
A The Invalid Result for General Matroid Constraints in [20]

In this section, we recall Algorithm 4 ([20, Algorithm 2]) and its analysis Theorem A.1 ([20, Theorem
4.2]) proposed by Singer and Hassidim [20] for monotone submodular maximization with noisy
oracles under general matroid constraints. We argue that Algorithm 4 fails to obtain the approximation
guarantee claimed in Theorem A.1.

For a set S ⊆ N , a bundle b ⊆ N and an intersection of matroids F , the mean value, noisy mean
value and mean marginal contribution of b given S are, respectively:

F (S ∪ b) := Ez∼BS(b) [f(S ∪ z)]

F̃ (S ∪ b) := Ez∼BS(b)

[
f̃(S ∪ z)

]
FS(x) := Ez∼BS(b) [fS(b)]

where BS(b) represents the ball around b, i.e., BS(b) = {b− xi + xj ∈ F : xi ∈ b, xj /∈ S ∪ x}.

Algorithm 4: SM-MATROID-GREEDY

Input : intersection of matroids F , precision ε > 0, c← 56
ε

1 S ← ∅, X ← N
2 while X ̸= S do
3 X ← X\{x : S ∪ x /∈ F}
4 x← argmaxb:|b|=c F̃ (S ∪ b)

5 x̂← argmaxz∈BS(x) f̃(S ∪ z)
6 S ← S ∪ x̂

7 return S

Algorithm 4 is a variant of the standard greedy algorithm, which at every iteration adds a bundle
x̂ of size c = Θ(1/ε) instead of a single element. In each iteration, the algorithm updates the
set X of candidate elements (Line 3) in order to obtain a feasible set S ∈ F . Then it selects a
bundle x ∈ argmaxb:|b|=c F̃ (S ∪ b) with the largest noisy mean value F̃ (S ∪ b) (Line 4). Finally,
Algorithm 4 evaluates all possible bundles z ∈ BS(x) in the ball around x identified at last step and
incorporates the one whose noisy value f̃(S ∪ z) is largest (Line 5 and 6).

Singer and Hassidim [20] claim that Algorithm 4 can achieve the following approximation perfor-
mance.
Theorem A.1 (Wrong theorem [20, Theorem 4.2]). LetF denote the intersection of P ≥ 1 matroids
with rank r ∈ Ω

(
1
ε2

)
∩
√
log n on the ground set N , and f : 2N → R be a non-negative monotone

submodular function. Then with probability 1− o(1) the SM-MATROID-GREEDY algorithm returns
a set S ∈ F s.t.:

f(S) ≥ 1− ε

P + 1
.

Now we argue that Theorem A.1 does not hold even under a single matroid constraint. Singer and
Hassidim [20] employed [20, Lemma 3.4] to prove Theorem A.1. However, this lemma cannot be
generalized beyond cardinality constraints to matroid constraints. This is because [20, Lemma 3.4] is
based on the following fact: for any bundle b of size 1/ε,

FS(b) ≥ (1− ε)fS(b). ([20, Lemma 2.2])

This fact results in [20, Corollary 2.3], which appears as the premise of [20, Claim 3.1] to prove [20,
Lemma 3.4]. Under a cardinality constraint, the ball BS(b) contains all the neighbors of a bundle b,
which differ from b by only one element. A bundle b with good margin is likely to be surrounded by
neighbors in BS(b) which also have large margins on average, and the fact that FS(b) ≥ (1−ε)fS(b)
naturally holds. However, when we consider a matroid that restricts feasible neighbors of b to be
those with small margins only, FS(b) can be far less than fS(b).

We provide a concrete example to show that Algorithm 4 cannot obtain any with-high-probability
constant approximation under a matroid constraint.
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Claim A.2. For any constant m, there exists a partition matroidMwith rank r ∈ Ω
(

1
ε2

)
∩O(
√
log n)

for which Algorithm 4 fails to achieve an approximate ratio better than 1/m with probability at least
1/3.

Proof. Our plan is to construct a partition matroid for which Algorithm 4 performs badly.

Definition A.3 (Partition matroid). A matroidM = (N, I(M)) is a partition matroid if N is
partitioned into k disjoint sets C1, C2, . . . , Ck and

I(M) = {S ⊆ N : |Ci ∩ S| ≤ di for i = 1, 2, . . . , k} .

Let there be r disjoint sets, where r ∈ Ω
(

1
ε2

)
∩O(

√
log n). For all i ∈ [r− 1], Ci contains only one

element with value 0. The set Cr with |Cr| = n − r + 1 contains most of the elements. There is
a special element e⋆ in Cr with f(e⋆) = m, and other elements in Cr are all attributed with value
1. An independent set of matroidM contains at most one element from each disjoint set. That is,
d1 = d2 = · · · = dr = 1. The noise distribution will return m with probability δ = 1

2(n−r) and 1

otherwise.

Now we apply Algorithm 4 to maximize f under this matroid constraint with a noisy oracle. Since
the elements in Ci (i ∈ [r − 1]) are all with value 0, we focus on the bundles b that consist of an
element in Cr and some other elements b−r. Suppose Algorithm 4 selects one of them as x at Line 4.
Feasible bundles in BS(x) containing e⋆ can only be obtained by changing one of the elements in
x−r. Thus there are at most (c− 1)(r− c) such bundles. With probability at least (1− δ)

(c−1)(r−c),
the noise multipliers on such bundles are all 1.

On the other hand, at least n − r bundles in BS(x) do not include e⋆. With probability at least
1− (1− δ)n−r, there exists one of these bundles with noise multiplier m. Thus Algorithm 4 selects
a bundle that does not include e⋆ at Line 5 with probability at least

(1− δ)
(c−1)(r−c)

[
1− (1− δ)

n−r
]
≥
(
1− (c− 1)(r − c)

2(n− r)

)(
1− 1√

e

)
.

When n is sufficiently large, the probability above is at least 1/3.

By the proof of Claim A.2, we have an intuition that the problem of submodular maximization under
a partition matroid with any rank may degenerate to that under 1-cardinality constraint. The case of
r = 1 is rather difficult for Problem 2.6, and the only known result is an algorithm by [20] which
achieves a 1/2-approximation guarantee in expectation for this case. To the best of our knowledge,
there is no with-high-probability result before.

B More Related Work

Besides cardinality and single matroid constraints, more complex constraints have also been consid-
ered in the context of submodular optimization before. Fisher et al. [8] present an algorithm achieving
a 1/(k+1)-approximation for monotone submodular maximization under k matroid constraints. Lee
et al. [17] subsequently improve the approximation guarantee to 1/(k + ε) for k > 2. Sviridenko
[22] provides a

(
1− 1

e

)
-approximation under knapsack constraints. With the multilinear relaxation

technique, Chekuri et al. [4] obtain a 0.38/k-approximation for maximizing a monotone submodular
function subject to k matroids and a constant number of knapsack constraints.

C Proof of Theorem 3.3: Analysis of Algorithm 1

We first analyze the query complexity to φ̂h and then prove the approximate ratio together with the
success probability.

Query complexity of Algorithm 1. For any i ∈ [r], define Ui := {Ui−1 + e ∈ I(M) : e ∈
N\Ui−1} to be the collection of subsets considered in Line 4. For any i = 0, 1 · · · , I − 1, define
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U ′
i := {S′

i ∈ I(M)} to be the collection of subsets considered in Line 10 in interation i. Let

U =

( ⋃
i∈[r]

Ui

)
∪

( ⋃
0≤i≤I−1

U ′
i

)
. Since each |Ui| ≤ n and each |U ′

i | ≤ rn, we have

|U| ≤ (I + 1)rn.

Thus the total query complexity is less than (I + 1)rn.

Approximate ratio and success probability of Algorithm 1. We say that event Eg happens if for all
sets A ∈ U , the following inequality holds:

P
[
|φ̂h(A)− φh(A)| > α max

S∈I(M)
φh(S)

]
≤ δ.

By the above argument, we know that the total number of calls to φ̂h is at most (I + 1)rn. Thus

P[Eg] ≥ 1− (I + 1)rnδ.

In the remaining proof, we assume Eg holds. Firstly we prove the following lemma which analyzes
the performance of the greedy initial solution S0 in Line 7 of Algorithm 1.
Lemma C.1 (Approximation ratio of S0). Conditioned on Eg , we have

φh(S0) ≥
1− 2rα

2
max

S∈I(M)
φh(S).

Proof. We first introduce the following well-known fact.

Fact C.2 (Brualdi’s lemma). Suppose A, B are two bases in a matroid. There is a bijection
π : A→ B such that for all a ∈ A, A− a+ π(a) is a base. Furthermore, π is the identity on A∩B.

Let O⋆ ∈ argmax
S∈I(M)

φh(S) be a set on which φh attains its maximum value. For O⋆ and Ur, we index

the elements of O⋆ as {o1, . . . , or} according to the Brualdi’s lemma such that oi = π(ui) with
Ui−1 + oi ∈ I(M). From how we choose ui in Line 4 of Algorithm 1, we have

φ̂h(Ui−1 + ui) ≥ φ̂h(Ui−1 + oi) (2)

for all i ∈ [r]. To utilize monotonicity and submodularity of φh, we translate the inequality above
into that of φh:

φh(Ui−1 + ui) + αφh(O
⋆) ≥ φ̂h(Ui−1 + ui) (event Eg)
≥ φ̂h(Ui−1 + oi) (Ineq. (2))
≥ φh(Ui−1 + oi)− αφh(O

⋆) (event Eg).

That is,
φh(Ui−1 + ui) ≥ φh(Ui−1 + oi)− 2α · φh(O⋆).

Subtracting φh(Ui−1) from each side gives

φh(Ui−1 + ui)− φh(Ui−1) ≥ [φh(Ui−1 + oi)− φh(Ui−1)]− 2α · φh(O⋆)

for all i ∈ [r]. Summing these r inequalities, we obtain

φh(S0) ≥
r−1∑
i=1

[φh(Ui−1 + oi)− φh(Ui−1)]− 2rα · φh(O⋆). (3)

From submodularity of φh, we have
r−1∑
i=1

[φh(Ui−1 + oi)− φh(Ui−1)] ≥
r−1∑
i=1

[φh(S0 + oi)− φh(S0)] ≥ φh(S0 ∪O⋆)− φh(S0). (4)

Combining (3) and (4) gives

2φh(S0) ≥ φh(S0 ∪O⋆)− 2rα · φh(O⋆) ≥ (1− 2rα)φh(O
⋆).

This completes the proof.
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Lemma C.3 (Maximum iterations of the local search procedure in Algorithm 1). Conditioned
on event Eg, the local search procedure in Algorithm 1 terminates within I = log1+∆

(
2(1+α)

1−2(r+1)α

)
iterations.

Proof. Let O⋆ ∈ argmax
S∈I(M)

φh(S) be a set on which φh attains its maximum value and O′ ∈

argmax
S∈U

φ̂h(S) be the set with largest value of φ̂h. By Lemma C.1, we have

φ̂h(S0) ≥ φh(S0)− αφh(O
⋆)

≥ 1− 2(r + 1)α

2
φh(O

∗) (Lemma C.1)

≥ 1− 2(r + 1)α

2(1 + α)
φh(O

′) +
(1− 2(r + 1)α)α

2(1 + α)
φh(O

∗) (optimality of O∗)

≥ 1− 2(r + 1)α

2(1 + α)
(φ̂h(O

′)− αφh(O
∗)) +

(1− 2(r + 1)α)α

2(1 + α)
φh(O

∗)

=
1− 2(r + 1)α

2(1 + α)
φ̂h(O

′).

Since every local search step increases the function value φ̂h by 1 + ∆, Algorithm 1 searches for at
most I = log1+∆

(
2(1+α)

1−2(r+1)α

)
iterations.

Conditioned on Eg , we finally obtain the approximation ratio of SI by the locally optimality of SI by
Theorem 1 and Lemma 4 in [7].
Lemma C.4 ([7, Theorem 1]). Let A = {a1, · · · , ar} and B = {b1, · · · , br} be any two bases of
M. Further suppose that we index the elements of B so that bi = π(ai), where π : A → B is the
bijection guaranteed by Fact C.2 (Brualdi’s lemma). Then,

r∑
i=1

[φh(A− ai + bi)− φh(A)] ≥ h(B)− e

e− 1
h(A).

Lemma C.5 ([7, Lemma 4]). For all A ⊆ N ,

h(A) ≤ φh(A) ≤ e

e− 1
H|A|h(A),

where H|A| =
|A|∑
i=1

1
i .

Let O ∈ argmax
S∈I(M)

h(S) and O⋆ ∈ argmax
S∈I(M)

φh(S). By Fact C.2, we index the elements of SI and O

by SI = {s1, · · · , sr} and O = {o1, · · · , or} such that SI − si + oi ∈ I(M) holds for all i ∈ [r].
We firstly transfer SI ’s the locally optimality w.r.t. φ̂h to the locally optimality w.r.t. φh. For all si
and oi, we have

φh(SI − si + oi)− αφh(O
∗) ≤ φ̂h(SI − si + oi) (event Eg)
≤ (1 + ∆)φ̂h(SI) (Lemma C.3)
≤ (1 + ∆) (φh(SI) + αφh(O

⋆)) (event Eg)

which implies

φh(SI − si + oi)− φh(SI) ≤ ∆φh(SI) + (2 + ∆)αφh(O
⋆).

Summing the resulting r inequalities gives
r∑
i=1

[φh(SI − si + oi)− φh(SI)] ≤ r∆φh(SI) + r(2 + ∆)αφh(O
⋆)

≤ rHr∆h(SI) + r(2 + ∆)αHrh(O
⋆) (Lemma C.5)
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≤ rHr ((2 + ∆)α+∆)h(O). (optimality of O)

Combine the Lemma C.4, we have

h(O)− e

e− 1
h(SI) ≤

r∑
i=1

[φh(SI − si + oi)− φh(SI)] ≤ rHr ((2 + ∆)α+∆)h(O).

Thus

h(SI) ≥
(
1− 1

e

)
(1− rHr ((2 + ∆)α+∆))h(O)

≥
(
1− 1

e

)
(1− r (ln r + 1) ((2 + ∆)α+∆))h(O).

This completes the proof of Theorem 3.3.

D Missing Proofs in Subsection 4.1

In this appendix, we provide the proofs that we omitted from Subsection 4.1.

D.1 Proof of Lemma 4.3

For any set S ⊆ N and x /∈ S, by Definition 4.2 we have

h(S + x)− h(S) =
1

n

∑
e∈N

[f(S + x+ e)− f(S + e)] . (5)

This immediately implies that h is monotone, since the monotonicity of f implies that each term
f(S + x+ e)− f(S + e) is non-negative. Next, suppose that T ⊆ S and x /∈ S. Then

h(T + x)− h(T ) =
1

n

∑
e∈N

[f(T + x+ e)− f(T + e)] (Eq. (5))

≥ 1

n

∑
e∈N

[f(S + x+ e)− f(S + e)] (submodularity of f )

= h(S + x)− h(S). (Eq. (5))

Thus, h is submodular.

D.2 Proof of Lemma 4.4

Here we illustrate intuitively how to obtain the value oracle O to an (α, δ, I(r − 1))-approximation
φ̂h of φh. When n is large enough, the generalized exponential tail allows the difference between φh
and its noisy analogue φ̃h to be averaged out. Thus we can obtain an approximation φ̂h of φh by
approximating φ̃h. Since evaluating φ̃h exactly will require an exponential number of value queries
to f̃ , we use a random sampling procedure (Algorithm 5) to estimate it. With only polynomial queries
to f̃ , φ̃h can be approximated to the desired accuracy.

To prove Lemma 4.4, we first show some bounds for coefficients τA(T ). With these bounds, we will
then prove that when n is sufficiently large, φh and its noisy analogue φ̃h are close to each other by
Bernstein’s inequality for sub-exponential variables. Finally, we use Hoeffding’s inequality to show
that with enough samples, φ̂h is close to φ̃h and therefore a good approximation of φh.

For a set A ⊆ N , we rewrite the auxiliary function φh(A) as a linear combination of f(T ) according
to Definition 3.1 and 4.2 and obtain

φh(A) =
1

n

∑
T⊆A

(m|A|−1,|T |−1 +m|A|−1,|T |−2)|T | · f(T ) +
∑

e∈N\A

m|A|−1,|T |−1 · f(T + e)

 . (6)

We define the averaging set of φh(A) as

LA =
{
T ∈ 2N : T ⊆ A, or ∃ S ⊆ A and e ∈ N\A s.t. S + e = T

}
.
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For any T ∈ LA, we denote by τA(T ) the linear coefficient of f(T ). Then we can write φh(A) as∑
T∈LA

τA(T )f(T ).

Lemma D.1 (Useful bounds of the linear coefficients). For any A ⊆ N with |A| ≤
√
n, we have

(1)
∑
T∈LA

τ2A(T ) ≤
12

n|A|
; (2) max

T∈LA

τA(T ) ≤
4

n
; (3)

∑
T∈LA

τA(T ) ≤ 2 (ln |A|+ 2) .

Proof. For notation convenience, we let a = |A| and t = |T | in this proof. For any A ⊆ N , we have∑
T∈LA

τ2A(T )

=
1

n2

a∑
t=0

(
a

t

)[
(ma−1,t−1 +ma−1,t−2)

2 · t2 +m2
a−1,t−1 · (n− a)

]
(Eq. (6))

=
1

n2

{(
a

1

)(∫ 1

0

ep

e− 1
(1− p)a−1dp

)2

(n− a+ 1) (Definition 3.1)

+

a∑
t=2

(
a

t

)[(∫ 1

0

ep

e− 1
pt−2(1− p)a−tdp

)2

t2 +

(∫ 1

0

ep

e− 1
pt−1(1− p)a−tdp

)2

(n− a)

]}

≤ e2

(e− 1)2n2

{
a∑
t=2

(
at

(t− 1)2
+

n− a

at

)
Γ(t)Γ(a− t+ 1)

Γ(a)
+

n− a+ 1

a

}
(7)

≤ e2

(e− 1)2n2

{
1

a− 1

a∑
t=2

(
2a+

n− a

a

)
1(
a−2
t−2

) + n− a+ 1

a

}
( t
t−1 ≤ 2 for t ≥ 2)

<
6

n2

(
a+

n

a

)
, ( e2

(e−1)2 ≤ 3 and
(
a−2
t−2

)
≥ 1)

where we use the fact that ep ≤ e for p ∈ [0, 1] and a property of beta function that

B(x, y) =

∫ 1

0

px−1(1− p)y−1dp =
Γ(x)Γ(y)

Γ(x+ y)
(8)

to obtain Ineq. (7). In particular, if |A| ≤
√
n, we have

∑
T∈LA

τ2A(T ) ≤ 12/(n|A|).

Next we show that maxT∈LA
τA(T ) ≤ 4/n. For any set T ⊆ A with |T | ≥ 2, we have

τA(T ) =
1

n
(ma−1,t−1 +ma−1,t−2) · t (Eq. (6))

=
t

n

∫ 1

0

ep

e− 1
pt−2(1− p)a−tdp (Definition 3.1)

≤ e

e− 1
· t
n
· (t− 2)!(a− t)!

(a− 1)!
(p < 1 and Eq. (8))

≤ 2

n
· t

a− 1
≤ 4

n
. ( e

e−1 ≤ 2,
(
a−2
t−2

)
≥ 1 and t

a−1 ≤ 2)

Similarly, for a set T that only contains a single element in A,

τA(T ) =
ma−1,0

n
=

1

n

∫ 1

0

ep

e− 1
(1− p)a−1dp ≤ 2

an
.

For any T ∈ LA \ 2A, we have

τA(T ) =
1

n
·ma−1,t−2 (Eq. (6))

=
1

n

∫ 1

0

ep

e− 1
pt−2(1− p)a−t+1dp (Definition 3.1)
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≤ e

(e− 1)n
· 1(

a
t−2

) · 1

a− t+ 2
≤ 2

n
. (Eq. (8) and 2 ≤ t ≤ a+ 1)

Combining these three parts gives maxT∈LA
τA(T ) ≤ 4/n. Finally we can bound

∑
T∈LA

τA(T )
as below:∑

T∈LA

τA(T )

=
1

n

a∑
t=0

(
a

t

)
[(ma−1,t−1 +ma−1,t−2)t+ma−1,t−1(n− a)] (Eq. (6))

=
1

n

{
a∑
t=2

(
a

t

)[
t

∫ 1

0

ep

e− 1
pt−2(1− p)a−tdp+ (n− a)

∫ 1

0

ep

e− 1
pt−1(1− p)a−tdp

]
+

(
a

1

)
(n− a+ 1)

∫ 1

0

ep

e− 1
(1− p)a−1dp

}
(Definition 3.1)

≤ e

(e− 1)n
·

[
a∑
t=2

(
a

t− 1
+

n− a

t

)
+ (n− a+ 1)

]
(p < 1)

≤2(ln a+ 2). ( e
e−1 ≤ 2 and

∑a
t=2

1
t−1 ≤ ln a+ 1)

We now use concentration results of sub-exponential distributions to bound the difference between
φh and its noisy analogue φ̃h.
Definition D.2 (Sub-exponential distribution). The sub-exponential norm of X ∈ R is

∥X∥ψ1
= inf{t > 0 : E exp(|X|/t) ≤ 2}.

If ∥X∥ψ1
is finite, we say that X is sub-exponential.

Claim D.3. Let ξ be a random variable with a generalized exponential tail distribution D. Then
ξ − 1 is sub-exponential.

Proof. If the support of D is bounded by some constant b, then let κ = (b+ 1)/ ln 2, and we have
∥ξ − 1∥ψ1

≤ κ. For the case where D does not have bounded support, recall that the probability
density function ρ(x) of D is exp(−

∑
i cix

γi). When

x ≥ max

{
1,

(
2
∑
i=1 |ci|
c0

) 1
γ0−γ1

}
,

the term 1
2c0x

γ0 dominates the rest of the terms, and thus ρ(x) ≤ e−
1
2 c0x

γ0 ≤ e−
1
2 c0x. Let

κ = max

{
2,

2

c0
· ln
(

8

c0

)
+ 1, ln

(
2

3

)
·
(
2
∑
i=1 |ci|
c0

) 1
γ0−γ1

}
.

It is straightforward to verify that E
[
exp

(
|ξ−1|
κ

)]
≤ 2. Hence ξ − 1 is a sub-exponential variable

with a constant sub-exponential norm ∥ξ − 1∥ψ1
≤ κ.

For sub-exponential random variables, we have the following Bernstein’s inequality.
Lemma D.4 (Bernstein’s inequality for sub-exponential variables [24]). Let X1, . . . , Xm be
independent, mean zero, sub-exponential random variables, and a = (a1, . . . , am) ∈ Rm. Then, for
every t > 0, we have

P

[∣∣∣∣∣
m∑
i=1

aiXi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

[
−cmin

(
t2

K2 ∥a∥22
,

t

K ∥a∥∞

)]
, (9)

where K = maxi ∥Xi∥ψ1
and c is a constant.
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With Bernstein’s inequality, we can bound the difference between φh and φ̃h by the following lemma.
Lemma D.5 (Difference between φh and φ̃h). Suppose that n ≥ 192κ2c−1 · α−2 ln(4δ−1), where
κ denotes the sub-exponential norm of the noise multiplier and c is the constant in Ineq. (9). For any
set A ∈ I(r − 1), we have

P
[
|φ̃h(A)− φh(A)| > α

2
· max
S∈I(r−1)

φh(S)

]
≤ δ

2
.

Proof. Let us fix a set A ∈ I(r − 1). From monotonicity and submodularity of f , for any T ∈ LA,

f(T ) ≤ f(A) + max
e∈N

f(e) ≤ 2 · max
S∈I(r−1)

f(S) ≤ 2 · max
S∈I(r−1)

φh(S). (10)

Let XT = ξ(T )− 1 and aT = τA(T )f(T ). By Lemma D.1, we have∑
T∈LA

(τA(T )f(T ))
2 ≤ 4

( ∑
T∈EA

τ2A(T )

)(
max

S∈I(r−1)
φh(S)

)2

≤ 48

|A|n
·
(

max
S∈I(r−1)

φh(S)

)2

and
max
T∈LA

τA(T )f(T ) ≤ 2 max
T∈LA

τA(T ) · max
S∈I(r−1)

φh(S) ≤
8

n
· max
S∈I(r−1)

φh(S).

Since we have α|A| < ε/(4Hr−1) < 12κ, applying Lemma D.4 gives

P
[
|φ̃h(A)− φh(A)| ≥ α

2
· max
S∈I(r−1)

φh(S)

]
≤ 2 exp

(
−c · nα

2|A|
192κ2

)
.

By assumption that n ≥ 192κ2c−1 · ε−2
0 ln(4δ−1), the probability above is at most δ/2.

The random sampling procedure that we use to estimate φ̃h is presented as Algorithm 5.

Algorithm 5: Approximation of φh
Input :Noisy oracle f̃ , a set A ∈ I(r − 1), number of samples M .

1 Construct a distribution ν(T ) on set LA such that ν(T ) = τA(T )/
(∑

T ′∈LA
τA(T

′)
)

2 Sample M sets T1, . . . , TM in LA according to the distribution ν(T )

3 φ̂h(A)←
(∑

T ′∈LA
τA(T

′)
)
· 1
M

∑M
j=1 f̃(Tj)

4 return φ̂h(A)

We plan to use Hoeffding’s inequality to show that φ̂h(A) and φ̃h(A) are very close to each other,
and thus φ̂h is a (α, δ, I(r − 1))-approximation of φh.
Lemma D.6 (Hoeffding’s inequality). Let X1, · · · , XN be independent bounded random variables
such that Xi ∈ [ai, bi], where −∞ < ai ≤ bi <∞. Then

P

[∣∣∣∣∣ 1N
N∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ t

]
≤ 2 exp

[
− 2N2t2∑N

i=1(bi − ai)2

]
.

To use Hoeffding’s inequality, we need a bound b for noise multipliers. If the noise distribution D has
bounded support, this bound is natural. When the support of D is not bounded, we let

b =
2

c0
ln
(
c−1
0 2|A|+3nδ−1

)
.

When n is sufficiently large,

P [ξ ≥ b] ≤
∫ ∞

b

exp

(
−1

2
c0x

)
dx ≤ δ

2|A|+2n
.

The probability that all ξ(T ) (T ∈ LA) are bounded by b is(
1− δ

2rn

)|LA|

≥ 1− |LA| ·
δ

2|A|+2n
≥ 1− δ

4
.
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Lemma D.7 (Difference between φ̃h and φ̂h). For any set A ∈ I(r − 1), we assume M ≥
c

1
2κ−1 · b(ln(r−1)+2)

√
n, where c is the constant in Ineq. (9), and suppose that all ξ(T ) (T ∈ LA)

are bounded by b. Then

P
[
|φ̂h(A)− φ̃h(A)| > α

2
· max
S∈I(r−1)

φh(S)

]
≤ δ

4
.

Proof. We apply Hoeffding’s inequality by letting Xj =
(∑

T ′∈LA
τA(T

′)
)
f̃(Tj) and obtain

P
[
|φ̂h(A)− φ̃h(A)| ≥ α

2
· max
S∈I(r−1)

φh(S)

]
≤ 2 exp

[
− M2ε20

8b2
(∑

T∈EA
τA(T )

)2
]
.

By assumption that M ≥ c
1
2κ−1 · b(ln(r − 1) + 2)

√
n and n ≥ 192κ2c−1 · α−2 ln(4δ−1), the

probability above is at most δ/4.

For any A ∈ I(r − 1), by taking a union bound, |φ̂h(A)− φh(A)| ≤ αmaxS∈I(r−1) φh(S) fails
with probability at most δ/2 + δ/4 + (1− δ/4)δ/4 ≤ δ. The lemma is proved.

D.3 Proof of Lemma 4.5

We denote by e⋆ ∈ argmaxe∈N\SL
f̃(SL+ e) the element added to SL at the f̃ -maximization phase

by Algorithm 2. We define two kinds of elements in N\SL. Say that an element e is good if

f(SL + e) ≥ (1− ε

2
)h(SL), (11)

and e is bad if
f(SL + e) < (1− ε)h(SL).

The set of good elements and that of bad ones are denoted as G and B, respectively. Our goal is to
prove that e⋆ is not bad with probability 1−O

(
1

logn

)
.

First we use the following lemma to quantify the number of good elements.

Lemma D.8 (The number of good elements). With probability 1− 1
n , there are at least εn

16Hr−1

good elements in N\SL, where Hr−1 =
∑r−1
i=1

1
i .

Proof. Suppose by contradiction that |G| < εn
16Hr−1

. We will show that if there are only a few good
elements in N\SL, a good element with very large f -value must exist. However, this contradicts how
Algorithm 2 does local search, which should have changed some element in SL for the one with such
large f -value.

By construction of function h and definition of good elements, we have

h(SL) =
1

n

∑
e∈G

f(SL + e) +
∑

e∈N\G

f(SL + e)

 (Definition 4.2)

<
1

n

(∑
e∈G

f(SL + e) + |N\G|
(
1− ε

2

)
h(SL)

)
. (Ineq. (11))

Rewriting the inequality above gives∑
e∈G

f(SL + e) >
(
n−

(
1− ε

2

)
|N\G|

)
· h(SL) >

εn

2
· h(SL),

where the last inequality holds since |N\G| < n. Hence, there must exist a good element e0 such that

f(SL + e0) ≥
εn

2|G|
· h(SL) > 8Hr−1 · h(SL). (12)
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Consider the set SL + e0 − e′0, where e′0 is an arbitrary element in SL. On the one hand, we must
have

φ̂h(SL + e0 − e′0) ≤ (1 + α)φ̂h(SL). (13)
Otherwise, Algorithm 2 would have changed e′0 for e0 rather than returning SL. We translate
Ineq. (13) to that of φh. With probability 1−O( 1n ),

φh(SL + e0 − e′0) ≤ φ̂h(SL + e0 − e′0) + α max
S∈I(r−1)

φh(S) (Lemma 4.4)

≤ (1 + α)φ̂h(SL) + α max
S∈I(r−1)

φh(S) (Ineq. (13))

≤ (1 + α)

[
φh(SL) + 2α max

S∈I(r−1)
φh(S)

]
(Lemma 4.4)

≤ (1 + α)

(
1 +

4α

1− 2rα

)
φh(SL) (Lemma C.1)

≤ (1 + 10α)φh(SL). (rα < 1/4)

On the other hand, for any α < 1
4 and r ≥ 2,

φh(SL + e0 − e′0) ≥ h(SL + e0 − e′0) (Lemma C.5)

≥ f(SL + e0)− f(e′0) (monotonicity and submodularity of f )

≥ (8Hr−1 − 1)h(SL) (Ineq. (12)) and f(e′0) ≤ f(SL) ≤ h(SL))

> (1 + 10α)
e

e− 1
Hr−1h(SL) (α < 1/4 and

e

e− 1
< 2)

≥ (1 + 10α)φh(SL). (Lemma C.5)

This constitutes a contradiction, and the lemma is proved.

Let ξ∗G = maxe∈G ξ(SL + e) and ξ∗B = maxe∈B ξ(SL + e) denote the largest noise multiplier on the
sets belonging to {SL + e : e ∈ G} and {SL + e : e ∈ B}, respectively. Next we show that with
sufficient good elements guaranteed by Lemma D.8, ξ∗G and ξ∗B are close to each other with high
probability.

If the distribution has bounded support and there is an atom at the supremum with some probability
p, it is clear that both ξ∗G and ξ∗B reaches the supremum with high probability if n is sufficiently
large. Hence we focus on the case where the distribution D does not have bounded support in the
following analysis. Recall that the probability density function ρ(x) of the noise distribution D is
exp(−

∑
i cix

γi). We define two threshold mG and MB:

mG =

[
1

(1 + β)c0
· ln
(
|G|

γ0 lnn

)] 1
γ0

and

MB =

[
1

(1− β)c0
ln

(
|B| lnn

γ0

)] 1
γ0

,

where we set β =
(

1
lnn

) γ0−γ1
2γ0 . Note that mG and MB are very close to each other in a sense that

mG

MB
≥
[
1− β

1 + β
· lnn− ln(1/ε)− ln lnn− ln(16γ0Hr−1)

lnn+ ln lnn− ln γ0

] 1
γ0

> 1− ε

2
,

holds when n ≥ 6 exp

((
1
ε

) 2γ0
γ0−γ1

)
. Our goal is to show that with high probability, mG is a lower

bound for ξ∗G , and MB is an upper bound for ξ∗B. Before that, we need the following upper and lower
bounds for the probability density function ρ(x) of a noise distribution.
Lemma D.9 (Upper and lower bounds for ρ(x) [20]). For any noise distribution D has a general-

ized exponential tail, there exists n0 such that for any n > n0 and x ≥
(

2
∑

i=1 |ci|
c0

) 1
γ0−γ1 · (lnn)

1
2γ0 ,

the probability density function ρ(x) = exp(−
∑
i cix

γi) of D has the following upper and lower
bound:

(1 + β)c0x
γ0−1e−(1+β)c0x

γ0 ≤ ρ(x) ≤ (1− β)c0x
γ0−1e−(1−β)c0xγ0

.
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Lemma D.10 (Bounds for ξ∗G and ξ∗B). With probability 1−O( 1
logn ), ξ

∗
G ≥ mG and ξ∗B ≤MB.

Proof. For a single sample ξ drawn from noise distribution D, we have

P [ξ ≤ mG ] = 1−
∫ ∞

mG

ρ(x)dx ≤ 1−
∫ ∞

mG

(1 + β)c0x
γ0−1e−(1+β)c0x

γ0
dx = 1− lnn

|G|
,

which follows from the lower bound shown in Lemma D.9 when n is sufficiently large. The probability
that all ξ(SL + e) (e ∈ G) are bounded by mG is at most(

1− lnn

|G|

)|G|

≤ 1

elnn
=

1

n
.

Hence ξ∗G ≥ mG holds with probability at least 1− 1
n .

The probability that a single noise multiplier ξ is bounded by MB is at least

P [ξ ≤MB] = 1−
∫ ∞

MB

ρ(x)dx ≥ 1−
∫ ∞

MB

(1− β)c0x
γ0−1e−(1−β)c0xγ0

dx = 1− 1

|B| lnn
,

which follows from the upper bound shown in Lemma D.9 when n is sufficiently large. Then we
obtain

P[ξ∗B ≤MB] ≥
(
1− 1

|B| lnn

)|B|

≥ 1− 1

lnn
.

Therefore, by a union bound, ξ∗G ≥ mG and ξ∗B ≤MB hold with probability 1−O( 1
logn ).

With Lemma D.10, we have

max
e∈G

f̃(SL + e) ≥ mGh(SL) >
(
1− ε

2

)
MBh(SL) > max

e∈B
f̃(SL + e)

with probability 1 − O( 1
logn ). Thus a bad element will not be selected by Algorithm 2 at the

f̃ -maximization phase, i.e., f(SM ) ≥ (1− ε)h(SL).

E Missing Proofs in Subsection 4.2

In this appendix, we provide the proofs that we omitted from Subsection 4.2.

E.1 Proof of Lemma 4.8

For any set S ⊆ N and x ̸∈ S, by Definition 4.7, we have

h(S + x)− h(S) =
1

2|H|

∑
Hj⊆H

[f(S ∪Hj + x)− f(S ∪Hj)] ,

which immediately indicates that h is monotone. Moreover, for a set T ⊆ S,

h(T + x)− h(T ) =
1

2|H|

∑
Hj⊆H

[f(T ∪Hj + x)− f(T ∪Hj)]

≥ 1

2|H|

∑
Hj⊆H

[f(S ∪Hj + x)− f(S ∪Hj)] (submodularity of f )

= h(S + x)− h(S).

Thus h is also submodular. Finally, we lower bound hH(A) as below:

hH(A) =
1

2|H|

∑
Hj⊆H

f(A ∪Hj)
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=
1

2|H|+1

∑
Hj⊆H

[f(A ∪Hj) + f(A ∪H \Hj)]

≥ 1

2|H|+1

∑
Hj⊆H

[f(A ∪H) + f(A)] (submodularity of f )

=
1

2
[f(A ∪H) + f(A)] .

E.2 Proof of Lemma 4.9

For any set A ⊆ N , we rewrite φhH
(A) as a linear combination of f(T ) according to Definitions 3.1

and 4.7:

φhH
(A) =

1

2|H|

∑
T⊆A

∑
Hi⊆H

m|A|−1,|T |−1f(T ∪Hi).

We will use Algorithm 6 to construct the oracle of approximate function φ̂hH
. Similar to Lemma

4.4, we first show some bounds of coefficients m|A|−1,|T |−1. With these bounds, we will then prove
φhH

and its noisy analogue φ̃hH
are close to each other by Bernstein’s inequality for sub-exponential

variables. Finally, we use Hoeffding’s inequality to show that with enough samples, φ̂hH
is close to

φ̃hH
and therefore a good approximation of φhH

.

Algorithm 6: Approximation of φh
Input :Noisy oracle f̃ , a set A ∈ IH(r) and ε ∈ (0, 1/2)

1 Let M = 32rH2
r log

5
2 n · ε−1 and s(A) =

∑
T⊆Am|A|−1,|T |−1

2 Construct a distribution νA(B) on set 2N such that

νA(B) =

{ m|A|−1,|T |−1

2|H|s(A)
if there exists T ⊆ A and Hi ⊆ H such that B = T ∪Hi

0 otherwise
3 Sample M subsets B1, · · · , BM with distribution νA(B)

4 φ̂h(A)← s(A)
M∑
i=1

f̃(Bi)/M

5 return φ̂h(A)

Lemma E.1 (Useful bounds of the coefficients). For any A ⊆ N with size |A| ≥ 2, we have

(1)
∑
T⊆A

m|A|−1,|T |−1 ≤ H|A|; ([7, Lemma 2])

(2)
∑
T⊆A

m2
|A|−1,|T |−1 ≤

e2

(e− 1)2
2

|A|
≤ 3.

Proof. It only remains to estimate the bound of
∑
T⊆A

m2
|A|−1,|T |−1. We have

∑
T⊆A

m2
|A|−1,|T |−1 =

|A|∑
i=1

(∫ 1

0

ep

e− 1
pi−1(1− p)|A|−idp

)2(|A|
i

)
(Definition 3.1)

≤ e2

(e− 1)2

|A|∑
i=1

(∫ 1

0

pi−1(1− p)|A|−idp

)2(|A|
i

)
(p ∈ [0, 1])

=
e2

(e− 1)2

|A|∑
i=1

(
Γ(i)Γ(|A| − i+ 1)

Γ(|A|+ 1)

)2(|A|
i

)
(Ineq. (8))
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=
e2

(e− 1)2

 1

|A|
+

|A|∑
i=2

1

i(|A| − i+ 1)

1( |A|
i−1

)
 (

( |A|
i−1

)
≥ |A|)

≤ e2

(e− 1)2
2

|A|
≤ 3.

To show that φ̂hH
is a

(
α = ε

4r ln r , δ = 3
n6 , IH(r)

)
-approximation of φhH

, it suffices to prove

P
[
|φ̂hH

(A)− φhH
(A)| > ε

4rHr
· φhH

(A)

]
≤ 3

n6
.

First, we prove the the following lemma using concentration properties of sub-exponential random
variables.
Lemma E.2 (Difference between φhH

and φ̃hH
). If |H| = ⌈3 lnn⌉, we have

P
[
|φ̃hH

(A)− φhH
(A)| > ε

8rHr
φhH

(A)

]
≤ 2

n6
. (14)

Proof. Let ξ be a random variable with a generalized exponential tail distribution D. The varaiable
ξ − 1 has a finite sub-exponential norm κ by Claim D.3. Let

Xi,j =
1

2|H| ·m|A|−1,|Tj |−1f(Tj ∪Hi) · (ξTj∪Hi − 1),

where Hi ⊆ H , Tj ⊆ A and i ∈ [2|H|], j ∈ [2|A|]. Applying Bernstein’s inequality (Lemma D.4)
gives

P
{
|φ̃hH

(A)− φhH
(A)| > εφhH

(A)

8rHr

}
≤ 2 exp

−cmin


(

ε

8rHr

)2

(φhH
(A))

2

∑
i,j

∥Xi,j∥2ψ1

,

ε

8rHr
φhH

(A)

max
i,j
∥Xi,j∥ψ1


 .

We can bound maxi,j ∥Xi,j∥ψ1
by

max
i,j
∥Xi,j∥ψ1

≤ κ

2|H| f(A ∪H) ·max
Tj

m|A|−1,|Tj |−1 ≤
3

2|H|κ · f(A ∪H),

where we use the fact that for any a, t ≥ 0,

ma,t =

∫ 1

0

ep

e− 1
pt(1− p)a−tdp ≤ 3.

With Lemma E.1,
∑
i,j

∥Xi,j∥2ψ1
can be bounded by

∑
i,j

∥Xi,j∥2ψ1
≤ 1

2|H|

∑
Tj⊆A

m2
|A|−1,|Tj |−1 (f(A ∪H))

2
κ2 ≤ 3

2|H|κ
2(f(A ∪H))2.

For a sufficiently large n ∈ Ω(ε−4), we have |H| ≥ 3 lnn ≥ ln
(

36864κ2

c r2H2
r lnn · ε−2

)
. Then by

Lemma 4.8 and direct calculations, we can conclude that

min


(

ε

8rHr

)2

(φhH
(A))

2

∑
i,j

∥Xi,j∥2ψ1

,

ε

8rHr
φhH

(A)

max
i,j
∥Xi,j∥ψ1

 ≥ 6

c
lnn.

Therefore Ineq. (14) holds.

Next we prove the following lemma using Hoeffding’s inequality (Lemma D.6).
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Lemma E.3 (Difference between φ̂hH
and φ̃hH

). If n ∈ Ω(ε−4), we have

P
[
|φ̂hH

(A)− φ̃hH
(A)| > ε

8rHr
φhH

(A)

]
≤ 1

n6
.

Proof. To use Hoeffding’s inequality, we need a bound b for noise multipliers. If the noise distribution
D has bounded support, this bound is natural. When the support of D is not bounded, we let

b =
16

c0
ln
(
n · c−

1
4

0

)
.

Recall that we sample M sets B1, . . . , BM to estimate φ̂h(A) in Algorithm 6. We say that event EA
happens if for all i ∈ [M ], we have ξBi ≤ b. If the support of D is bounded, event EA trivially holds.
Otherwise, for a distribution with unbounded support, recall that when

x ≥ max

{
1,

(
2
∑
i=1 |ci|
c0

) 1
γ0−γ1

}
,

we have the probability density ρ(x) ≤ e−
1
2 c0x

γ0 ≤ e−
1
2 c0x. When n is sufficiently large, we have

P [ξ ≥ b] ≤
∫ ∞

b

exp

(
−1

2
c0x

)
dx ≤ 2

c0
exp

(
−1

2
c0b

)
=

2

n8
.

Thus by taking a union bound, event EA happens with probability at least 1− 2M/n8.

Conditioned on event EA, consider the random variables Xi = s(A)f̃(Bi). We bound Xi by

Xi = s(A)ξBif(Bi) (Definition 2.4)
≤ Hrbf(Bi) (Lemma E.1 with |A| ≤ r and event EA)
≤ Hrbf(A ∪H). (monotonicity of f )

Thus applying Hoeffding’s inequality (Lemma D.6), we obtain

P
[
|φ̂hH

(A)− φ̃hH
(A)| > ε

8rHr
φhH

(A)

]
≤ 2

n8
,

which holds for a sufficiently large n such that ln2 n ≥ b. Therefore, |φ̂h(A)−φ̃h(A)| > ε
8rHr

φh(A)
holds with probability at most

2M

n8
+

(
1− 2M

n8

)
2

n8
= O(n−6).

Combining Lemma E.2 and E.3, we complete the proof of Lemma 4.9.

E.3 Proof of Lemma 4.10

We first show that a random set A, which is uniformly selected from all subsets of N with size |H|,
satisfies that

E [f(O⋆ \A)] ≥
(
1− |H|

r

)
f(O⋆).

To prove this, we index O⋆ as {o1, · · · , or} and denote by IA the indexes of elements in O⋆ ∩ A.
Then we decompose f(O⋆) as below:

f(O⋆) =

r∑
i=1

f(oi | ot, t ∈ [i− 1]),

where o0 is defined to be ∅. Similarly, we decompose f(O⋆ \H) as

f(O⋆ \A) =
∑

i∈[r]\IA

f(oi | ot, t ∈ [i− 1] and t ̸∈ IA)
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≥
∑

i∈[r]\IA

f(oi | ot, t ∈ [i− 1]). (submodularity of f )

Taking an expectation gives

E [f(O⋆ \A)] ≥ E

 ∑
i∈[r]\IA

f (oi | ot, t ∈ [i− 1])


=

(
1− |H|

r

)( r∑
i=1

f(oi | ot, t ∈ [i− 1])

)
=

(
1− |H|

r

)
f(O⋆).

Thus there must exist a set A0 such that f(O⋆ \A0) ≥
(
1− |H|

r

)
f(O⋆). Therefore, we have

max
S∈IH(r)

hH(S) ≥ hH(O⋆ \A0) ≥ f(O⋆ \A0) ≥
(
1− |H|

r

)
f(O⋆).

F Proof of Theorem 5.1

In this appendix, we generalize Algorithm 2 to deal with general matroid constraints, which results in
an algorithm (Algorithm 7) achieving the performance stated in Theorem 5.1.

F.1 Useful notations and useful facts for Theorem 5.1

The local search procedure in this subsection is still based on the smoothing surrogate function h in
Definition 4.2. Similar to Lemma 4.4, we can construct a (α, δ, I(r − 1) ∩ I(M))-approximation of
auxiliary function φh.
Lemma F.1 (Approximation of φh). Let α, δ ∈ (0, 1/2) and assume n ∈ Ω(α−2 log(δ−1)). There
exists a value oracle O to an (α, δ, I(r − 1) ∩ I(M))-approximation φ̂h of φh, which answering

O(A) queries at most O
(
log r · n 1

2 max{r, log n}
)

times to f̃ for each set A ∈ I(r − 1) ∩ I(M).

Compared with the (α, δ, I(r − 1))-approximation in Lemma 4.4, an (α, δ, I(r − 1) ∩ I(M))-
approximation requires a smaller estimation error α · max

S∈I(r−1)∩I(M)
φh(S) than α · max

S∈I(r−1)
φh(S).

However, the proof of Lemma 4.4 remains valid for Lemma F.1. This is because for any set
A ∈ I(r − 1) ∩ I(M), we can still bound f(T ) for all T ∈ LA by 2 ·maxS∈I(r−1)∩I(M) φh(S)
as in Eq. (10). Thus the concentration results (Lemma D.5 and D.7) in the proof hold as well.

Besides φh (Definition 3.1) guiding the local search, we introduce another auxiliary function f̂0 in
this subsection, which will be used to compare the values of sets at the final step of Algorithm 7.
Definition F.2 (Comparison auxiliary function). For any set S ⊆ N , we define the comparison
auxiliary function f0(S) as the expectation of f(S − e) over a random element e ∈ S, i.e.,

f0(S) =
1

|S|
∑
e∈S

f(S − e).

The comparison auxiliary function f0 is close to f in the sense that the following lemma holds.
Lemma F.3 (Bounds of f0). For any set S ⊆ N , we have(

1− 1

|S|

)
f(S) ≤ f0(S) ≤ f(S).

Proof. From monotonicity of f , we have f0(S) ≤ f(S) immediately. We index the elements of S as
si, where i ∈ [|S|]. Then

f0(S) =
1

|S|
∑
e∈S

[f(S)− f(e | S − e)] (Definition F.2)
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= f(S)− 1

|S|
∑
e∈S

f(e | S − e)

≥ f(S)− 1

|S|
∑
i∈[|S|]

f(si | s1, s2, · · · , si−1) (submodularity of f )

=

(
1− 1

|S|

)
f(S). (

∑
i∈[|S|]

f(si | s1, · · · , si−1) = f(S))

Note that f0 is also implicitly constructed since we only have a value oracle to f̃ instead of f . We
denote f0’s noisy analogue as f̃0, i.e.,

f̃0(S) =
1

|S|
∑
e∈S

f̃(S − e).

As f0(S) is based on an averaging set of size |S|, the following lemma indicates that f0 and f̃0 are
close to each other when |S| is sufficiently large.
Lemma F.4 (Concentration property of f0). Let ε, δ ∈ (0, 1/2) and suppose that |S| ≥
κε−1 ln(2δ−1), where κ is the sub-exponential norm of the noise multiplier. For any subset S ⊆ N ,
we have

P
[∣∣∣f̃0(S)− f0(S)

∣∣∣ > ε · f0(S)
]
≤ δ.

Proof. For any set T ∈ {S − e : e ∈ S}, let XT = ξ(T )− 1 and aT = 1
|S| · f(T ). Recall that XT

is a sub-exponential random variable with norm κ by Claim D.3. Applying Bernstein’s inequality for
sub-exponential variables (Lemma D.4) gives

P
[∣∣∣f̃0(S)− f0(S)

∣∣∣ > εf0(S)
]
≤ 2 exp

[
−cmin

(
ε2|S|2

κ2
,
ε|S|
κ

)]
.

By assumption that |S| ≥ κε−1 ln(2δ−1), the probability above is at most δ.

F.2 Algorithm for Theorem 5.1

We present Algorithm 7 that is a variant of Algorithm 2. The main difference is that Algorithm 7
contains a comparison phase (Line 4-7). Since SM may not be an independent set defined by
I(M), Algorithm 7 compares SL returned by local search with the element SM\SL obtained at the
f̃ -maximization phase and returns the one with a larger f̃0 value.

Algorithm 7: Noisy local search subject to matroids with small ranks

Input :a value oracle to f̃ , rank r ∈ Ω
(
1
ε log

(
1
ε

))
∩O

(
n

1
3

)
and ε ∈ (0, 1/2)

1 Let φ̂h be a
(

ε
4r ln r ,

1
(I+1)(r−1)n2 , I(r − 1) ∩ I(M)

)
-approximation of φh as in Lemma F.1

2 SL ← NLS
(
φ̂h, I(r − 1) ∩ I(M),∆ = ε

4r ln r

)
▷ Local search phase

3 SM ← SL + argmax
e∈N\SL

f̃(SL + e) ▷ f̃-maximization phase

4 if f̃0(SL) ≥ 1
2 f̃0(SM ) then

5 return SL ▷ Comparison phase
6 else
7 return SM\SL

F.3 Proof of Theorem 5.1

We first analyze the query complexity and then prove the approximation performance of Algorithm 7.
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Query complexity of Algorithm 7. We call the noisy oracle f̃ only (2r−1) times at the comparison
phase. The query complexity of Algorithm 7 is dominated by the number of calls it makes at the local
search phase and therefore of the same order Õ(r2n

3
2 ε−1) as Algorithm 2.

Approximate ratio and success probability of Algorithm 7. Recall that Of ∈ argmax
S∈I(M)

f(S)

denote an optimal solution to f . Similar to the analysis of Algorithm 2, it can be shown that we
obtain a set SM at the end of the f̃ -maximization phase such that with probability 1−O (1/ log n),

f(SM ) ≥
(
1− 1

e
−O(ε)

)
f(Of ). (15)

Although SM may not be an independent set, we can decompose SM into two feasible parts SL ∈
I(M) and SM\SL ∈ I(M) and output one of them. The approximate ratio of the output set is
guaranteed by the following lemma.
Lemma F.5. We assume a sufficient small ε and suppose that r ∈ Ω

(
ε−1 log(ε−1)

)
. Let SR denote

the set returned by Algorithm 7. With probability at least 1− 2ε4, we have

f(SR) ≥
(
1

2
−O(ε)

)
f(SM ).

Proof. By Lemma F.4 with δ = ε4, we have∣∣∣f̃0(S)− f0(S)
∣∣∣ ≤ εf0(S) (16)

holds for both SL and SM with probability at least 1− 2ε4. Suppose this is true.

If f̃0(SL) ≥ 1
2 f̃0(SM ), then SR is SL. We translate the inequality into that of f0 by Ineq. (16):

f0(SL) ≥
f̃0(SL)

1 + ε
≥ f̃0(SM )

2(1 + ε)
≥ 1

2
· 1− ε

1 + ε
· f0(SM ).

Then from Lemma F.3, we have

f(SL) ≥ f0(SL) ≥
1

2
· 1− ε

1 + ε
· f0(SM ) ≥ 1

2
· 1− ε

1 + ε

(
1− 1

r

)
f(SM ).

For any r > 1/ε, the inequality above implies that

f(SL) ≥
(
1

2
− 2ε

)
f(SM ).

Algorithm 7 returns SM \ SL if f̃0(SL) < 1
2 f̃0(SM ). Similarly, we convert this by Ineq. (16) into

the following inequality:

f0(SL) ≤
f̃0(SL)

1− ε
≤ 1

2
· f̃0(SM )

1− ε
≤ 1

2
· 1 + ε

1− ε
f0(SM ).

By Lemma F.3,

f(SL) ≤
r − 1

r − 2
f0(SL) <

1

2
· 1 + ε

1− ε
· r − 1

r − 2
f0(SM ) ≤ 1

2
· 1 + ε

1− ε
· r − 1

r − 2
f(SM ),

which is directly followed by

f(SL) <
1

2
(1 + 5ε)f(SM )

if ε < 1/3 and r ≥ 2/ε. Since submodularity of f indicates that f(SL) + f(SM \ SL) ≥ f(SM ),
we have

f(SM \ SL) ≥
(
1

2
− 3ε

)
f(SM ).

Combining Ineq. (15) and Lemma F.5, we prove that Algorithm 7 achieves a ((1− 1/e)/2−O(ε))-
approximation with probability 1−O(ε4).
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G Proof of Theorem 5.2

This appendix describes a generalization (Algorithm 8) of Algorithm 3, whose performance matches
Theorem 5.2.

G.1 Useful facts for Theorem 5.2

Our algorithm and analysis in this subsection are based on the smoothing surrogate function hH in
Definition 4.7 and comparison auxiliary function f0 in Definition F.2. We introduce a contraction
matroid IH(M) confined on N\H . Any feasible set S ∈ IH(M) can be converted to an independent
set subject to I(M) by adding H .

Definition G.1 (Contraction matroid). For any subset H and matroid constraint I(M), we define
contraction matroid over N \H as the following:

IH(M) = {S ⊆ N \H : S ∪H ∈ I(M)}.

Similar to Lemma 4.9, the following lemma indicates that the auxiliary function φhH
can be well

approximated.

Lemma G.2 (Approximation of φhH
). Let ε > 0 and for sufficiently large n ∈ Ω( 1

ε4 ). If |H| ≥
3 lnn, there exists a value oracleO to an ( ε

4r ln r ,
3
n6 , IH(M))-approximation φ̂hH

of φhH
, in which

answering O(A) queries at most f̃ ’s oracle O(rε−1 log
5
2 n log2 r) times of f̃ for each set A ∈ I.

The proof of Lemma 4.9 actually demonstrates a stricter claim that for any set A ∈ IH(r),
P
[
|φ̂h(A)− φh(A)| > ε

4r ln rφhH
(A)
]
≤ 3

n6 . Since IH(M) ⊆ IH(r), the proof remains valid
for Lemma G.2.

G.2 Algorithm for Theorem 5.2

Algorithm 8: Noisy local search subject to matroids with large ranks

Input :a value oracle to f̃ , rank r ∈ Ω
(
n

1
3

)
, and ε ∈ (0, 1/2)

1 Arbitrarily select a basis B0 ⊆ N and spilt B0 into two parts H1, H2 with size ⌊ r2⌋ or ⌊ r2⌋+ 1
2 for t = 1, 2 do
3 Let φ̂hHt

be a (α = ε
4r ln r , δ = 3

n6 , IHt
(M))-approximation of φhHt

as in Lemma G.2
4 St ← NLS

(
φ̂hHt

, IHt
(M),∆ = ε

4r ln r

)
▷ Local search phase

5 Let i⋆ ← argmax
t∈{1,2}

f̃0(St ∪Ht) ▷ Comparison phase

6 return Si⋆ ∪Hi⋆

We present Algorithm 8 that contains two phases: a local search phase (Lines 2-4) and a comparison
phase (Line 5). Algorithm 8 arbitrarily splits a basis (maximal independent set) into two parts of
almost the same size, and it then grows each one of them into a basis using Algorithm 1, respectively.
Finally the algorithm compares two solutions St ∪Ht (t = 1, 2) and outputs the better one in terms
of f̃0.

G.3 Proof of Theorem 5.2

To prove Theorem 5.2, we analyze the query complexity and approximation performance of Algo-
rithm 7 as below.

Query Complexity of Algorithm 8. The number of calls to f̃ during local search phase dominates
the query complexity of Algorithm 8 as it queries only 2r times at the comparison phase. Algorithm 8
runs the local search procedure twice, and thus the query complexity of Algorithm 8 is of the same
order O(n6ε−1) as that of Algorithm 3.
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Approximation performance analysis of Algorithm 8. Similar to the analysis of Algorithm 3, for
t ∈ {1, 2}, Corollary 3.4 implies that with probability 1−O

(
1
n2

)
,

f(St ∪Ht) ≥
(
1− 1

e
− ε

)
max

S⊆IHt (M)
hHt(S). (17)

Recall that O⋆ ∈ argmaxS∈I(M) f(S) denotes an optimal solution. The following lemma relates
maxS⊆IHt (M) hHt(St) to f(O⋆).

Lemma G.3. f(O⋆) ≤ max
S⊆IH1

(M)
hH1(S1) + max

S⊆IH2
(M)

hH2(S2).

Proof. We first introduce a lemma concerning the structure of matroids.

Lemma G.4 (See [10]). Given two bases B1, B2 of a matroidM a partition B1 = X1 ∪ Y1 , there
is a partition B2 = X2 ∪ Y2 such that X1 ∪ Y2 and X2 ∪ Y1 are both bases ofM.

The lemma above indicates that there is a partition of O⋆ = O1 ∪O2 such that Ot ∪Ht ∈ I(M) for
t ∈ {1, 2}. Hence we have

max
S⊆IH1

(M)
h1(S1) + max

S⊆IH2
(M)

h2(S2) ≥ hH1
(O1) + hH2

(O2)

≥ f(O1) + f(O2) (monotonicity of f )
≥ f(O1 ∪O2) = f(O⋆). (submodularity of f )

Finally, we show that comparison with noisy auxiliary function f̃0 causes only a small loss in the
approximate ratio.

Claim G.5. We assume a sufficient small ε and suppose that r ∈ Ω
(
n

1
3

)
. Let SR denote the set

returned by Algorithm 8. With probability at least 1− 2
n4 , we have

f(SR) ≥
(
1

2
−O(ε)

)
(f(S1 ∪H1) + f(S2 ∪H2)) .

Proof. By Lemma F.4 with δ = 1/n4, we have∣∣∣f̃0(S)− f0(S)
∣∣∣ ≤ εf0(S) (18)

holds for both S1 ∪H1 and S2 ∪H2 with probability at least 1− 2/n4. Suppose this is true. Then
for t ∈ {1, 2}, we have

f0(SR) ≥
1

1 + ε
· f̃0(SR) (Ineq. (18))

≥ 1

2(1 + ε)
·
(
f̃0(S1 ∪H1) + f̃0(S2 ∪H2)

)
(f̃0(SR) = max

t∈{1,2}
f̃0(St ∪Ht))

≥ 1

2
· 1− ε

1 + ε
· (f0(S1 ∪H1) + f0(S2 ∪H2)) . (Ineq. (18)) (19)

We convert this inequality of f0 to that of f :

f(SR) ≥ f0(SR) (Lemma F.3)

≥ 1

2
· 1− ε

1 + ε
· (f0(S1 ∪H1) + f0(S2 ∪H2)) (Ineq. (19))

≥ 1

2
· 1− ε

1 + ε
·
(
1− 1

r

)
(f(S1 ∪H1) + f(S2 ∪H2)) (Lemma F.3)

≥
(
1

2
− 2ε

)
(f(S1 ∪H1) + f(S2 ∪H2)) , (

1− ε

1 + ε
≥ 1− 2ε and r ≥ 1/ε)

which completes the proof.
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Combining Ineq. (17), Claim G.3 and Claim G.5, we can conclude that with probability 1−O
(

1
n2

)
,

f(Si⋆ ∪Hi⋆) ≥
(
1

2

(
1− 1

e

)
−O(ε)

)
f(O⋆),

which matches Theorem 5.2.

H Approximation algorithm for strongly base-orderable matroid constraints

In this section, we consider a special family of matroids, called strongly base-orderable matroids.
Definition H.1 (Strongly base-orderable matroid). A matroidM is strongly base-orderable if
given any two bases B1 and B2, there is a bijection σ : B1 → B2 such that for any X ⊆ B1,
(B1 \X) ∪ σ(X) is a basis, and (B2 \ σ(X)) ∪X is a basis.

As is evident from Definition H.1, the cardinality constraint which we discuss in Section 4 is a special
case of strongly base-orderable matroid. Moreover, this family of matroids includes many typical
matroids as well, such as partition matroids (Definition A.3) and transversal matroids.

Next we present an algorithm (Algorithm 9) and its analysis (Theorem H.2) that achieves near-tight
approximation guarantees subject to strongly base-orderable matroids with rank r ∈ Ω

(
n

1
3

)
.

Theorem H.2 (Algorithmic results for cardinality constraints when r ∈ Ω
(
n

1
3

)
). Let ε > 0

and assume n ∈ Ω
(

1
ε4

)
is sufficiently large. For any r ∈ Ω

(
n

1
3

)
, there exists an algorithm that

returns a
(
1− 1

e −O(ε)
)
-approximation for Problem 2.6 under a strongly base-orderable matroid

constraint I(M), with probability at least 1−O
(
1
n

)
and query complexity at most O(n7ε−1) to f̃ .

Compared with Theorem 5.2, Theorem H.2 improves the approximate ratio to
(
1− 1

e −O(ε)
)

for
the strongly base-orderable matroids, which have stronger exchangeable structures.

H.1 Algorithm for Theorem H.2

Similar to Algorithm 8, Algorithm 9 also contains two phases: a local search phase (Lines 3-5) and a
comparison phase (Line 6). The local search procedure is based on the smoothing surrogate function
hH in Definition 4.7, while the comparison auxiliary function f0 in Definition F.2 is used at Line 6.
Algorithm 8 differs from Algorithm 9 by running the local search procedure (Algorithm 1) ⌊ rl ⌋ times
rather than twice, with different smoothing surrogate functions hHt

.

Algorithm 9: Noisy local search under strongly base-orderable matroid constraints

Input :a value oracle to f̃ , rank r ∈ Ω
(
n

1
3

)
, and ε ∈ (0, 1/2)

1 Let l← ⌈3 lnn⌉
2 Arbitrarily select a basis B0 and arbitrarily spilt B0 into ⌊ rl ⌋ parts H1, · · · , H⌊ r

l ⌋ with size l or
l + 1

3 for t = 1, · · · , ⌊ rl ⌋ do
4 Let φ̂hHt

be a (α = ε
4r ln r , δ = 3

n6 , IHt
(M))-approximation of φhHt

as in Lemma G.2
5 St ← NLS

(
φ̂hHt

, IHt(M),∆ = ε
4r ln r

)
▷ Local search phase

6 Let i⋆ ← argmax
t∈[⌊ r

k ⌋]
f̃0(St ∪Ht) ▷ Comparison phase

7 return Si⋆ ∪Hi⋆

H.2 Proof of Theorem H.2

We analyze the query complexity and approximation performance of Algorithm 9 to prove Theorem
H.2. To simplify notation, we use ht to stand for hHt

, φ̂ht
for φ̂hHt

, and It(M) for IHt
(r) in the

analysis.
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Query Complexity of Algorithm 9. Similar to the proof of Theorem 5.2, Algorithm 9 runs the local
search procedure ⌊r/l⌋ times, and thus the query complexity of Algorithm 9 is at most O(n7ε−1).

Approximation performance analysis of Algorithm 9. Similarly, from mononicity of f and
Corollary 3.4, we have that

f(St ∪Ht) ≥
(
1− 1

e
− ε

)
max

S⊆It(M)
ht(S) (20)

holds for all t ∈ [⌊r/l⌋] with probability 1−O
(
r
n2

)
. Let O⋆ ∈ argmax

S∈I(M)

f(S) be an optimal solution.

The following lemma relates max
S⊆It(M)

ht(S) to f(O⋆).

Lemma H.3. We have

E
t∼U

[
max

S⊆It(M)
ht(S)

]
≥
(
1− l + 1

r

)
f(O⋆),

where U is a uniform distribution over [⌊ rl ⌋].

Proof. By Definition H.1, there is a bijection σ : B0 → O⋆ between the elements in B0 and O⋆

such that for all t ∈ [⌊ rl ⌋], (O
⋆ \ σ(Ht)) ∈ It(M). The following lemma gives a lower bound of

f(O∗ \ σ(Ht)) in expectation.

Lemma H.4. Given an arbitrary partition O1, · · · , O⌊r/l⌋ of O⋆ such that |Ot| ∈ {l, l + 1} (t ∈
[⌊ rl ⌋]), we have

E
t∼U

[f(O⋆ \Ot)] ≥
(
1− l + 1

r

)
f(O⋆),

where U is a uniform distribution over [⌊ rl ⌋].

Proof. We index O⋆ as {o1, · · · , or} and denote by It the indexes of the elements in Ot for t ∈ [⌊ rl ⌋].
We can decompose f(O⋆) as

f(O⋆) =

r∑
i=1

f(oi | ok, k ∈ [i− 1]).

f(O⋆ \Ot) can also be decomposed as below:

f(O⋆ \Ot) =
∑

i∈[r]\It

f(oi | ok, k ∈ [i− 1] and k ̸∈ It)

≥
∑

i∈[r]\It

f(oi | ok, k ∈ [i− 1]). (submodularity of f )

Taking an expectation over t ∈ [⌊ rl ⌋] gives

E
t∼U

[f(O⋆ \Ot)] ≥ E
t∼U

 ∑
i∈[r]\It

f(oi | ok, k ∈ [i− 1])


=

(
1− 1⌊

r
l

⌋) r∑
i=1

f(oi | ok, k ∈ [i− 1]) ≥
(
1− l + 1

r

)
f(O⋆).

With Lemma H.4, we can prove Lemma H.3 since

E
t∼U

[
max

S⊆It(M)
ht(S)

]
≥ E
t∼U

[ht(O
⋆ \ σ(Ht))] ((O⋆ \ σ(Ht)) ∈ It(M))
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≥ E
t∼U

[f(O⋆ \ σ(Ht))] (submodularity of f )

≥
(
1− l + 1

r

)
f(O⋆). (Lemma H.4)

Finally, similar to Lemma G.5, the following lemma shows that comparison with f̃0 causes only a
small loss in the approximate ratio.

Lemma H.5. We assume a sufficient small ε and suppose that r ∈ Ω
(
n

1
3

)
. With probability at least

1− 2r
n4 , we have

f(Si⋆ ∪Hi⋆) ≥ (1−O(ε)) E
t∼U

[f(St ∪Ht)] .

The proof idea of this lemma is the same as that of Lemma G.5. The only difference is that when
proving Lemma H.5, we need to take a union bound of probability that f̃0(St ∪ Ht) is close to
f(St ∪Ht) for all i ∈ [⌊r/l⌋], thus the success probability in Lemma H.5 is at least 1− 2r

n4 .

Now we arrive that with probability 1−O
(
1
n

)
, we have

f(Si⋆ ∪Hi⋆) ≥ (1−O(ε)) E
t∼U

[f(St ∪Ht)] (Lemma H.5)

≥
(
1− 1

e
−O(ε)

)
E
t∼U

[
max

S⊆It(M)
ht(S)

]
(Ineq. (20))

≥
(
1− 1

e
−O(ε)

)
f(O⋆), (Lemma H.3 )

which matches the approximation performance of Algorithm 9 in Theorem H.2.
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