the initial state at s0 ∈ S. Also, the Bellman equation implies that V (·) satisfies
: V (s)=T πV (s), where T πf(s) ≜ E[Rπ(s) + γf(s′)|a ∼ π(·|s), s′ ∼ P (·|s, a)] denotes the
Bellman operator. In RL, the agent’s goal is to determine an optimal policy π∗ that maximizes the
value function V π(s) from any initial state s.

can be reformulated as an NCX-SCV minimax problem, which can be solved by our proposed VR-based
single-timescale method efficiently.

2Here, the rate of O(ϵ−2) measured on the size of the primal objective function is equivalent to O(1/K).
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However, the first obstacle in solving RL problems stems from evaluating V π(·) for a given π since
P (·|s, a) is unknown. Moreover, it is often infeasible to store V π(s) since the state space S could
be extremely large. To address these challenges, one popular approach in RL is to approximate
V π(·) using a family of parametric and smooth functions in the form of V π(·) ≈ Vθπ (·), where
θπ ∈ Θ ⊆ Rd is a d-dimensional parameter vector. Here, Θ is a compact subspace. For notational
simplicity, we will omit all superscripts “π” whenever the policy π is clear from the context. In this
paper, we focus on nonlinear function approximation, i.e., Vθ(·) : S → R is a nonlinear function
with respect to (w.r.t.) θ. For example, Vθ(·) could be based on a θ-parameterized nonlinear DNN.
We assume that the gradient and Hessian of Vθ(·) exist and are denoted as: gθ(s) := ∇θVθ(s) ∈
Rd, Hθ(s) := ∇2

θVθ(s) ∈ Rd×d. Our goal is to find the optimal parameter θ∗ ∈ Rd that minimizes
the error between Vθ∗(·) and V (·). It has been shown in (Liu et al., 2018) that this problem can be
formulated as minimizing the mean-squared projected Bellman error (MSPBE) of the value function
(Liu et al., 2018, Proposition 1) as follows:

MSPBE(θ) :=
1

2

∥∥Es∼Dπ(·)
[(
T πVθ(s)−Vθ(s)

)
∇θVθ(s)

⊤]∥∥2
D−1

= max
ω∈Rd

(
− 1

2
Es∼Dπ(·)[(ω

⊤gθ(s))
2] + ⟨ω,Es∼Dπ(·)

[
(T πVθ(s)−Vθ(s))gθ(s)

]
⟩
)
, (1)

where Dπ(·) is the stationary distribution under policy π and D ≜ Es∼Dπ [gθ(s)g
⊤
θ (s)] ∈ Rd×d and

ω is referred to as the dual variable.

2) Primal-Dual Optimization for MSPBE: Minimizing MSPBE(θ) in (1) is equivalent to solv-
ing a primal-dual minimax optimization problem: minθ∈Rd maxω∈Rd L(θ,ω), where L(θ,ω) ≜
⟨ω,Es∼Dπ(·)

[
(T πVθ(s)−Vθ(s))gθ(s)

⊤ ]
⟩− 1

2Es∼Dπ(·)[(ω
⊤gθ(s))

2]. Since the distribution Dπ(·)
is unknown and the expectation cannot be evaluated directly, most existing work in the literature (see,
e.g., Liu et al. (2015); Wai et al. (2019); Du et al. (2017)) considered the following empirical minimax
problem by replacing the expectation in L(θ,ω) by a finite-sum sample average approximation 3

based on an M -step trajectory {s1, a1 · · · , sM , aM , sM+1} generated by some policy π, i.e.,

min
θ∈Rd

max
ω∈Rd

1

M

M∑
i=1

Li(θ,ω) = min
θ∈Rd

max
ω∈Rd

L(θ,ω), (2)

where Li(θ,ω) := ⟨ω, [R(si, ai, si+1) + γVθ(si+1) − Vθ(si)] × gθ(si)⟩ − 1
2 (ω

⊤gθ(si))
2. In

Appendix F, we will also discuss the minimax problem with θ ∈ Θ, ω ∈ W , where Θ,W are convex
constrained sets. Solving Problem (2) for MSPBE constitutes the rest of this paper.

Note that Problem (2) is non-convex in general (e.g., DNN-based nonlinear approximation).
Let J(θ) ≜ maxω∈Rd L(θ,ω). Then, we can equivalently rewrite Problem (2) as follows:
minθ∈Rd maxω∈Rd L(θ,ω) = minθ∈Rd J(θ). Note from (2) that L(θ,ω) is strongly con-
cave w.r.t. ω, which guarantees the existence and uniqueness of the solution to the problem
maxω∈Rd L(θ,ω),∀θ ∈ Rd. Then, given θ ∈ Rd, we define the following notation: ω∗(θ) :=
argmaxω∈RdL(θ,ω). Subsequently, J(θ) can be further written as J(θ) = L(θ,ω∗(θ)). We aim
to minimize J(θ) by finding the stationary point of L(θ,ω). For the sake of simplicity in notation,
we use ω∗ to denote ω∗(θ). Note that if D in Eq. (1) is positive definite, Problem (2) is strongly
concave in ω, but non-convex in θ in general due to the non-convexity of function Vθ. Thus, the
Problem 2 is an NCX-SCV optimization problem.

3) Sample Complexity: In this paper, we adopt the following sample complexity metric to measure
the dat efficiency of an optimization algorithm, which is widely used in the literature (e.g., Luo et al.
(2020); Zhang et al. (2021); Xu et al. (2020)):

Definition 1 (Sample Complexity). The sample complexity is defined as the total number of re-
quired samplings from the dataset to evaluate incremental first-order oracle (IFO) until an algorithm
converges, where one IFO call evaluates a pair of (Li(θ, ω),∇Li(θ, ω)), i ∈ [M ].

3Although the finite-sum empirical loss is an approximation of the expected loss function for PE, as shown in
Chen et al. (2021), under the conditions of bounded instantaneous loss and bounded derivatives (satisfied for
most applications in practice), the approximation error of using empirical loss is small with high probability (cf.
(Chen et al., 2021, Lemma 2)). Thus, the empirical loss has been widely used as a proxy for the expected loss in
the literature Liu et al. (2015); Wai et al. (2019); Du et al. (2017).
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Algorithm 1 The path-integrated primal-dual stochastic gradient (PILOT).

Input: An M -step trajectory of the state-action pairs {s1, a1, s2, a2, · · · , sM , aM , sM+1} generated
from a given policy; step sizes α, β ≥ 0; initialization points θ0 ∈ Rd, ω0 ∈ Rd.

Output: (θ(K̃),ω(K̃)), where K̃ is independently and uniformly picked from {1, · · · ,K};
1: for k = 0, 1, 2, · · · ,K − 1 do
2: If mod(k, q) = 0, compute full gradients G(k)

θ , G
(k)
ω as in Eq. (3). Otherwise, select |N |

3: samples independently and uniformly from [M ], and compute gradients as in Eq. (4).
4: Perform the primal-dual updates to obtain the next iterate θ(k+1),ω(k+1) as in Eq. (5).
5: end for

4 THE VARIANCE-REDUCED PRIMAL-DUAL METHOD (PILOT)
In this section, we first present the variance-reduced primal-dual (PILOT) algorithm for PE, followed
by the theoretical convergence results. Due to space limitation, we provide a proof sketch in the main
text and relegate the detailed proofs to the supplementary material.

1) Algorithm Description: The full description of PILOT is illustrated in Algorithm 1. In PILOT,
for every q iterations, the algorithm calculates the full gradients as follows:

G
(k)
θ =

1

|M |
∑
i∈M

∇θLi(θ
(k),ω(k)), G(k)

ω =
1

|M |
∑
i∈M

∇ωLi(θ
(k),ω(k)), if mod(k, q) = 0. (3)

In all other iterations, PILOT selects a batch N and computes variance-reduced gradient estimators:

G
(k)
θ =

1

|N |
∑
i∈N

(
∇θLi(θ

(k),ω(k))−∇θLi(θ
(k−1),ω(k−1)) +G

(k−1)
θ

)
, if mod(k, q) ̸= 0, (4a)

G(k)
ω =

1

|N |
∑
i∈N

(
∇ωLi(θ

(k),ω(k))−∇ωLi(θ
(k−1),ω(k−1)) +G(k−1)

ω

)
, if mod(k, q) ̸= 0. (4b)

The estimators in (4) are constructed iteratively based on the previous update information
∇θLi(θ

(k−1),ω(k−1)) (resp. (∇ωLi(θ
(k−1),ω(k−1)) ) and G

(k−1)
θ (resp. G

(k−1)
ω ). PILOT up-

dates the primal and dual variables as follows:

θ(k+1) = θ(k) − βG
(k)
θ , ω(k+1) = ω(k) + αG(k)

ω , (5)

where parameters α and β are the constant learning rates for the primal and dual updates.

Remark 1. Single-Timescale Algorithm: Our PILOT algorithm is a single-timescale algorithm, which
is much simpler to implement in practice compared to the two-timescale algorithms shown in Maei
et al. (2009); Lin et al. (2020b). To see this, we first restate the notions of single- and two-timescale
algorithms in the literature (see, e.g., (Dalal et al., 2018)). Let αt ≥ 0 and βt ≥ 0 represent the
step-sizes at iteration t for outer- and inner-variable updates, respectively. An algorithm is called a
two-timescale algorithm if αt/βt → 0 or αt/βt → +∞ as t → ∞. On the other hand, an algorithm
is called a single-timescale algorithm if 0 < C ≤ αt/βt ≤ C ′ as t → ∞, where 0 < C,C ′ < +∞
are two positive constants. In our proposed PILOT algorithm, since the step-sizes αt and βt are
constants, our PILOT algorithm is clearly a single-timescale algorithm.

2) Assumptions: Before showing the theoretical results, we first make the following assumptions:
Assumption 1 (µ-Strong Concavity). We assume that L(θ,ω) is differentiable and µ-strongly concave
in ω, where for any θ ∈ Rd, L(θ,ω) ≤ L(θ,ω′) + ∇ωL(θ,ω′)⊤(ω − ω′) − µ

2 ∥ω − ω′∥2,
∀ω,ω′ ∈ Rd, µ > 0.

It can be shown that the condition in Assumption 1 is equivalent to : ∥∇ωL(θ,ω)−∇ωL(θ,ω′)∥ ≥
µ∥ω − ω′∥, ∀ω,ω′ ∈ Rd (see proofs in (Zhou, 2018, Lemmas 2 and 3)).
Assumption 2 (Lf -Smoothness). We assume that for i = 1, 2, . . . ,M , both gradient ∇θLi(θ,ω)
and ∇ωLi(θ,ω) are Lf -smooth. That is, for all θ,θ′ ∈ Rd and ω,ω′ ∈ Rd, there exists a constant
Lf > 0 such that ∥∇Li(θ,ω)−∇Li(θ

′,ω′)∥ ≤ Lf

(
∥θ − θ′∥+ ∥ω − ω′∥

)
.

Assumption 3 (Boundness from Below). There exists a finite lower bound J∗ = infθ J(θ) > −∞.
Assumption 4 (Bounded Variance). There exists a constant σ > 0 such that for all θ ∈ Rd,ω ∈ Rd,
1
M

∑M
i=1 ∥∇θLi(θ,ω)−∇θL(θ,ω)∥2 ≤ σ2 and 1

M

∑M
i=1 ∥∇ωLi(θ,ω)−∇ωL(θ,ω)∥2 ≤ σ2.
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We note that Assumption 1 is satisfied if the number of samples M is sufficiently large and the
matrix D is positive definite 4. Assumption 3 is standard in the optimization literature. Assumption 4
is also commonly adopted for proving convergence results of SGD- and VR-based algorithms, or
algorithms that draw a mini-batch of samples instead of all samples. Assumption 4 is guaranteed
to hold under the compact set condition and common for stochastic approximation algorithms for
minimax optimization (Qiu et al., 2020; Lin et al., 2020a). Assumptions 1–4 are also often used
in temporal difference (TD) problems (see, e.g., (Qiu et al., 2020; Wai et al., 2019)). With these
assumptions, we are now in a position to present our convergence performance results of PILOT.

3) Convergence Performance: In this paper, we propose a new metric for convergence analysis:

M(θ,ω) := ∥∇J(θ) ∥2 + 2∥ω − ω∗(θ)∥2. (6)

The first term in (6) measures the convergence of the primal variable θ. As common in non-convex
optimization analysis, ∥∇J(θ)∥2 = 0 indicates that θ is a first-order stationary point (FOSP) of
Problem (2). The second term in (6) measures the convergence of ω(k) to the unique maximizer
ω∗(θ(k)) for L(θk, ·). Based on this new convergence metric, we can now introduce the notion of
the approximate first-order stationary points.

Definition 2. The point {θ,ω} is an ϵ-stationary point of function L(θ,ω) if M(θ,ω) ≤ ϵ.

Several important remarks on the connections between our metric M(k) and the conventional conver-
gence metrics in the literature are in order. A conventional convergence metric in the literature for
NCX-SCV minimax optimization is ∥∇J(θ(k)) ∥2 (Lin et al., 2020a; Luo et al., 2020; Zhang et al.,
2021; Wu* et al., 2023; Huang et al., 2021; Wu et al., 2023), which is the first term of M(k). This is
because ∥∇J(θ)∥2 = 0 implies that θ is a FOSP. Another conventional convergence metric in the
literature of minimizing the empirical MSPBE problem is ∥∇θL(θ,ω)∥2 + ∥∇ωL(θ,ω)∥2 (Tsit-
siklis & Van Roy, 1996). Since the nonconvex-strong-concave minimax optimization problem is
unconstrained in dual (i.e., ω ∈ Rd), it follows from Lipschitz-smoothness in Assumption 2 and
∥∇ωL(θ(k),ω∗(θ(k)))∥2 = 0 that ∥ω(k) − ω∗(θ(k))∥2 ≥ L−2

f ∥∇ωL(θ(k),ω(k))∥2. Therefore,
the second term in our M(k) (i.e., 2∥ω(k) − ω∗(θ(k))∥2) is an upper bound of the second term in
this conventional metric (i.e., ∥∇ωL(θ,ω)∥2). Thus, 2∥ω(k) − ω∗(θ(k))∥2 is a stronger metric
than ∥∇ωL(θ,ω)∥2 in the sense that an O(1/K) convergence rate under M(k) implies an O(1/K)
convergence rate of the conventional metric, but the converse is not true. Moreover, the benefit of
using 2∥ω(k) − ω∗(θ(k))∥2 in our M(k) is that its special structure allows us to prove the O(1/K)
convergence, while the second term in the conventional metric does not enjoy such a salient feature.

With our proposed convergence metric in (6), we have the following convergence result:

Theorem 1. Under Assumptions 1–3, choose step-sizes: α ≤ min{ 1
4Lf

, 2µ
34L2

f+2µ2 } and

β ≤ min
{

1
4Lf

, 1
2(Lf+L2

f/µ)
, µ

8
√
17L2

f

, µ2α

8
√
34L2

f

}
. Let q= |N |=⌈

√
M⌉, it holds that:

1

K

K−1∑
k=0

E[M(k)] ≤ 1

Kmin{1, L2
f}

[
16L2

f

αµ
C2 +

2

β
C1

]
= O

(
1

K

)
,

where C1 ≜ E[J(θ(0))]− E[J(θ∗)], C2 ≜
(
E∥ω∗(θ(0))− ω(0)∥2

)
and θ∗ = minθ J(θ).

Theorem 1 immediately implies the following result:

Corollary 1. The overall sample complexity of PILOT is O(
√
Mκ3ϵ−1 +M), where κ = Lf/µ

denotes the condition number.

Theorem 1 states that PILOT achieves an O(1/K) convergence rate to an ϵ-FOSP. The most chal-
lenging part in proving Theorem 1 stems from the fact that one needs to simultaneously evaluate the
progresses of the gradient descent in the primal domain and the gradient ascent in the dual domain of
the minimax problem.

4To see this, recall that D = Es

[
∇θVθ(s)∇θVθ(s)

⊤] ∈ Rd×d. Note that µ=λmin (D) > 0 since D is
positive definite and D tends to be full-rank as M increases. Thus, as soon as we find a µ > 0 when M is
sufficiently large, this µ is independent of M as M continues to increase.
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Remark 2. It is worth noting that the nPD-VR method in (Wai et al., 2019) employs
∥∇ωL(θ(k),ω(k))∥2 in their metric to evaluate convergence. However, this approach yields a
term F (K) ≜ E[L(θ(0),ω(0)) − L(θ(K),ω(K))] in their convergence upper bound in the form of
O(F (K)/K) (cf. Theorem 1, Eq. (26) in (Wai et al., 2019)). Since F (K) depends on K, it is unclear
whether the nPD-VR method in (Wai et al., 2019) can achieve an O(1/K) convergence rate or
not. This ambiguous result motivates us to propose this new metric M(k) in Eq. (6) to evaluate the
convergence of our PILOT algorithm. Consequently, we bound per-iteration change in J(θ) instead
of the function L(θ(k),ω(k)). This helps us avoid the technical limitations of (Wai et al., 2019) and
successfully establish the O(1/K) convergence rate. In addition to the O(1/K) convergence rate,
our PILOT algorithm also enjoys the following salient features:

a) Large and Constant Step-Sizes: It is worth noting that PILOT adopts a large O(1) (i.e., constant)
step-size compared to the O(1/M) step-size of nPD-VR (Wai et al., 2019), where M represents the
dataset size. This also induces a faster empirical convergence speed. Besides, PILOT’s estimator
uses fresher information from the previous iteration (see Feature c) below), while VR-STSG (Qiu
et al., 2020) and nPD-VR (Wai et al., 2019) only use the information from the beginning of q-sized
windows. Collectively, PILOT makes considerably larger progress than state-of-the-art algorithms
(Qiu et al., 2020; Wai et al., 2019).

b) A Recursive Path-Following VR Approach for minimax Problems: In the literature, most
existing single-timescale methods adopt vanilla stochastic gradients as gradient estimators Gθ,t and
Gω,t, which suffer from slow convergence rates. To the best of our knowledge, the only VR-based
single-timescale method is (Qiu et al., 2020). However, (Qiu et al., 2020) is based on the SVRG-type
VR technique, which achieves a slower O(1/K3/2) convergence rate. In comparison, our work is
based on an advanced recursive path-following VR-based update, which enables the use of constant
step-sizes to achieve the first O(1/K) convergence rate in the literature.

5 THE ADAPTIVE-BATCH PILOT METHOD (PILOT+)
Note that PILOT still requires full gradients every q iterations. This motivates us to propose an
adaptive-batch method called PILOT+ to further lower the sample complexity.

1) Algorithm Description: The full description of PILOT+ is illustrated in Algorithm 2. In PILOT+,
our key idea is to use the gradients calculated in the previous loop to adjust the batch size Ns of the
next loop. Specifically, PILOT+ chooses Ns at the k-th iteration as:

|Ns| = min{cγσ2(γ(k))−1, cϵσ
2ϵ−1,M}, (7)

where cγ , cϵ > c for certain constant c, M denotes the size of the dataset, and γ(k+1) =∑k
i=(nk−1)q ∥G

(i)
θ ∥2/q is the stochastic gradients calculated in the previous iterations. In PILOT+,

for every q iterations, we select Ns samples independently and uniformly from [M ] and compute
gradient estimators as follows:

G
(k)
θ =

1

|Ns|
∑
i∈Ns

∇θLi(θ
(k),ω(k)), G(k)

ω =
1

|Ns|
∑
i∈Ns

∇ωLi(θ
(k),ω(k)). (8)

For other iterations, PILOT+ is exactly the same as PILOT. Next, we will theoretically show that such
an adaptive batch-size scheme still retains the same convergence rate, while achieving an improved
sample complexity.2) Convergence Performance: For PILOT+, we have the following theoretical convergence result:

Theorem 2. Under Assumptions 1–4, choose step-sizes: α ≤ min{ 1
4Lf

, 2µ
34L2

f+2µ2 } and β ≤

min
{

1
4Lf

, 1
2(Lf+L2

f/µ)
, µ

8
√
17L2

f

, µ2α

8
√
34L2

f

}
. Let |Ns| = min{cγσ2(γ(k))−1, cϵσ

2ϵ−1,M},

q = ⌈
√
M⌉, |N | = ⌈

√
M⌉ and cγ ≥ (288L2

f/µ
2 + 8) in PILOT+, where cγ ≥ c for

some constant c > 4K + 68K
βµ2 . With constants C1 ≜ E[J(θ(0))] − E[J(θ∗)] and C2 ≜(

E[∥ω∗(θ(0))− ω(0)∥2
]
), it holds that:

1

K

K−1∑
k=0

E[M(k)] ≤ 1

Kmin{1, L2
f}

·
[
K · ϵ

2
+
16L2

f

αµ
C2 +

2

β
C1

]
=O

(
1

K

)
+

ϵ

2
.

Theorem 2 immediately implies the following result:
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Algorithm 2 Adaptive-batch PILOT method (PILOT+).

Input: A trajectory of the state-action pairs {s1, a1, s2, a2, · · · , sM , aM , sM+1} generated from a
given policy; step sizes α, β ≥ 0; initialization points θ0 ∈ Θ, ω0 ∈ Rd.

Output: (θ(K̃),ω(K̃)), where K̃ is independently and uniformly picked from {1, · · · ,K};
1: for k = 0, 1, 2, · · · ,K − 1 do
2: If mod(k, q) = 0, select |Ns| indices independently and uniformly from [M ] as in Eq. (7)

and calculate stochastic gradients as in Eq. (8);
3: If mod(k, q) ̸= 0, select |N | samples independently and uniformly from [M ]; Compute

gradients as in Eq. (4);
4: Perform the primal-dual updates as in Eq. (5).
5: end for

Corollary 2. The overall sample complexity of PILOT+ is O(
√
Mκ3ϵ−1 +M), where κ = Lf/µ

denotes the condition number.

6 EXPERIMENTAL RESULTS

In this section, we conduct our numerical experiments to verify our theoretical results. We compare
our work with the basic stochastic gradient (SG) method (Lin et al., 2020b) and three state-of-the-art
algorithms for PE: nPD-VR (Wai et al., 2019), STSG (Qiu et al., 2020) and VR-STSG (Qiu et al.,
2020). Due to space limitation, we provide our detailed experiment settings in the Appendix.
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Figure 1: MountainCar-v0 environment.
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Figure 2: Cartpole-v0 environment.
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Figure 3: MountainCar-v0 environment.
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Figure 4: Cartpole-v0 environment.

Numerical Results: First, we compare the loss value and gradient norm performance based on
MountainCar-v0 and Cartpole-v0 with nPD-VR, SG, STSG, and VR-STSG in Figs. 1 and 2. We
initialize all algorithms at the same point, which is generated randomly from the normal distribution.
We can see that VR-STSG and nPD-VR slowly converge after 40 epochs, while STSG and SG fail to
converge. PILOT converges faster than all the other algorithms with the same step-size values. As for
Cartpole-v0, we clearly see a trend of approaching zero-loss with PILOT. These results are consistent
with our theoretical result that one can use a relatively large step-size with PILOT, which leads to a
faster convergence performance. Also, we compare the sample complexity of PILOT and PILOT+ in
MountainCar-v0 and Cartpole-v0, and the results are shown in in Figs. 3 and 4, respectively. We can
see that PILOT+ converges to the same level with much fewer samples than PILOT does.

7 CONCLUSION

In this paper, we proposed two algorithms called PILOT and PILOT+ for PE with nonlinear approx-
imation and performed the theoretical analysis of their convergence and sample complexity. The
PILOT algorithm is based on a single-timescale framework by utilizing VR techniques. The PILOT
algorithm allows the use of constant step-sizes and achieves an O(1/K) convergence rate. The
PILOT+ algorithm improves the sample complexity of PILOT by further applying an adaptive batch
size based on historical stochastic gradient information. Our experimental results also confirmed our
theoretical findings in convergence and sample complexity.
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