
A Additional details on application for real datasets in Section 4.3

In this section, we provide more details of setups and results for real applications in Section 4.3. The
results of error rates, F1 scores and time costs are shown in Table 2, Table 3 and Table 4 respectively,
which are based on 10 replicates.1

Table 3: F1 score (SD) for clustering three benchmark datasets: MNIST, Fashion-MNIST and USPS
handwriting digits. MNIST1 (MNIST2) refers to the results of Case 1 (Case 2) for MNIST dataset.

W-SDP D-WKM B-WKM KM
MNIST1 0.771 (0.044) 0.842 (0.056) 0.698 (0.067) 0.708 (0.063)
MNIST2 0.729 (0.049) 0.814 (0.093) 0.685 (0.031) 0.647 (0.032)

Fashion-MNIST 0.919 (0.018) 0.934 (0.036) 0.817 (0.117) 0.791(0.168)
USPS handwriting 0.799 (0.019) 0.835 (0.081) 0.761 (0.060) 0.689 (0.093)

Table 4: Time cost (SD) for clustering three benchmark datasets: MNIST, Fashion-MNIST and USPS
handwriting digits. MNIST1 (MNIST2) refers to the results of Case 1 (Case 2) for MNIST dataset.

W-SDP D-WKM B-WKM KM
MNIST1 525.13 (4.70) 524.80 (4.92) 388.87 (647.15) 0.01 (0.01)
MNIST2 2187.66 (74.67) 2160.91 (7.26) 693.67 (142.57) 0.02 (0.00)

Fashion-MNIST 849.24 (7.09) 852.49 (8.60) 463.28 (176.32) 0.01 (0.00)
USPS handwriting 1100.87 (19.13) 1098.05 (16.41) 317.12 (113.94) 0.02 (0.01)

First we run our Wasserstein SDP algorithm against Wasserstein K-means on the MNIST dataset
for two cases. (1) For the first case, we choose two clusters: G∗

1 containing the number "0" and G∗
2

containing the number "5", so that the number of clusters is K = 2 in the algorithms. The cluster
sizes are unbalanced with |G∗

1|/|G∗
2| = 2, where we randomly choose 200 number "0" and 100

number of "5" for each repetition. (2) For the second case, we follow the same settings as case 1
except that randomly choose 400 number "0" and 200 number of "5" for each repetition.

Next we considered benchmark dataset Fashion-MNIST 28×28 containing 10 clusters of 28×28
greyscale images of clothes. Here we choose three clusters: G1 containing the "T-shirt/top", G2

containing the "Trouser" and G3 containing the "Dress", so that the number of clusters is K = 3
in the algorithms. The cluster sizes are unbalanced where we randomly choose 200, 100 and 100
number from G1, G2 and G3 respectively for each repetition.

Finally, we consider the USPS handwriting dataset, analogous to MNIST, which contains digits
automatically scanned from envelopes by the U.S. Postal Service containing a total of 9,298 16×16
pixel grayscale samples. We choose three clusters: G1 containing the number "0", G2 containing
the number "5" and G3 containing the number "7", so that the number of clusters is K = 3 in the
algorithms. The cluster sizes are unbalanced where we randomly choose 200, 100 and 100 number
from G1, G2 and G3 respectively for each repetition.

Now if we look at the time cost for two cases on MNIST (MNIST1 and MNIST2) in Table 4, we can
see that Wasserstein SDP (W-SDP), distance-based Wasserstein K-means (D-WKM) and barycenter-
based Wasserstein K-means (B-WKM) all have time complexity issues when we enlarge n. The large
variance for B-WKM for MNIST1 is due to the convergence of the algorithm. The total iterations for
B-WKM in case 1 achieves maximum iteration 100 for 1 replicate out of 10 total replicates. More
arguments for time complexity can be found in Appendix B.

B Additional details on simulation studies in Section 4.1

In this section, we provide more details of our simulation setups and results for Gaussian mixtures in
Section 4.1.

1We run all the simulations and experiments except for USPS datasets on the machine with Intel Core
i7-10700K 3.80 GHz 64 bit 8-core 16 Tread Processor and 16 GB DDR4 Memory; run experiments on USPS
datasets with 1.6 GHz Dual-Core Intel Core i5 and 8 GB 2133 MHz LPDDR3 Memory.
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We set m1 = 40·r,m2 = r,m3 = 20·r which means that there are total 81·r number of distributions
in G1, 20 · r distributions in G2. The r is set to be 1, 2, 3, where we have n = 101, 202, 303
respectively. The mean for the Gaussian distributions are shown in the table below. The entries of
covariance matrices for the Gaussian distributions are chosen to be O(10−3) for µ1, µ2 and they are
chosen to be O(10−6) for µ3 and µ4. Then we scale down the distribution with scaling parameter
equals 0.5. This ensures that with high probability, all the distributions will fall into the bounded
range [0, 1]× [0, 1].

The algorithm we use to get the barycenter is Frank-Wolfe algorithm with 200 iterations. And we use
Sinkhorn divergence to calculate the Wasserstein distance. The regularization parameters for both
algorithms are chosen to be 10−3. To approximate the true distribution, first we divide [0, 1]× [0, 1]
range into 80× 80 grids, then we randomly sample 600 samples each time and count the number of
times it falls into certain grid to approximate the distribution. The results show us that for each n and
each iterations among 50 repetitions, all the distributions in G∗

2 will be assigned to same cluster, so it
will be reasonable to define that µ3 is misclassified if any copy of them are in the same cluster of an
arbitrarily chosen µ from G∗

2.

The arrangement of mean for Gaussian mixture models shown in Table 5 indicates that the distribu-
tions are set based on Example 3. Recall that in Section 4.1, ∆∗ := maxk=1,2 maxi,j∈Gk

W2(µi, µj)
and ∆∗ := mini∈G1,j∈G2

W 2(µi, µj) are the maximum within-cluster distance and the minimum
between-cluster distance respectively. Table 7 shows that ∆∗ < ∆∗ on average and ∆∗ < ∆∗ for
around 80% among 50 repetitions. So we can expect Wasserstein SDP to correctly cluster all data
points in the Wassertein space. From Table 6 we can observe that in our settings the time cost for
Wasserstein SDP and distance-based Wasserstein K-means is relatively lower than the time cost
for barycenter-based Wasserstein K-means. But we can see that as n increases, the time cost for
B-WKM grows almost linearly w.r.t. n while almost quadratically for W-SDP and D-WKM. Thus we
should expect relatively higher time cost for W-SDP and D-WKM when n is sufficiently large, where
we can consider several methods to bring down the time cost (e.g., subsampling-based method for
SDP from Zhuang et al. [2022]).

Computationally speaking, the calculations of Wasserstein distances and barycenters are usually
based on one-step discretization and one-step application of entropic regularization methods such as
Sinkhorn (Genevay et al. [2018], Janati et al. [2020]). Dvinskikh and Tiapkin [2020] shows that the
complexity of calculating barycenters should be of the order O(nd2/ϵ2)) or O(ng4/ϵ2)), where n is
the total number of distributions, d = g2 is the discretization size, e.g. g = 28 for MNIST datasets
and ϵ is the numerical accuracy; while Le et al. [2021] gives a O(d2/ϵ)) or O(g4/ϵ)) complexity
algorithm for calculating the Wasserstein distance on robust optimal transport.

Table 5: Positions (x, y) ∈ R2 of means for two-dimensional mixture of Gaussian distributions for
the counter example in Section 4.1.

a1,1 a1,2 a2,1 a2,2 a3,1 a3,2 a4,1 a4,2
x 0.75 0.25 0.75 0.25 0.9 0.9 1.3 1.3
y 1.15 0.85 0.85 1.15 0.85 1.15 0.75 1.25

Table 6: The time cost with standard deviation shown in parentheses for the counter example. TC:
Time cost, W-SDP: Wasserstein SDP, D-WKM: Distance-based Wasserstein K-means, B-WKM:
Barycenter-based Wasserstein K-means.

n TC for W-SDP (SD) TC for D-WKM TC for B-WKM (SD)
101 14.50 (0.5873) 14.15 (0.5132) 181.1 (372.4)
202 56.94 (1.490) 54.98 (1.516) 341.0 (136.2)
303 128.4 (3.640) 123.9 (3.606) 549.2 (200.2)

C Background on optimal transport

The optimal transport (OT) problem (a.k.a. the Monge problem) is to find an optimal map T ∗ : Rp →
Rp for transporting a source distribution µ0 to a target distribution µ1 that minimizes some cost
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Table 7: Estimated Wasserstein distances with standard deviation shown in parentheses and frequency
of ∆∗ > ∆∗ for the counter example.

n ∆∗ ∆∗ Frequency of ∆∗ < ∆∗

101 0.1978 (0.0055) 0.2046 (0.0050) 0.8200
202 0.1990 (0.0058) 0.2050 (0.0051) 0.8200
303 0.1996 (0.0067) 0.2052 (0.0050) 0.7600

function c : Rp × Rp → R:

min
T :Rp→Rp

{∫
Rp

c(x, T (x))dµ0(x) : T♯µ0 = µ1

}
, (20)

where T♯µ denotes the pushforward measure defined by (T♯µ)(B) = µ(T−1(B)) for measurable
subset B ⊂ Rp. A standard example of the cost function is the quadratic cost c(x, y) = ∥x−y∥22. The
Monge problem (20) with the quadratic cost induces a metric, known as the 2-Wasserstein distance,
on the space P2(Rp) of probability measures on Rp with finite second moments. In particular, the
2-Wasserstein distance can be expressed in the relaxed Kantorovich form:

W 2
2 (µ0, µ1) := min

γ

{∫
Rp×Rp

∥x− y∥22dγ(x, y)
}
, (21)

where minimization over γ runs over all possible couplings with marginals µ0 and µ1 [Villani, 2003].
It is well-known from Brenier’s theorem [Brenier, 1991] that if the source measure µ0 does not
charge on small subsets of Rp (i.e., subsets of Hausdorff dimension at most p− 1), then there exists a
unique µ0-almost everywhere OT map T ∗ solving (20). That is, T ∗

♯ µ0 = µ1 and

W 2
2 (µ0, µ1) =

∫
Rp

∥x− T ∗(x)∥22dµ0(x).

Let (µt)1t=0 be the constant-speed geodesic connecting µ0, µ1 ∈ P2(Rp). Then for any ν ∈ P2(Rp)
and t ∈ [0, 1], we have

W 2
2 (µt, ν) ⩾ (1− t)W 2

2 (µ0, ν) + tW 2
2 (µ1, ν)− t(1− t)W 2

2 (µ0, µ1). (22)

The above semiconcavity inequality (22) can be interpreted as that the Wasserstein space P2(Rp) is a
positive curved metric space (PC-space) in the sense of Alexandrov (cf. Section 7.3 and Section 12.3
in Ambrosio et al. [2005]).

D Additional proofs

In this section, we will give detailed proofs for Example 1, Lemma 4 and Theorem 8. For the proof
of Theorem 8, we will first introduce the main part and put the rest proofs of corresponding lemmas
at the end of this section to make it clear.

D.1 Proof of Example 1

Recall that µ0(s) = (1 − s)/2 and µ1(s) = (1 + s)/2 are probability densities supported on
the line segments L0 = {(s, as) : s ∈ [−1, 1]} and L1 = {(s,−as) : s ∈ [−1, 1]} for some
a ∈ (0, 1), respectively. To derive the optimal transport (OT) map T from µ0 to µ1, it suffices to
consider the one-dimensional OT problem by parameterization of T : [−1, 1] → [−1, 1] identified
via (s, as) 7→ (T (s),−aT (s)). Then our goal is to find the solution to the following optimization
problem

min
T :T♯µ0=µ1

∫ 1

−1

∥(s,−as)− (T (s),−aT (s))∥22dµ0(s)

= min
T :T♯µ0=µ1

∫ 1

−1

[(s− T (s))2 + a2(s+ T (s))2]dµ0(s)

= (1− a2)× min
T :T♯µ0=µ1

∫ 1

−1

[√
1 + a2

1− a2
T (s)− s

]2
dµ0(s) + constant,
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where the constant does not depend on T . Now rescale the distribution density µ1 to

µ̃1(s) =

√
1− a2

1 + a2
µ1

(√
1− a2

1 + a2
s

)
for s ∈

[
−
√

1 + a2

1− a2
,

√
1 + a2

1− a2

]
,

and define the transport map T̃ =
√

1+a2

1−a2 T on [−1, 1]. To find the OT map T such that T♯µ0 = µ1,

it suffices to find the OT map T̃ such that T̃♯µ0 = µ̃1, i.e.,

min
T̃ :T̃♯µ0=µ̃1

∫ 1

−1

[T̃ (s)− s]2dµ0(s),

whose solution is known as the quantile transform for one-dimensional distributions. Specifically, let

F0(s) =

∫ s

−1

µ0(t)dt =
1

2

(
s− 1

2
s2 +

3

2

)
for s ∈ [−1, 1],

be the cumulative distribution function (cdf) of the density µ0 and

F̃1(s) =

∫ s

−
√

1+a2

1−a2

µ̃1(t)dt =
1

2

(√
1− a2

1 + a2
s+

1

2
· 1− a2

1 + a2
s2 +

1

2

)
for s ∈

[
−
√

1 + a2

1− a2
,

√
1 + a2

1− a2

]
,

be the cdf of the density µ̃1. It is easy to find that

F̃−1
1 (y) =

√
1 + a2

1− a2
(
√
4y − 1) for y ∈ [0, 1].

Then the OT map T̃ from µ0 to µ̃1 is given by

T̃ (s) = F̃−1
1 ◦ F0(s) =

√
1 + a2

1− a2
[−1 +

√
4− (1− s)2], s ∈ [−1, 1].

This gives the OT map T from µ0 to µ1 (in the one-dimensional parameterization form) as

T (s) = −1 +
√
4− (1− s)2. (23)

Thus, the OT map T from µ0 to µ1 as (degenerate) probability distribution in R2 is given by

T (s, as) =
(
− 1 +

√
4− (1− s)2, −a · (−1 +

√
4− (1− s)2)

)
.

D.2 Proof of Lemma 4 in Section 2.1

Recall the settings as following

µ1 = 0.5 δ(x,y) + 0.5 δ(−x,−y), µ2 = 0.5 δ(x,−y) + 0.5 δ(−x,y),

µ3 = 0.5 δ(x+ϵ1,y) + 0.5 δ(x+ϵ1,−y), and µ4 = 0.5 δ(x+ϵ1+ϵ2,y) + 0.5 δ(x+ϵ1+ϵ2,−y),

where δ(x,y) denotes the point mass measure at point (x, y) ∈ R2, and (x, y, ϵ1, ϵ2) are positive
constants.

Lemma 4 (Configuration characterization). If (x, y, ϵ1, ϵ2) satisfies

y2 < min{x2, 0.25∆ϵ1,x} and ∆ϵ1,x < ϵ22 < ∆ϵ1,x + y2,

where ∆ϵ1,x := ϵ21 + 2x2 + 2xϵ1, then for all sufficiently large m (number of copies of µ1 and µ2),

W2(µ3, µ
∗
2) < W2(µ3, µ

∗
1) and max

k=1,2
max
i,j∈Gk

W2(µi, µj)︸ ︷︷ ︸
largest within-cluster distance

< min
i∈G1,j∈G2

W2(µi, µj),︸ ︷︷ ︸
least between-cluster distance

where µ∗
k denotes the Wasserstein barycenter of cluster Gk for k = 1, 2.

Proof. For any wi ∈ R2, i = 1, 2, 3, 4, let µ = 0.5 δw1
+ 0.5 δw2

, ν = 0.5 δw3
+ 0.5 δw4

. By
definition of Wasserstein distance we can show that

W 2
2 (µ, ν) = 0.5min{∥w1 − w3∥2 + ∥w2 − w4∥2, ∥w1 − w4∥2 + ∥w2 − w3∥2}.
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Let µ0 = 0.5 δ(x,0) + 0.5 δ(−x,0), by algebraic calculation it is direct to check

W2(µ3, µ
∗
2) < W2(µ3, µ0) and max

k=1,2
max
i,j∈Gk

W2(µi, µj)︸ ︷︷ ︸
largest within-cluster distance

< min
i∈G1,j∈G2

W2(µi, µj),︸ ︷︷ ︸
least between-cluster distance

once plugging in the assumptions. So we only need to show that ∀ε,∃M , s.t. when m > M we
have W 2

2 (µ3, µ
∗
1) ≥ W 2

2 (µ3, µ0)− ε. For notation simplicity, let vx = (x, 0), v−x = (−x, 0), v1 =
(x, y), v2 = (−x,−y), v3 = (x,−y), v4 = (x,−y). By definition we know there exist measures
ξi, i = 1, 2, 3, 4, s.t.

W 2
2 (µ

∗
1, µ1) =

∫
∥v − v1∥2dξ1(v) +

∫
∥v − v2∥2dξ2(v),

W 2
2 (µ

∗
1, µ2) =

∫
∥v − v3∥2dξ3(v) +

∫
∥v − v4∥2dξ4(v),

where µ∗
1 = ξ1+ ξ2 = ξ3+ ξ4 with ξi(R2) = 0.5,∀i. Furthermore, if we define ξi,j = ξi · ξj/µ∗

1, i ∈
{1, 2}, j ∈ {3, 4}, then ξi = ξi,3 + ξi,4, ξj = ξ1,j + ξ2,j , i ∈ {1, 2}, j ∈ {3, 4}. Thus

W 2
2 (µ

∗
1, µ1) +W 2

2 (µ
∗
1, µ2) =

4∑
i=1

∫
∥v − vi∥2dξi(v)

=
∑

i∈{1,2},j∈{3,4}

∫
∥v − vi∥2 + ∥v − vj∥2dξi,j(v).

Now suppose t = ∥v − vx∥, by algebraic calculation we can get

∥v − v1∥2 + ∥v − v3∥2 = t2 + 2y2.

Choose T > 0 s.t. T 2 < min{2x2 − 2y2, y2}, then we have

W 2
2 (µ

∗
1, µ1) +W 2

2 (µ
∗
1, µ2) =

∑
i∈{1,2},j∈{3,4}

∫
∥v − vi∥2 + ∥v − vj∥2dξi,j(v)

≤
∫
BT (vx)

∥v − v1∥2 + ∥v − v3∥2dξ1,3(v) +
∫
BT (v−x)

∥v − v2∥2 + ∥v − v4∥2dξ2,4(v)

+ (T 2 + 2y2)(1− ξ1,3(BT (vx))− ξ2,4(BT (v−x)))

=

∫
BT (vx)

t1(v)
2dξ1,3(v) +

∫
BT (v−x)

t2(v)
2dξ2,4(v) + 2y2 + T 2(1− ξ1,3(BT (vx))− ξ2,4(BT (v−x))),

where Bt(v) stands for the ball with radius t centered at v, t1(v) := ∥v − vx∥, t2(v) := ∥v − v−x∥.
On the other hand, by definition we know that

m ·W 2
2 (µ

∗
1, µ1) +m ·W 2

2 (µ
∗
1, µ2) +W 2

2 (µ
∗
1, µ3)

≤ m ·W 2
2 (µ0, µ1) +m ·W 2

2 (µ0, µ2) +W 2
2 (µ0, µ3)

= m · (2y2) + C,

where C := W 2
2 (µ0, µ3). So we have W 2

2 (µ
∗
1, µ1) +W 2

2 (µ
∗
1, µ2) ≤ 2y2 + C/m. i.e.,∫

BT (vx)

t1(v)
2dξ1,3(v)+

∫
BT (v−x)

t2(v)
2dξ2,4(v)+T 2(1−ξ1,3(BT (vx))−ξ2,4(BT (v−x))) ≤

C

m
.

So we have ∫
BT (vx)

t1(v)
2dξ1,3(v) ≤

C

m
,

∫
BT (v−x)

t2(v)
2dξ2,4(v) ≤

C

m
,

0.5− ξ1,3(BT (vx)) ≤
C

T 2m
, 0.5− ξ2,4(BT (v−x)) ≤

C

T 2m
.
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Now suppose vϵ1 := (x + ϵ1, y), v−ϵ1 := (x + ϵ1,−y), note that T 2 < y2 < ϵ21 + y2 and
W 2

2 (µ3, µ0) = 0.5∥vx − vϵ1∥2 + 0.5∥v−x − v−ϵ1∥2. By definition of Wasserstein distance and
symmetry we have

W 2
2 (µ3, µ

∗
1) ≥

∫
BT (vx)

(∥vx − vϵ1∥ − t1(v))
2dξ1,3(v) +

∫
BT (v−x)

(∥v−x − vϵ1∥ − t2(v))
2dξ2,4(v)

≥ ∥vx − vϵ1∥2ξ1,3(BT (vx)) + ∥v−x − vϵ1∥2ξ2,4(BT (v−x))

− 2∥vx − vϵ1∥
∫
BT (vx)

t1(v)dξ1,3(v)− 2∥vx − v−ϵ1∥
∫
BT (v−x)

t2(v)dξ2,4(v)

≥ W 2
2 (µ3, µ0)− C2

1 · C

T 2m
− C2

2 · C

T 2m

− 2C1

∫
BT (vx)

t1(v)dξ2,4(v)− 2C2

∫
BT (v−x)

t2(v)dξ2,4(v),

where C1 = ∥vx − vϵ1∥, C2 = ∥v−x − vϵ1∥. Set ∀ε > 0. Finally, by Hölder’s inequality we have

W 2
2 (µ3, µ

∗
1) ≥ W 2

2 (µ3, µ0)− C2
1 · C

T 2m
− C2

2 · C

T 2m

− 2C1

√∫
BT (vx)

t21(v)dξ2,4(v)− 2C2

√∫
BT (v−x)

t22(v)dξ2,4(v)

≥ W 2
2 (µ3, µ0)− C2

1 · C

T 2m
− C2

2 · C

T 2m
− 2C1

√
C

m
− 2C2

√
C

m

≥ W 2
2 (µ3, µ0)− ε,

for large m, as desired. ■

D.3 Proof of Theorem 8 in Section 3

Theorem 8 (Exact recovery for clustering Gaussians). Let ∆2 := mink ̸=l d
2(V (k), V (l)) denote

the minimal pairwise separation among clusters, n̄ := maxk∈[K] nk (and n := mink∈[K] nk) the
maximum (minimum) cluster size, and m := mink ̸=l

2nknl

nk+nl
the minimal pairwise harmonic mean

of cluster sizes. Suppose the covariance matrix Vi of Gaussian distribution νi = N(0, Vi) is
independently drawn from model (18) for i = 1, 2, . . . , n. Let β ∈ (0, 1). If the separation ∆2

satisfies

∆2 > ∆̄2 : =
C1t

2

min{(1− β)2, β2}
V p2 log n,

then the SDP (17) achieves exact recovery with probability at least 1− C2n
−1, provided that

n ≥ C3 log
2 n, t ≤ C4

√
log n/

[
(p+ log n̄)V1/2T 1/2

v

]
, n/m ≤ C5 log n,

where V = maxk
∥∥V (k)

∥∥
op, Tv = maxk Tr

[(
V (k)

)−1]
, and Ci, i = 1, 2, 3, 4, 5 are constants.

Lemma 10 (Dual argument for SDP (Section B in Chen and Yang [2021])). The sufficient condition
for Z∗ =

∑
k∈[K]

1
nk

1Gk
1TGk

to be the unique solution of the SDP problem is to find (λ, α,B) s.t.

(C1) B ≥ 0 (BGkGk
= 0, BGkGl

> 0,∀k ̸= l),

(C2) Wn := λId+
1

2
(1αT + α1T )−A−B ⪰ 0,

(C3) Tr(WnZ
∗) = 0,

(C4) Tr(BZ∗) = 0,

which implies that

αGk
=

2

nk
AGkGk

1nk
− λ

nk
1nk

− 1

n2
k

(1Tnk
AGkGk

1nk
).
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[BGlGk
1nk

]j = −nl + nk
2nl

λ+
nk
2

 1

n2
l

∑
s,r∈Gl

d2(Vs, Vr)−
1

n2
k

∑
s,r∈Gk

d2(Vs, Vr)


+ nk

[
1

nk

∑
r∈Gk

d2(Vj , Vr)−
1

nl

∑
r∈Gl

d2(Vj , Vr)

]
,

for k ̸= l, j ∈ Gl.

Remarks. It can be justified that if we can find (λ,B) satisfying above equations, then (C3), (C4)
will hold automatically. Details can be found in Section B in Chen and Yang [2021].

Now we will proof the main theorem by two steps. First we will provide a lower bound for
[BGlGk

1nk
]j . Similar to the argument from Chen and Yang [2021], we want to set λ properly such

that (C1) can hold. In the next step we will try to verify that the choice of (λ, α,B) and the conditions
on the signals could actually imply (C2). And since number of clusters K is treated as fixed for most
practical settings, we will not emphasize K = O(1).

D.3.1 Proof of main result.

Step 1 (Construct (λ,B)). Recall [BGlGk
1nk

]j = −nl+nk

2nl
λ+ nkL, where L equals

1

2

 1

n2
l

∑
s,r∈Gl

d2(Vs, Vr)−
1

n2
k

∑
s,r∈Gk

d2(Vs, Vr)

+

[
1

nk

∑
r∈Gk

d2(Vj , Vr)−
1

nl

∑
r∈Gl

d2(Vj , Vr)

]
.

For L defined above, by Lemma 14, we have

L ≥ d2(V (l), V (k))− d(V (l), V (k))K1 −K2,

w.p. at least (1− c/n2), where

K1 = C
√
log ntV1/2 + Ct2(p+ log n̄)VT 1/2

v ,

K2 = Ct2p2 log nV,

for some constant C, c. Now we chose β ∈ (0, 1) and let m := mink ̸=l
2nknl

nk+nl
. If we suppose

∆ ≥ Ctp
√
log nV1/2/(1− β), t ≤ C ′

√
log n/

[
(p+ log n̄)V1/2T 1/2

v

]
,

for some constant C,C ′, then we have

(1− β)d2(V (l), V (k))− d(V (l), V (k))K1 −K2 ≥ 0,∀k ̸= l,

which implies that
L ≥ βd2(V (l), V (k)).

Define for k ̸= l,
c
(k,l)
j := [BGlGk

1nk
]j , j ∈ Gl,

r
(k,l)
i := [1Tnl

BGlGk
]i, i ∈ Gk,

t(k,l) := 1Tnl
BGlGk

1nk
,

(B#
GlGk

)ij := r
(k,l)
i c

(k,l)
j /t(k,l).

And define (B#
GlGl

)ij := 0,∀l. By setting λ = β
4m∆2, further we have

c
(k,l)
j ≥ β

2
nkd

2(V (l), V (k)), r
(k,l)
i ≥ β

2
nld

2(V (l), V (k)), t(k,l) ≥ β

2
nlnkd

2(V (l), V (k)),

which implies that (B#
GlGk

)ij > 0,∀i ∈ Gk, j ∈ Gl. And [BGlGk
1nk

]j = [B#
GlGk

1nk
]j , which

means we can construct B# based on [BGlGk
1nk

]j with [BGlGk
1nk

]j = [B#
GlGk

1nk
]j . So essen-

tially, they are the same in the sense that we only care about they quantity through [BGlGk
1nk

]j . And
thus for notation simplicity, we will use the symbol B instead of B#.
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Step 2 (Verify the condition for Wn in (C2)). Next we would like to find sufficient condition for
(C2), i.e.,

vTWnv ≥ 0,∀v ∈ ΓK := span{1Gk
: k ∈ [K]}⊥, ∥v∥ = 1.

Note that vTWnv = λ−vTAv−vTBv ≥ λ−vTBv. And by definition as well as simple calculation
we have

vTBv =

K∑
k=1

∑
l ̸=k

1

t(k,l)

(∑
i∈Gk

vir
(k,l)
i

)∑
j∈Gl

vjc
(k,l)
j

 ,

∑
j∈Gl

vjc
(k,l)
j = nk

∑
j∈Gl

(
1

nk

∑
r∈Gk

d2(Vj , Vr)−
1

nl

∑
r∈Gl

d2(Vj , Vr)

)
vj .

Further note that
1

nk

∑
r∈Gk

d2(Vj , Vr)−
1

nl

∑
r∈Gl

d2(Vj , Vr) = d2(V (l), V (k)) + E
(k,l)
j ,

where

E
(k,l)
j =

[
1

nk

∑
r∈Gk

d2(Vj , Vr)− d2(Vj , V
(k))

]
+
[
d2(Vj , V

(k))− d2(V (l), V (k))
]

− 1

nl

∑
r∈Gl

d2(Vj , Vr).

Then by triangle inequality and throwing away the last term of E(k,l)
j , we have∑

j∈Gl

vjc
(k,l)
j = nk

∑
j∈Gl

E
(k,l)
j vj ≤ nk

∑
j∈Gl

(E
(k,l)
1,j + E

(k,l)
2,j )|vj |,

where

E
(k,l)
1,j =

1

nk

∑
r∈Gk

d2(V (k), Vr) +

[
2

nk

∑
r∈Gk

d(V (k), Vr)d(Vj , V
(k))

]
,

E
(k,l)
2,j = d2(V (l), Vj) + 2d(V (l), Vj)d(V

(l), V (k)).

If we set Ẽ(k,l)
h,j = E

(k,l)
h,j /d(V (l), V (k)), h = 1, 2, then the inequality can be written as∑
j∈Gl

vjc
(k,l)
j ≤ nkd(V

(l), V (k))
∑
j∈Gl

(Ẽ
(k,l)
1,j + Ẽ

(k,l)
2,j )|vj |.

By Lemma 15 we know

∑
j∈Gl

Ẽ
(k,l)
1,j |vj | ≤ CV1/2pt

√
nl

∑
j∈Gl

v2j

1/2

,

w.p. ≥ 1− cn−2. And by Lemma 16 we have

∑
j∈Gl

Ẽ
(k,l)
2,j |vj | ≤ CtV1/2p(

√
nl + log2(n))

∑
j∈Gl

v2j

1/2

,

w.p. ≥ 1− cn−1, for some constants C, c. Now if we assume mink nk ≥ C log2 n and notice that
t(k,l) ≥ β

2nlnkd
2(V (l), V (k)), then further we can get

vTBv ≤
∑
k,l

nknl
t(k,l)

√
nl
√
nk

∑
j∈Gl

v2j

1/2(∑
i∈Gk

v2i

)1/2

Ct2Vp2

≤ Ct2

β

∑
l

∑
j∈Gl

v2j

1/2(∑
l

nl

)1/2(∑
k

∑
i∈Gk

v2i

)1/2(∑
k

nk

)1/2

Vp2

=
Ct2

β
p2nV,
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where the second inequality comes from Cauchy-Schwarz inequality. So by assuming

∆2 ≥ Ct2

β2
V · p2n/m,

for some constant C, we have

vTWnv ≥ λ− vTBv ≥ β

4
m∆2 − Ct2

β
p2nV > 0.

Or it is sufficient to assume

∆2 ≥ Ct2

β2
V · p2 log n,

if n/m = O(log n). To sum up, if we assume

∆2 ≥ Ct2

min{1− β, β}2
V · p2 log n,

then w.p. ≥ 1− c/n, we have (C1)− (C4) hold by the construction of (λ,B) for some constants
C, c. Finally by Lemma 10 we know the solution of SDP Z∗ exists uniquely, which is

Z∗ =
∑
k∈[K]

1

nk
1Gk

1TGk

as desired. ■

Remarks. In our theorem, we focus on the relation between minimum cluster distance ∆̄ with number
of distributions n, which should be tight enough in the sense that ∆̄ ≍

√
log n. This is the same order

for the cut-off of exact recovery of SDP for Euclidean case from Chen and Yang [2021].

On the other hand, one sufficient condition for Vi, i = 1, . . . , n to be psd is 1− tmaxi ∥Xi∥op > 0,
which will hold w.p. ≥ 1− c/n2 if t ≤ C/[

√
p+

√
log n] for some constant C, c. Recall from our

assumption,
t ≤ c

√
log n/[(p+ log n̄)V1/2T 1/2

v ] ≤ c
√
log n/(p+ log n̄),

for some constant, since Tv = maxk Tr((V (k))−1) ≥ p/mink ∥V (k)∥op. This indicates that our
bound for t guarantees Vi to be psd w.p. ≥ 1− c/n2 as n ≍ n̄. One may apply triangle inequality
directly to Lemma 14 to get the upper bound of t with less order in p, which is of less concern in our
theorem, where we put more emphasis on the order in n.

D.3.2 Proofs of lemmas.

Before proving Lemma 14, let us first look at the Taylor expansion for psd matrix.
Lemma 11 (Taylor expansion for psd matrix (Theorem 1.1 in Del Moral and Niclas [2017])). The
square root function φ : Q ∈ S+

r 7→ Q1/2 is Fréchet differentiable at any order on S+
r with the first

order derivative given for any (A,H) ∈ S+
r × Sr by the formula

∇φ(A) ·H =

∫ ∞

0

e−tφ(A)He−tφ(A)dt,

where S+
r ,Sr are the positive semi-definite matrix and symmetric matrix respectively. The higher

order derivatives are defined inductively for any n ≥ 2 by

∇nφ(A) ·H = −∇φ(A) ·

 ∑
p+q=n−2&p,q≥0

n!

(p+ 1)!(q + 1)!
[∇p+1φ(A) ·H][∇q+1φ(A) ·H]

 .

Again from the same paper, we have the Taylor expansion for φ(A):

φ(A+H) = φ(A) +
∑

1≤k≤n

1

k!
∇kφ(A) ·H + ∇̄n+1φ[A,H],

with

∇̄n+1φ[A,H] :=
1

n!

∫ 1

0

(1− ϵ)n∇n+1φ(A+ ϵH) ·Hdϵ.

23



Corollary 12 (Decomposition of Wasserstein distance for Gaussians). If we choose n = 1 in
Lemma 11, we have for k ̸= l, j ∈ G∗

l , and under the assumptions in the Theorem, the following
expansion holds.

d2(Vj , V
(k))− d2(Vj , V

(l))

=d2(V (l), V (k)) +
〈
A(V (l), V (k)), t(XjV

(l) + V (l)Xj) + t2XjV
(l)Xj

〉
−d2(Vj , V

(l))−∆0,

1

nk

∑
r∈Gk

d2(Vj , Vr)− d2(Vj , V
(k))

=

〈
A(Vj , V

(k)),
1

nk

∑
r∈Gk

t(XrV
(k) + V (k)Xr) + t2XrV

(k)Xr

〉
−∆1,

where A(U, V ) := Id− U1/2(U1/2V U1/2)−1/2U1/2, for U, V : psd. And ∆0 ≤ 0,∆1 ≤ 0, which
are extra terms (high order terms in Lemma 11).

Proof. By definition we know d2(V,U) = W 2
2 (ν, µ), where ν ∼ N(0, V ), µ ∼ N(0, U). Thus

d2(V,U) = Tr(V ) + Tr(U)− 2Tr[
√
V 1/2UV 1/2].

So we have

d2(Vj , V
(k))− d2(V (k), V (l))

= Tr[Vj − V (l)]− 2Tr
[√

(V (k))1/2Vj(V (k))1/2 −
√
(V (k))1/2V (l)(V (k))1/2

]
.

On the other hand, by definition we know Vj = (I + tXj)V
(l)(I + tXj) = V (l) + t(XjV

(l) +

V (l)Xj) + t2XjV
(l)Xj . Then by Lemma 11 and note the second order remainder term is always

negative semi-definite, we can directly get the results by first order Taylor expansion. ■

Lemma 13 (Norm for operator A). We conclude that for any U, V : psd, we have

∥A(U, V ) · V 1/2∥2F = ∥V 1/2 · A(U, V )∥2F = d2(U, V ).

Proof. Suppose we have the SVD

U1/2V 1/2 = QT
1 ΣQ2,

then we have

A(U, V ) · V 1/2 = (I − U1/2(U1/2V U1/2)−1/2)V 1/2

= V 1/2 − U1/2QT
1 Q2,

which implies that

∥A(U, V ) · V 1/2∥2F = Tr(V ) + Tr(U)− 2Tr(V 1/2U1/2QT
1 Q2)

= Tr(V ) + Tr(U)− 2Tr(QT
2 ΣQ2)

= Tr(V ) + Tr(U)− 2Tr(
√

U1/2V U1/2).

■
Lemma 14 (Lower bound for L). Recall that L equals

1

2

 1

n2
l

∑
s,r∈Gl

d2(Vs, Vr)−
1

n2
k

∑
s,r∈Gk

d2(Vs, Vr)

+

[
1

nk

∑
r∈Gk

d2(Vj , Vr)−
1

nl

∑
r∈Gl

d2(Vj , Vr)

]
,
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we have
L ≥ d2(V (l), V (k))− d(V (l), V (k))K1 −K2,

w.p. at least (1− c/n2), where

K1 = C
√
log ntV1/2 + Ct2(p+ log n̄)VTv1/2,

K2 = Ct2p2 log nV,
for some constant C, c.

Proof. First note that we can decompose the term into three terms:
1

nk

∑
r∈Gk

d2(Vj , Vr)−
1

nl

∑
r∈Gl

d2(Vj , Vr) = U1 − U2 + U3,

where

U1 :=
1

nk

∑
r∈Gk

d2(Vj , Vr)− d2(Vj , V
(k)),

U2 :=
1

nl

∑
r∈Gl

d2(Vj , Vr)− d2(Vj , V
(l))

U3 := d2(Vj , V
(k))− d2(Vj , V

(l)).

If we further define U0 := 1
2

[
1
n2
l

∑
s,r∈Gl

d2(Vs, Vr)− 1
n2
k

∑
s,r∈Gk

d2(Vs, Vr)
]
, then we have

L = U0 + U1 − U2 + U3.

From Corollary 12 we know U1 and U2 can be lower bounded by throwing out the remainders ∆1,∆2,
i.e.,

U1 =
1

nk

∑
r∈Gk

d2(Vj , Vr)− d2(Vj , V
(k))

≥

〈
A(Vj , V

(k)),
1

nk

∑
r∈Gk

t(XrV
(k) + V (k)Xr) + t2XrV

(k)Xr

〉
,

U3 =d2(Vj , V
(k))− d2(Vj , V

(l))

≥d2(V (l), V (k)) +
〈
A(V (l), V (k)), t(XjV

(l) + V (l)Xj) + t2XjV
(l)Xj

〉
−d2(Vj , V

(l)).

As for the U0 and U3, we choose to use triangle inequality to get a rough bound, i.e., by noting
d(Vj , Vr) ≤ d(Vj , V

(l)) + d(Vr, V
(l)), we have

U2 =
1

nl

∑
r∈Gl

d2(Vj , Vr)− d2(Vj , V
(l))

≤ 1

nl

∑
r∈Gl

d2(V (l), Vr) +
2

nl
d(V (l), Vr)

∑
r∈Gl

d(Vj , V
(l)).

And

U0 =
1

2

 1

n2
l

∑
s,r∈Gl

d2(Vs, Vr)−
1

n2
k

∑
s,r∈Gk

d2(Vs, Vr)


≥− 1

2

1

n2
l

∑
s,r∈Gk

(d(Vs, V
(k)) + d(Vr, V

(k)))2

≥ − 2

nl

∑
r∈Gk

d2(V (k), Vr).
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For the RHS of the inequality for U1, it can be divided into two parts.

Z1
1 :=

〈
A(Vj , V

(k)),
1

nk

∑
r∈Gk

t(XrV
(k) + V (k)Xr)

〉
and

Z1
2 :=

〈
A(Vj , V

(k)), t2
1

nk

∑
r∈Gk

XrV
(k)Xr

〉
.

the first part is a Gaussian distribution whose variance can be bounded by
c1t

2∥A(Vj , V
(k))V (k)∥2F /nk, for some constant c1. By Gaussian tail bound P (|N(0, 1)| >

u) ≤ e−u
2/2,∀u > 0 and Lemma 13, we have

|Z1
1 | ≤ c2t

√
log n∥V (k)∥1/2/

√
nk · d(Vj , V (k))

≤ c2t
√
log nV1/2 · d(Vj , V (k)),

w.p. ≥ 1− c3/n
2, for some constant c2, c3. On the other hand,

|Z1
2 | = t2

∣∣∣∣∣
〈
A(Vj , V

(k))(V (k))1/2,
1

nk

∑
r∈Gk

XrV
(k)Xr(V

(k))−1/2

〉∣∣∣∣∣
≤ t2

∥∥∥∥∥ 1

nk

∑
r∈Gk

XrV
(k)Xr(V

(k))−1/2

∥∥∥∥∥
F

· d(Vj , V (k))

≤ t2
1

nk

∑
r∈Gk

∥Xr∥2 ∥V (k)∥
∥∥∥(V (k))−1/2

∥∥∥
F
· d(Vj , V (k))

≤ t2 max
r∈Gk

∥Xr∥2 VTv1/2 · d(Vj , V (k))

≤ c4t
2(p+ log n)VTv1/2 · d(Vj , V (k)),

w.p. ≥ 1− c5/n
2, for some constant c4, c5. The last inequality can be implied from union bound and

Corollary 4.4.8 in Vershynin [2018]:

∥Xr∥ ≤ C(
√
p+ u), w.p. ≥ 1− 4e−u

2

.

Now by combining Z1
1 , Z

1
2 we have

U1 ≥ Z1
1 + Z1

2

≥ −
[
c2t
√
log nV1/2 + c4t

2(p+ log n)VTv1/2
]
· d(Vj , V (k)),

w.p. ≥ 1− (c3 + c5)/n
2.

For U0, we have

U0 ≥ − 2

nk

∑
r∈Gk

d2(V (k), Vr)

= −2t2

nk

∑
r∈Gk

Tr(XrV
(k)Xr)

≥ −2t2V 1

nk

∑
r∈Gk

Tr(X2
r )

≥ −c6t
2Vp2,

w.p. ≥ 1− c7/n
2 for some constant c6, c7. The equation is a direct result by definition of Wasserstein

distance for Gaussians:

d2(V (k), Vr) = Tr(V (k)) + Tr(Vr)− 2Tr(
√
(V (k))1/2Vr(V (k))1/2).
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Note here √
(V (k))1/2Vr(V (k))1/2 =

√
(V (k))1/2(I + tXr)V (k)(I + tXr)(V (k))1/2

= (V (k))1/2(I + tXr)(V
(k))1/2.

The last inequality can be derived through Bernstein’s inequality (Theorem 2.8.2 in Vershynin [2018])
by noting that Tr(X2

r ) is sub-exponential with mean E(Tr(X2
r )) = p2. Similar to the argument for

U0, U1, after we apply high-dimensional bound for sub-Gaussian or sub-exponential distributions we
can get bound for U2, U3:

U2 ≤ 1

nl

∑
r∈Gl

d2(V (l), Vr) +
2

nl

∑
r∈Gl

d(Vr, V
(l))d(V (l), Vj)

≤ c8t
2Vp2 log n,

w.p. ≥ 1− c9/n
2, for some constant c8, c9.

U3 ≥ d2(V (l), V (k)) +
〈
A(V (l), V (k)), t(XjV

(l) + V (l)Xj) + t2XjV
(l)Xj

〉
− d2(Vj , V

(l))

≥ d2(V (l), V (k))−
[
c2t
√

log nV1/2 + c4t
2(p+ log n̄)VTv1/2

]
· d(V (l), V (k))

− c10t
2(p+ log n)pV,

w.p. ≥ 1 − c11/n
2., for some constant c10, c11. Lastly, by noting d(Vj , V

(k)) ≤ d(V (l), V (k)) +

d(Vj , V
(l)) in U1, and combine them together we have

L = U0 + U1 − U2 + U3

≥ d2(V (l), V (k))− d(V (l), V (k))K1 −K2,

w.p. at least (1− c/n2), where

K1 = C
√
log ntV1/2 + Ct2(p+ log n̄)VTv1/2,

K2 = Ct2p2 log nV,
for some constant C, c. ■

Lemma 15 (Ẽ(k,l)
1,j upper bound). Suppose v ∈ ΓK := span{1Gk

: k ∈ [K]}⊥, ∥v∥ = 1. Let

E
(k,l)
1,j =

1

nk

∑
r∈Gk

d2(V (k), Vr) +

[
2

nk

∑
r∈Gk

d(V (k), Vr)d(Vj , V
(k))

]
,

and Ẽ
(k,l)
1,j = E

(k,l)
1,j /d(V (l), V (k)). Then w.p. ≥ 1− n−2, we have

∑
j∈Gl

Ẽ
(k,l)
1,j |vj | ≤ CV1/2pt

√
nl

∑
j∈Gl

v2j

1/2

,

Proof. Note E(Tr(X2
r )) = p2, E(

√
Tr(X2

r )) ≤
√
E(Tr(X2

r )) = p by Jensen’s inequality. From
high-dimension bound for sub-exponential and sub-Gaussian (Hoeffding’s inequality and Bernstein’s
inequality) we have that w.p. ≥ 1− c/n2,

1

nk

∑
r∈Gk

d2(V (k), Vr) =
1

nk

∑
r∈Gk

Tr(X2
rV

(k)) ≤ CVp2t2,

1

nk

∑
r∈Gk

d(V (k), Vr) =
1

nk

∑
r∈Gk

√
Tr(X2

rV
(k)) ≤ CV1/2pt,

for some constants C, c. Suppose that d(V (l), V (k)) ≥ C0tV1/2
√
log np, for some fixed constant

C0. Then we have w.p. ≥ 1− c/n2

d(Vj , V
(k)) ≤ d(Vj , V

(l)) + d(V (l), V (k)) ≤ Ctp
√
log nV1/2 + d(V (l), V (k)) ≤ Cd(V (l), V (k)),

27



for some large constant C. So we have w.p. ≥ 1− c/n2

∑
j∈Gl

Ẽ
(k,l)
1,j |vj | ≤ CV1/2pt

∑
j∈Gl

|vj | ≤ CV1/2pt
√
nl

∑
j∈Gl

v2j

1/2

,

where V = maxk ∥V (k)∥, for some large constant C. ■

Lemma 16 (Ẽ(k,l)
2,j upper bound). Suppose v ∈ ΓK := span{1Gk

: k ∈ [K]}⊥, ∥v∥ = 1. Let

E
(k,l)
2,j = d2(V (l), Vj) + 2d(V (l), Vj)d(V

(l), V (k)).

and Ẽ
(k,l)
2,j = E

(k,l)
2,j /d(V (l), V (k)). Then w.p. ≥ 1− n−1, we have

∑
j∈Gl

Ẽ
(k,l)
2,j |vj | ≤ CtV1/2p(

√
nl + log2(n))

∑
j∈Gl

v2j

1/2

,

Proof. First we make the following claim:
Claim 17. Following the above setting, w.p. ≥ 1− cn−1, we have

∑
j∈Gl

d2(V (l), Vj)|vj | ≤ Ct2Vp2(
√
nl + log(n)2)

∑
j∈Gl

v2j

1/2

, (24)

∑
j∈Gl

d(V (l), Vj)|vj | ≤ CtV1/2p
√
nl

∑
j∈Gl

v2j

1/2

, (25)

for some large constant C.

If the claim holds, by plugging in the lower bound for ∆ in the assumption, we have

∑
j∈Gl

Ẽ
(k,l)
2,j |vj | ≤

Ct2Vp2(√nl + log(n)2)

C0tV1/2p
√
log n

∑
j∈Gl

v2j

1/2

+ CtV1/2p
√
nl

∑
j∈Gl

v2j

1/2

≤ CtV1/2p(
√
nl + log2(n))

∑
j∈Gl

v2j

1/2

Proof of the claim. First we look at (25):∑
j∈Gl

d(V (l), Vj)|vj | ≤ tV1/2
∑
j∈Gl

√
Tr(X2

j )|vj |.

By Theorem 2.6.3 (General Hoeffding’s inequality) in Vershynin [2018] we have w.p.≥ 1− c/n2,

∑
j∈Gl

√
Tr(X2

j )|vj | ≤ p
∑
j∈Gl

|vj |+ Cp
√
nl

∑
j∈Gl

v2j

1/2

,

for some constant C. i.e., w.p.≥ 1− c/n2,

∑
j∈Gl

d(V (l), Vj)|vj | ≤ CtV1/2p
√
nl

∑
j∈Gl

v2j

1/2

,
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for some constant C. Next we will show (24). First note that d2(V (l), Vj) ≤ t2VTr(X2
j ), let

G1(v) =

∣∣∣∣∣∣
∑
j∈Gl

[Tr(X2
j )− ETr(X2

j )]|vj |

∣∣∣∣∣∣ ,
then ∑

j∈Gl

d2(V (l), Vj)|vj | ≤ t2VG1(v) + t2Vp2
√
nl

∑
j∈Gl

v2j

1/2

.

W.O.L.G., we may assume v ∈ V := {v ∈ ΓK : ∥v∥ = 1}, ∥G1∥V := supv∈V |G1(v)|. Then by
Theorem 4 in Adamczak [2008] we know

P(∥G1∥V ≥ 2E∥G1∥V + s) ≤ exp

(
− s2

3τ21

)
+ 3 exp

(
− s

3∥M1∥ψ1

)
,

where
τ21 = sup

v∈V

∑
j∈Gl

v2jE[Tr(X2
j )− ETr(X2

j )]
2 ≤ E[Tr(X2

j )]
2 ≤ p4,

M1 = max
j∈Gl,v∈V

∣∣vj [Tr(X2
j )− ETr(X2

j )]
∣∣ ≤ max

j∈Gl

∣∣[Tr(X2
j )− ETr(X2

j )]
∣∣ .

By maximal inequality (Lemma 2.2.2 in van der Vaart and Wellner [1996]) we have

∥M1∥ψ1
≤ C log(nl)max

j∈Gl

∥∥[Tr(X2
j )− ETr(X2

j )]
∥∥
ψ1

≤ C log(nl)p
2.

So by choosing s = C log2(n)p2, we have w.p. ≥ 1− c/n,

G1(v) ≤ 2E∥G1∥V + C log2(n)p2,

for some C, c. On the hand,

E∥G1∥V = E

∣∣∣∣∣∣
∑
j∈Gl

[Tr(X2
j )− ETr(X2

j )]|vj |

∣∣∣∣∣∣
≤
∑
j∈Gl

E|Tr(X2
j )− ETr(X2

j )||vj |

≤ 2E|Tr(X2
1 )|

√
nl

∑
j∈Gl

v2j

1/2

= 2p2
√
nl

∑
j∈Gl

v2j

1/2

.

So w.p. ≥ 1− cn−1, we have

∑
j∈Gl

d2(V (l), Vj)|vj | ≤ Ct2Vp2(
√
nl + log(n)2)

∑
j∈Gl

v2j

1/2

.

■
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