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Abstract

In recent years, multi-objective optimization (MOO) emerges as a foundational1

problem underpinning many multi-agent multi-task learning applications. How-2

ever, existing algorithms in MOO literature remain limited to centralized learning3

settings, which do not satisfy the distributed nature and data privacy needs of4

such multi-agent multi-task learning applications. This motivates us to propose a5

new federated multi-objective learning (FMOL) framework with multiple clients6

distributively and collaboratively solving an MOO problem while keeping their7

training data private. Notably, our FMOL framework allows a different set of objec-8

tive functions across different clients to support a wide range of applications, which9

advances and generalizes the MOO formulation to the federated learning paradigm10

for the first time. For this FMOL framework, we propose two new federated multi-11

objective optimization (FMOO) algorithms called federated multi-gradient descent12

averaging (FMGDA) and federated stochastic multi-gradient descent averaging13

(FSMGDA). Both algorithms allow local updates to significantly reduce commu-14

nication costs, while achieving the same convergence rates as those of the their15

algorithmic counterparts in the single-objective federated learning. Our extensive16

experiments also corroborate the efficacy of our proposed FMOO algorithms.17

1 Introduction18

In recent years, multi-objective optimization (MOO) has emerged as a foundational problem un-19

derpinning many multi-agent multi-task learning applications, such as training neural networks for20

multiple tasks [1], hydrocarbon production optimization [2], and tissue engineering [3]. MOO aims21

at optimizing multiple objectives simultaneously, which can be mathematically cast as:22

min
x∈D

F(x) := [f1(x), · · · , fS(x)], (1)

where x ∈ D ⊆ Rd is the model parameter, and fs : Rd → R, s ∈ [S] is one of the objective23

functions. Compared to conventional single-objective optimization, one key difference in MOO is the24

coupling and potential conflicts between different objective functions. As a result, there may not exist25

a common x-solution that minimizes all objective functions. Rather, the goal in MOO is to find a26

Pareto stationary solution that is not improvable for all objectives without sacrificing some objectives.27

For example, in recommender system designs for e-commerce, the platform needs to consider different28

customers with substantially conflicting shopping objectives (price, brand preferences, delivery speed,29

etc.). Therefore, the platform’s best interest is often to find a Pareto-stationary solution, where one30

cannot deviate to favor one consumer group further without hurting any other group. MOO with31

conflicting objectives also has natural incarnations in many competitive game-theoretic problems,32

where the goal is to determine an equilibrium among the conflicting agents in the Pareto sense.33

Since its inception dating back to the 1950s, MOO algorithm design has evolved into two major34

categories: gradient-free and gradient-based methods, with the latter garnering increasing attention35
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in the learning community in recent years due to their better performances (see Section 2 for more36

detailed discussions). However, despite these advances, all existing algorithms in the current MOO37

literature remain limited to centralized settings (i.e., training data are aggregated and accessible to38

a centralized learning algorithm). Somewhat ironically, such centralized settings do not satisfy the39

distributed nature and data privacy needs of many multi-agent multi-task learning applications, which40

motivates application of MOO in the first place. This gap between the existing MOO approaches and41

the rapidly growing importance of distributed MOO motivates us to make the first attempt to pursue a42

new federated multi-objective learning (FMOL) framework, with the aim to enable multiple clients43

to distributively solve MOO problems while keeping their computation and training data private.44

So far, however, developing distributed optimization algorithms for FMOL with provable Pareto-45

stationary convergence remains uncharted territory. There are several key technical challenges that46

render FMOL far from being a straightforward extension of centralized MOO problems. First of47

all, due to the distributed nature of FMOL problems, one has to consider and model the objective48

heterogeneity (i.e., different clients could have different sets of objective functions) that is unseen in49

centralized MOO. Moreover, with local and private datasets being a defining feature in FMOL, the50

impacts of data heterogeneity (i.e., datasets are non-i.i.d. distributed across clients) also need to be51

mitigated in FMOL algorithm design. Last but not least, under the combined influence of objective52

and data heterogeneity, FMOL algorithms could be extremely sensitive to small perturbations in the53

determination of common descent direction among all objectives. This makes the FMOL algorithm54

design and the associated convergence analysis far more complicated than those of the centralized55

MOO. Toward this end, a fundamental question naturally arises:56

Under both objective and data heterogeneity in FMOL, is it possible to design effective and efficient57

algorithms with Pareto-stationary convergence guarantees?58

In this paper, we give an affirmative answer to the above question. Our key contribution is that59

we propose a new FMOL framework that captures both objective and data heterogeneity, based on60

which we develop two gradient-based algorithms with provable Pareto-stationary convergence rate61

guarantees. To our knowledge, our work is the first systematic attempt to bridge the gap between62

federated learning and MOO. Our main results and contributions are summarized as follows:63

• We formalize the first federated multi-objective learning (FMOL) framework that supports both64

objective and data heterogeneity across clients, which significantly advances and generalizes the65

MOO formulation to the federated learning paradigm. As a result, our FMOL framework becomes66

a generic model that covers existing MOO models and various applications as special cases (see67

Section 3.2 for further details). This new FMOL framework lays the foundation to enable us to68

systematically develop FMOO algorithms with provable Pareto-stationary convergence guarantees.69

• For the proposed FMOL framework, we first propose a federated multi-gradient descent averaging70

(FMGDA) algorithm based on the use of local full gradient evaluation at each client. Our analysis71

reveals that FMGDA achieves a linear O(exp(−µT )) and a sublinear O(1/T ) Pareto-stationary72

convergence rates for µ-strongly convex and non-convex settings, respectively. Also, FMGDA73

employs a two-sided learning rates strategy to significantly lower communication costs (a key74

concern in the federated learning paradigm). It is worth pointing out that, in the single-machine75

special case where FMOL degenerates to a centralized MOO problem and FMGDA reduces to the76

traditional MGD method [4], our results improve the state-of-the-art analysis of MGD by eliminating77

the restrictive assumptions on the linear search of learning rate and extra sequence convergence.78

Thus, our results also advance the state of the art in general MOO theory.79

• To alleviate the cost of full gradient evaluation in the large dataset regime, we further propose80

a federated stochastic multi-gradient descent averaging (FSMGDA) algorithm based on the use81

of stochastic gradient evaluations at each client. We show that FSMGDA achieves Õ(1/T ) and82

O(1/
√
T ) Pareto-stationary convergence rate for µ-strongly convex and non-convex settings, re-83

spectively. We establish our convergence proof by proposing a new (α, β)-Lipschitz continuous84

stochastic gradient assumption (cf. Assumption 4), which relaxes the strong assumptions on first85

moment bound and Lipschitz continuity on common descent directions in [5]. We note that this new86

(α, β)-Lipschitz continuous stochastic gradient assumption can be viewed as a natural extension of87

the classical Lipschitz-continuous gradient assumption and could be of independent interest.88

The rest of the paper is organized as follows. In Section 2, we review related works. In Section 3,89

we introduce our FMOL framework and two gradient-based algorithms (FMGDA and FSMGDA),90

which are followed by their convergence analyses in Section 4. We present the numerical results in91
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Table 1: Convergence rate results (shaded parts are our results) comparisons.

Methods
Strongly Convex Non-convex

Rate Assumption∗ Rate Assumption∗

MGD [4] O(rT ) # Linear search &
sequence convergence O(1/T )

Linear search &
sequence convergence

SMGD [5] O(1/T )
First moment bound & Lipschitz

continuity of λ
Not provided Not provided

FMGDA O(exp(−µT )) # Not needed O(1/T ) Not needed

FSMGDA Õ(1/T )
(α, β)-Lipschitz continuous

stochastic gradient O(1/
√
T )

(α, β)-Lipschitz continuous
stochastic gradient

#Notes on constants: µ is the strong convexity modulus; r is a constant depends on µ, s.t., r ∈ (0, 1).
∗Assumption short-hands: “Linear search”: learning rate linear search [4]; “Sequence conver-

gence”: {xt} converges to x∗ [4]; “First moment bound” (Asm. 5.2(b) [5]): E[∥∇f(x, ξ) −
∇f(x)∥] ≤ η(a + b∥∇f(x)∥);“Lipschitz continuity of λ” (Asm. 5.4 [5]): ∥λk − λt∥ ≤
β
∥∥[(∇f1(xk)−∇f1(xt))

T , . . . , (∇fS(xk)−∇fS(xt))
T
]∥∥; “(α, β)-Lipschitz continuous stochastic gradi-

ent”: see Asm. 4.

Section 5 and conclude the work in Section 6. Due to space limitations, we relegate all proofs and92

some experiments to supplementary material.93

2 Related work94

In this section, we will provide an overview on algorithm designs for MOO and federated learning95

(FL), thereby placing our work in a comparative perspective to highlight our contributions and novelty.96

1) Multi-objective Optimization (MOO): As mentioned in Section 1, since federated/distributed97

MOO has not been studied in the literature, all existing works we review below are centralized MOO98

algorithms. Roughly speaking, MOO algorithms can be grouped into two main categories. The first99

line of works are gradient-free methods (e.g., evolutionary MOO algorithms and Bayesian MOO100

algorithms [6, 7, 8, 9]). These methods are more suitable for small-scale problems but less practical101

for high-dimensional MOO models (e.g., deep neural networks). The second line of works focus on102

gradient-based approahes [10, 11, 4, 12, 5], which are more practical for high-dimensional MOO103

problems. However, while having received increasing attention from the community in recent years,104

Pareto-stationary convergence analysis of these gradient-based MOO methods remains in its infancy.105

Existing gradient-based MOO methods can be further categorized as i) multi-gradient descent (MGD)106

algorithms with full gradients and ii) stochastic multi-gradient descent (SMGD) algorithms. It has107

been shown in [4] that MGD methods achieve O(rT ) for some r ∈ (0, 1) and O(1/T ) Pareto-108

stationary convergence rates for µ-strongly convex and non-convex functions, respectively. However,109

these results are established under the unconventional linear search of learning rate and sequence110

convergence assumptions, which are difficult to verify in practice. In comparison, FMGDA achieves a111

linear rate without needing such assumptions. For SMGD methods, the Pareto-stationary convergence112

analysis is further complicated by the stochastic gradient noise. Toward this end, an O(1/T ) rate113

analysis for SMGD was provided in [5] based on rather strong assumptions on a first-moment bound114

and Lipschtiz continuity of common descent direction. As a negative result, it was shown in [5]115

and [13] that the common descent direction needed in the SMGD method is likely to be a biased116

estimation, which may cause divergence issues.117

In contrast, our FSMGDA achieves state-of-the-art Õ(1/T ) and O(1/
√
T ) convergence rates for118

strongly-convex and non-convex settings, respectively, under a much milder assumption on Lipschtiz119

continuous stochastic gradients. For easy comparisons, we summarize our results and the existing120

works in Table 1. It is worth noting recent works [13, 14] established faster convergence rates in121

the centralized MOO setting by using acceleration techniques, such as momentum, regularization122

and bi-level formulation. However, due to different settings and focuses, these results are orthogonal123

to ours and thus not directly comparable. Also, since acceleration itself is a non-trivial topic and124

could be quite brittle if not done right, in this paper, we focus on the basic and more robust stochastic125

gradient approach in FMOL. But for a comprehensive comparison on assumptions and main results126

of accelerated centralized MOO, we refer readers to Appendix A for further details.127

Federated Learning (FL) : Since the siminal work by [15], FL has emerged as a popular distributed128

learning paradigm. Traditional FL aims at solving single-objective minimization problems with a large129

number of clients with decentralized data. Recent FL algorithms enjoy both high communication130
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efficiency and good generalization performance [15, 16, 17, 18, 19, 20]. Theoretically, many131

FL methods have the same convergence rates as their centralized counterparts under different FL132

settings [21, 22, 23, 24]. Recent works have also considered FL problems with more sophisticated133

problem structures, such as min-max learning [25, 26], reinforcement learning [27], multi-armed134

bandits [28], and bilevel and compositional optimization [29]. Although not directly related, classic135

FL has been reformulated in the form of MOO[30], which allows the use of a MGD-type algorithm136

instead of vanilla local SGD to solve the standard FL problem. We will show later that this MOO137

reformulation is a special case of our FMOL framework. So far, despite a wide range of applications138

(see Section 3.2 for examples), there remains a lack of a general FL framework for MOO. This139

motivates us to bridge the gap by proposing a general FMOL framework and designing gradient-based140

methods with provable Pareto-stationary convergence rates.141

3 Federated multi-objective learning142

3.1 Multi-objective optimization: A primer143

As mentioned in Section 1, due to potential conflicts among the objective functions in MOO problem144

in (1), MOO problems adopt the the notion of Pareto optimality:145

Definition 1 ((Weak) Pareto Optimality). For any two solutions x and y, we say x dominates y if146

and only if fs(x) ≤ fs(y),∀s ∈ [S] and fs(x) < fs(y),∃s ∈ [S]. A solution x is Pareto optimal if147

it is not dominated by any other solution. One solution x is weakly Pareto optimal if there does not148

exist a solution y such that fs(x) > fs(y),∀s ∈ [S].149

Similar to solving single-objective non-convex optimization problems, finding a Pareto-optimal150

solution in MOO is NP-Hard in general. As a result, it is often of practical interest to find a solution151

satisfying Pareto-stationarity (a necessary condition for Pareto optimality) stated as follows [10, 31]:152

Definition 2 (Pareto Stationarity). A solution x is said to be Pareto stationary if there is no common153

descent direction d ∈ Rd such that∇fs(x)⊤d < 0,∀s ∈ [S].154

Note that for strongly convex functions, Pareto stationary solutions are also Pareto optimal. Following155

Defintion 2, gradient-based MOO algorithms typically search for a common descent direction d ∈ Rd156

such that ∇fs(x)⊤d ≤ 0,∀s ∈ [S]. If no such a common descent direction exists at x, then157

x is a Pareto stationary solution. For example, MGD [11] searches for an optimal weight λ∗ of158

gradients ∇F(x) ≜ {∇fs(x),∀s ∈ [S]} by solving λ∗(x) = argminλ∈C ∥λ
⊤∇F(x)∥2. Then,159

a common descent direction can be chosen as: d = λ⊤∇F(x). MGD performs the iterative160

update rule: x ← x − ηd until a Pareto stationary point is reached, where η is a learning rate.161

SMGD [5] also follows the same process except for replacing full gradients by stochastic gradients.162

For MGD and SMGD methods, it is shown in [4] and [13] show that if ∥λ⊤∇F(x)∥ = 0 for some163

λ ∈ C, where C ≜ {y ∈ [0, 1]S ,
∑

s∈[S] ys = 1}, then x is a Pareto stationary solution. Thus,164

∥d∥2 = ∥λ⊤∇F(x)∥2 can be used as a metric to measure the convergence of non-convex MOO165

algorithms [4, 13, 14]. On the other hand, for more tractable strongly convex MOO problems, the166

optimality gap
∑

s∈[S] λs [fs(x)− fs(x
∗)] is typically used as the metric to measure the convergence167

of an algorithm [5], where x∗ denotes the Pareto optimal point. We summarize and compare different168

convergence metrics as well as assumptions in MOO, detailed in Appendix A.169

3.2 A general federated multi-objective learning framework170

With the MOO preliminaries in Section 3.1, we now formalize our general federated multi-objective171

learning (FMOL) framework. For a system with M clients and S tasks (objectives), our FMOL172

framework can be written as:173

min
x

Diag(FA⊤), (2)

F ≜

f1,1 · · · f1,M
...

. . .
...

fS,1 · · · fS,M


S×M

,A ≜

a1,1 · · · a1,M
...

. . .
...

aS,1 · · · aS,M


S×M

,
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where matrix F groups all potential objectives fs,i(x) for each task s at each client i, and A ∈174

{0, 1}S×M is a binary objective indicator matrix, with each element as,i = 1 if task s is of client175

i’s interest and as,i = 0 otherwise. For each task s ∈ [S], the global objective function fs(x)176

is the average of local objectives over all related clients, i.e., fs(x) ≜ 1
|Rs|

∑
i∈Rs

fs,i(x), where177

Rs = {i : as,i = 1, i ∈ [M ]}. Note that, for notation simplicity, here we use simple average in fs(x),178

which corresponds to the balanced dataset setting. Our FMLO framework can be directly extended to179

imbalanced dataset settings by using weighted average proportional to dataset sizes of related clients.180

For a client i ∈ [M ], its objectives of interest are {fs,i(x) :as,i=1, s ∈ [S]}, which is a subset of [S].181

We note that FMOL generalizes MOO to the FL paradigm, which includes many existing MOO182

problems as special cases and corresponds to a wide range of applications.183

• If each client has only one distinct objective, i.e., A = IM , S = M , then Diag(FA⊤) =184

[f1(x), . . . , fS(x)]
⊤, where each objective fs(x), s ∈ [S] is optimized only by client s. This185

special FMOL setting corresponds to the conventional multi-task learning and federated learning.186

Indeed, [1] and [32] formulated a multi-task learning problem as MOO and considered Pareto187

optimal solutions with various trade-offs. [30] also formulated FL as as distributed MOO problems.188

Other examples of this setting include bi-objective formulation of offline reinforcement learning [33]189

and decentralized MOO [34].190

• If all clients share the same S objectives, i.e., A is an all-one matrix, then Diag(FA⊤) =191 [
1
M

∑
i∈[M ] f1,i(x), . . . ,

1
M

∑
i∈[M ] fS,i(x)

]⊤
. In this case, FMOL reduces to federated MOO192

problems with decentralized data that jointly optimizing fairness, privacy, and accuracy [35, 36, 37],193

as well as MOO with decentralized data under privacy constraints (e.g., machine reassignment194

among data centres [38] and engineering problems [39, 40]).195

• If each client has a different subset of objectives (i.e., objective heterogeneity), FMLO allows196

distinct preferences at each client. For example, each customer group on a recommender system in197

e-commerce platforms might have different combinations of shopping preferences, such as product198

price, brand, delivery speed, etc.199

3.3 Federated Multi-Objective Learning Algorithms200

Algorithm 1 Federated (Stochastic) Multiple Gradient De-
scent Averaging (FMGDA/FSMGDA).

At Each Client i:
1. Synchronize local models xt,0

s,i = xt,∀s ∈ Si.
2. Local updates: for all s ∈ Si, for k = 1, . . . ,K,

(FMGDA): xt,k
s,i = xt,k−1

s,i − ηL∇fs,i(xt,k−1
s,i ).

(FSMGDA): xt,k
s,i = xt,k−1

s,i − ηL∇fs,i(xt,k−1
s,i , ξt,ki ).

3. Return accumulated updates to server {∆t
s,i, s ∈ Si}:

(FMGDA): ∆t
s,i =

∑
k∈[K]∇fs,i(x

t,k
s,i ).

(FSMGDA): ∆t
s,i =

∑
k∈[K]∇fs,i(x

t,k
s,i , ξ

t,k
i ).

At the Server:
4. Receive accumulated updates {∆t

s,i,∀s∈Si,∀i∈ [M ]}.
5. Compute ∆t

s = 1
|Rs|

∑
i∈Rs

∆t
s,i,∀s ∈ [S], where

Rs = {i : as,i = 1, i ∈ [M ]}.
6. Compute λ∗

t ∈ [0, 1]S by solving

min
λt≥0

∥∥∥∑
s∈[S]

λt
s∆

t
s

∥∥∥2, s.t.
∑

s∈[S]
λt
s = 1.

7. Let dt =
∑

s∈[S] λ
t,∗
s ∆t

s and update the global model
as: xt+1 = xt − ηtdt, with a global learning rate ηt.

Upon formalizing our FMOL frame-201

work, our next goal is to develop202

gradient-based algorithms for solving203

large-scale high-dimensional FMOL204

problems with provable Pareto station-205

ary convergence guarantees and low206

communication costs. To this end,207

we propose two FMOL algorithms,208

namely federated multiple gradient de-209

scent averaging (FMGDA) and feder-210

ated stochastic multiple gradient de-211

scent averaging (FSMGDA) as shown212

in Algorithm 1. We summarize our213

key notation in Table 3 in Appendix214

to allow easy references for readers.215

As shown in Algorithm 1, in each216

communication round t ∈ [T ], each217

client synchronizes its local model218

with the current global model xt219

from the server (cf. Step 1). Then220

each client runs K local steps based221

on local data for all effective objec-222

tives (cf. Step 2) with two options:223

i) for FMGDA, each local step per-224

forms local full gradient descent, i.e.,225

xt,k+1
s,i = xt,k

s,i − ηL∇fs,i(xt,k
s,i ),∀s ∈ Si; ii) For FSMGDA, the local step performs stochastic226

gradient descent, i.e., xt,k+1
s,i = xt,k

s,i − ηL∇fs,i(xt,k
s,i , ξ

t,k
i ),∀s ∈ Si, where ξt,ki denotes a random227
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sample in local step k and round t at client i. Upon finishing K local updates, each client returns228

the accumulated update ∆t
s,i for each effective objective to the server (cf. Step 3). Then, the server229

aggregates all returned ∆-updates from the clients to obtain the overall updates ∆t
s for each objective230

s ∈ [S] (cf. Steps 4 and 5), which will be used in solving a convex quadratic optimization problem231

with linear constraints to obtain an approximate common descent direction dt (cf. Step 6). Lastly, the232

global model is updated following the direction dt with global learning rate ηt (cf. Step 7).233

Two remarks on Algorithm 1 are in order. First, we note that a two-sided learning rates strategy is234

used in Algorithm 1, which decouples the update schedules of local and global model parameters at235

clients and server, respectively. As shown in Section 4 later, this two-sided learning rates strategy236

enables better convergence rates by choosing appropriate learning rates. Second, to achieve low237

communication costs, Algorithm 1 leverages K local updates at each client and infrequent periodic238

communications between each client and the server. By adjusting the two-sided learning rates239

appropriately, the K-value can be made large to further reduce communication costs.240

4 Pareto stationary convergence analysis241

In this section, we analyze the Pareto stationary convergence performance for our FMGDA and242

FSMGDA algorithms in Sections 4.1 and 4.2, respectively, each of which include non-convex and243

strongly convex settings.244

4.1 Pareto stationary convergence of FMGDA245

1) FMGDA: The Non-convex Setting. Before presenting our Pareto stationary convergence results246

for FMGDA, we first state serveral assumptions as follows:247

Assumption 1. (L-Lipschitz continuous) There exists a constant L > 0 such that ∥∇fs(x) −248

∇fs(y)∥ ≤ L∥x− y∥,∀x,y ∈ Rd, s ∈ [S].249

Assumption 2. (Bounded Gradient) The gradient of each objective at any client is bounded, i.e.,250

there exists a constant G > 0 such that ∥∇fs,i(x)∥2 ≤ G2,∀s ∈ [S], i ∈ [M ].251

With the assumptions above, we state the Pareto stationary convergence of FMGDA as follows:252

Theorem 1 (FMGDA for Non-convex FMOL). Let ηt = η ≤ 3
2(1+L) . Under Assumptions 1 and 2,253

if at least one function fs, s ∈ [S] is bounded from below by fmin
s , then the sequence {xt} output by254

FMGDA satisfies: mint∈[T ] ∥dt∥2 ≤ 4(f0
s−fmin

s )
Tη + δ, where δ ≜ (8η2LK

2L2G2)/η.255

The convergence bound in Theorem 1 contains two parts. The first part is an optimization error, which256

depends on the initial point and vanishes as T increases. The second part is due to local update steps257

K and data heterogeneity G, which can be mitigated by carefully choosing the local learning rate ηL.258

Specifically, the following Pareto stationary convergence rate of FMGDA follows immediately from259

Theorem 1 with an appropriate choice of local learning rate ηL:260

Corollary 2. With a constant global learning rate ηt = η, ∀t, and a local learning rate ηL =261

O(1/
√
T ), the Pareto stationary convergence rate of FMGDA is (1/T )

∑
t∈[T ] ∥dt∥2 = O(1/T ).262

Several interesting insights of Theorem 1 and Corollary 2 are worth pointing out: 1) We note that263

FMGDA achieves a Pareto stationary convergence rate O(1/T ) for non-convex FMOL, which is the264

same as the Pareto stationary rate of MGD for centralized MOO and the same convergence rate of265

gradient descent (GD) for single objective problems. This is somewhat surprising because FMGDA266

needs to handle more complex objective and data heterogeneity under FMOL; 2) The two-sided267

learning rates strategy decouples the operation of clients and server by utilizing different learning268

rate schedules, thus better controlling the errors from local updates due to data heterogeneity; 3)269

Note that in the single-client special case, FMGDA degenerates to the basic MGD algorithm. Hence,270

Theorem 1 directly implies a Pareto stationary convergence bound for MGD by setting δ = 0 due271

to no local updates in centralized MOO. This convergence rate bound is consistent with that in [4].272

However, we note that our result is achieved without using the linear search step for learning rate [4],273

which is much easier to implement in practice (especially for deep learning models); 4) Our proof is274

based on standard assumptions in first-order optimization, while previous works require strong and275

unconventional assumptions. For example, a convergence of x-sequence is assumed in [4].276
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2) FMGDA: The Strongly Convex Setting. Now, we consider the strongly convex setting for FMOL,277

which is more tractable but still of interest in many learning problems in practice. In the strongly278

convex setting, we have the following additional assumption:279

Assumption 3. (µ-Strongly Convex Function) Each objective fs(x), s ∈ [S] is a µ-strongly convex280

function, i.e., fs(y) ≥ fs(x) +∇fs(x)(y − x) + µ
2 ∥y − x∥2 for some µ > 0.281

For more tractable strongly-convex FMOL problems, we show that FMGDA achieves a stronger282

Pareto stationary convergence performance as follows:283

Theorem 3 (FMGDA for µ-Strongly Convex FMOL). Let ηt = η such that η ≤ 3
2(1+L) , η ≤ 1

2L+µ284

and η ≥ 1
µT . Under Assumptions 1- 3, pick xt as the final output of the FMGDA algorithm with285

weights wt = (1 − µη
2 )1−t. Then, it holds that E[∆t

Q] ≤ ∥x0 − x∗∥2µ exp(−ηµT
2 ) + δ, where286

∆t
Q ≜

∑
s∈[S] λ

t,∗
s [fs(xt)− fs(x∗)] and δ =

8η2
LK2L2G2S2

µ + 2η2LK
2L2G2.287

Theorem 3 immediately implies following Pareto stationary convergence rate for FMGDA with a288

proper choice of local learning rate:289

Corollary 4. If ηL is chosen sufficiently small such that δ = O(µ exp(−µT )), then the Pareto290

stationary convergence rate of FMGDA is E[∆t
Q] = O(µ exp(−µT )).291

Again, several interesting insights can be drawn from Theorem 3 and Corollary 4. First, for strongly292

convex FMOL, FMGDA achieves a linear convergence rate O(µ exp(−µT )), which again matches293

those of MGD for centralized MOO and GD for single-objective problems. Second, compared with294

the non-convex case, the convergence bounds suggest FMGDA could use a larger local learning rate295

for non-convex functions thanks to our two-sided learning rates design. A novel feature of FMGDA296

for strongly convex FMOL is the randomly chosen output xt with weight wt from the xt-trajectory,297

which is inspired by the classical work in stochastic gradient descent (SGD) [41]. Note that, for298

implementation in practice, one does not need to store all xt-values. Instead, the algorithm can be299

implemented by using a random clock for stopping [41].300

4.2 Pareto stationary convergence of FSMGDA301

While enjoying strong performances, FMGDA uses local full gradients at each client, which could be302

costly in the large dataset regime. Thus, it is of theoretical and practical importance to consider the303

stochastic version of FMGDA, i.e., federated stochastic multi-gradient descent averaging (FSMGDA).304

1) FSMGDA: The Non-convex Setting. A fundamental challenge in analyzing the Pareto stationarity305

convergence of FSMGDA and other stochastic multi-gradient descent (SMGD) methods stems306

from bounding the error of the common descent direction estimation, which is affected by both λ∗
t307

(obtained by solving a quadratic programming problem) and the stochastic gradient variance. In fact,308

it is shown in [5] and [13] that the stochastic common descent direction in SMGD-type methods309

could be biased, leading to divergence issues. To address these challenges, in this paper, we propose310

to use a new assumption on the stochastic gradients, which is stated as follows:311

Assumption 4 ((α, β)-Lipschitz Continuous Stochastic Gradient). A function f has (α, β)-Lipschitz312

continuous stochastic gradients if there exist two constants α, β > 0 such that, for any two indepen-313

dent training samples ξ and ξ
′
, E[∥∇f(x, ξ)−∇f(y, ξ′

)∥2] ≤ α∥x− y∥2 + βσ2.314

In plain language, Assumption 4 says that the stochastic gradient estimation of an objective does not315

change too rapidly. We note that the (α, β)-Lipschitz continuous stochastic gradient assumption is a316

natural extension of the classic L-Lipschitz continuous gradient assumption (cf. Assumption 1) and317

generalizes several assumptions of SMGD convergence analysis in previous works. We note that318

Assumption 1 is not necessarily too hard to satisfy in practice. For example, when the underlying319

distribution of training samples ξ has a bounded support (typically a safe assumption for most320

applications in practice due to the finite representation limit of computing systems), suppose that321

Assumption 1 holds (also a common assumption in the optimization literature), then for any given322

x and y, the left-hand-side of the inequality in Assumption 4 is bounded due to the L-smoothness323

in Assumption 1. In this case, there always exist a sufficiently large α and a β such that the right-324

hand-side of the inequality in Assumption 1 holds. Please see Appendix A for further details. In325

addition, we need the following assumptions for the stochastic gradients, which are commonly used326

in standard SGD-based analyses [41, 42, 43, 44].327
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Assumption 5. (Unbiased Stochastic Estimation) The stochastic gradient estimation is unbiased for328

each objective among clients, i.e., E[∇fs,i(x, ξ)] = ∇fs,i(x),∀s ∈ [S], i ∈ [M ].329

Assumption 6. (Bounded Stochastic Gradient) The stochastic gradients satisfiy E[∥∇fs,i(x, ξ)∥2] ≤330

D2,∀s ∈ [S], i ∈ [M ] for some constant D > 0.331

With the assumptions above, we now state the Pareto stationarity convergence of FSMGDA as follows:332

333

Theorem 5 (FSMGDA for Non-convex FMOL). Let ηt = η ≤ 3
2(1+L) . Under Assumptions 4–6, if334

an objective fs is bounded from below by fmin
s , then the sequence {xt} output by FSMGDA satisfies:335

mint∈[T ] E ∥dt∥2 ≤
2S(f0

s−fmin
s )

ηT + δ, where δ = LηS2D2 + S(αη2LK
2D2 + βσ2).336

Theorem 5 immediately implies anO(1/
√
T ) convergence rate of FSMGDA for non-convex FMOL:337

Corollary 6. With a constant global learning rate ηt = η = O(1/
√
T ), ∀t and a local learning338

rate ηL = O
(
1/T 1/4

)
, and if β = O(η), the Pareto stationarity convergence rate of FSMGDA is339

mint∈[T ] E∥dt∥2 = O(1/
√
T ).340

2) The Strongly Convex Setting: For more tractable strongly convex FMOL problems, we can show341

that FSMGDA achieve stronger convergence results as follows:342

Theorem 7 (FSMGDA for µ-Strongly Convex FMOL). Let ηt = η = Ω( 1
µT ). Under Assumptions 3,343

5 and 6, pick xt as the final output of the FSMGDA algorithm with weight wt = (1− µη
2 )1−t. Then,344

it holds that: E[∆t
Q] ≤ ∥x0 − x∗∥2µ exp(−η

2µT ) + δ, where ∆t
Q =

∑
s∈[S] λ

t,∗
s [fs(xt)− fs(x∗)]345

and δ = 1
µS

2(αη2LK
2D2 + βσ2) + ηS2D2

2 .346

The following Pareto station convergence rate of FSMGDA follows immediately from Theorem 7:347

Corollary 8. Choose ηL = O( 1√
T
) and η = Θ( log(max(1,µ2T ))

µT ). If β = O(η), then the Pareto348

stationary convergence rate of FSMGDA is E[∆t
Q] ≤ Õ(1/T ).349

Corollary 8 says that, With proper learning rates, FSMGDA achieves Õ(1/T ) Pareto stationary350

convergence rate (i.e., ignoring logarithmic factors) for strongly convex FMOL. Also, in the single-351

client special case with no local updates, FSMGDA reduces to the SMGD algorithm and δ =352

4
µβS

2σ2 + ηS2D2

2 in this case. Then, Theorem 7 implies an Õ( 1
T ) Pateto stationarity convergence353

rate for SMGD for strongly convex MOO problems, which is consistent with previous works [5].354

However, our convergence rate proof uses a more conventional (α, β)-Lipschitz stochastic gradient355

assumption, rather than the unconventional assumptions on the first moment bound and Lipschitz356

continuity of common descent directions in [5].357

5 Numerical results358

In this section, we show the main numerical experiments of our FMGDA and FSMGDA algorithms359

in different datasets, while relegating the experimental settings and details to the appendix.360

0 20 40 60 80 100
Communication rounds

10 2

Lo
ss

task L
Batch size = 16 
Batch size = 64
Batch size = 128
Batch size = 256

0 20 40 60 80 100
Communication rounds

10 2

Lo
ss

task R
Batch size = 16 
Batch size = 32
Batch size = 128
Batch size = 256

(a) Training loss convergence in terms of communica-
tion rounds with different batch-sizes under non-i.i.d.
data partition in MultiMNIST.

0 20 40 60 80 100
Communication rounds

10 2

Lo
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task L
K = 1
K = 5
K = 10
K = 20
K = 50

0 20 40 60 80 100
Communication rounds

10 2Lo
ss

task R
K = 1
K = 5
K = 10
K = 20
K = 50

(b) The impacts of local update number K on train-
ing loss convergence in terms of communication
rounds.

Figure 1: Training loss convergence comparison.

8



10 2

task L

10 2

3 × 10 3

4 × 10 3

6 × 10 3

ta
sk

 R

FMGDA

MGD
K=1
K=5
K=10
K=20
K=50

10 2

task L

10 2

ta
sk

 R

FSMGDA
SMGD
K=1
K=5
K=10
K=20
K=50

(a) 100 communication rounds with various local
steps K, corresponding federated and centralized set-
tings share the same marker shape.
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(b) Normalized loss with the River Flow datasets.

Figure 2: Training losses comparison

Table 2: Communication rounds needed for 10−2 loss.

i.i.d. non-i.i.d.
Task L Task R Task L Task R

K = 1 82 84 96 82
K = 5 18(4.6×) 20(4.2×) 24(4.0×) 20(4.1×)
K = 10 10(8.2×) 9(9.3×) 13(7.4×) 10(8.2×)
K = 20 5(16.4×) 5(16.8×) 6(16.0×) 5(16.4×)

1) Ablation Experiments on Two-361

Tasks FMOL: 1-a) Impacts of Batch362

Size on Convergence: First, we compare363

the convergence results in terms of the364

number of communication rounds using365

the “MultiMNIST” dataset [45] with two366

tasks (L and R) as objectives. We test our367

algorithms with four different cases with368

batch sizes being [16, 64, 128, 256]. To369

reduce computational costs in this experiment, the dataset size for each client is limited to 256. Hence,370

the batch size 256 corresponds to FMGDA and all other batch sizes correspond to FSMGDA. As371

shown in Fig. 1(a), under non-i.i.d. data partition, both FMGDA and FSMGDA algorithms converge.372

Also, the convergence speed of the FSMGDA algorithm increases as the batch size gets larger. These373

results are consistent with our theoretical analyses as outlined in Theorems 1 and 5.374

1-b) Impacts of Local Update Steps on Convergence: Next, we evaluate our algorithms with different375

numbers of local update steps K. As shown in Fig. 1(b) and Table 2, both algorithms converge faster376

as the number of the local steps K increases. This is because both algorithms effectively run more377

iterative updates as K gets large.378

1-c) Comparisons between FMOL and Centralized MOO: Since this work is the first that investigates379

FMOL, it is also interesting to empirically compare the differences between FMOL and centralized380

MOO methods. In Fig. 2(a), we compare the training loss of FMGDA and FSMGDA with those of381

the centralized MGD and SMGD methods after 100 communication rounds. For fair comparisons,382

the centralized MGD and SMGD methods use
∑M

i |Si| batch-sizes and run K × T iterations. Our383

results indicate that FMGDA and MGD produce similar results, while the performance of FSMGDA384

is slightly worse than that of SMGD due to FSMGDA’s sensitivity to objective and data heterogeneity385

in stochastic settings. These numerical results confirm our theoretical convergence analysis.386

2) Experiments on Larger FMOL: We further test our algorithms on FMOL problems of larger387

sizes. In this experiment, we use the River Flow dataset[46], which contains eight tasks in this388

problem. To better visualize 8 different tasks, we illustrate the normalized loss in radar charts in389

Fig. 2(b). In this 8-task setting, we can again verify that more local steps K and a larger training batch390

size lead to faster convergence. In the appendix, we also varify the effectiveness of our FMGDA and391

FSMGDA algorithms in CelebA [47] (40 tasks), alongside with other hyperparmeter tuning results.392

6 Conclusion and discussions393

In this paper, we proposed the first general framework to extend multi-objective optimization to the394

federated learning paradigm, which considers both objective and data heterogeneity. We showed that,395

even under objective and data heterogeneity, both of our proposed algorithms enjoy the same Pareto396

stationary convergence rate as their centralized counterparts. In our future work, we will go beyond397

the limitation in the analysis of MOO that an extra assumption on the stochastic gradients (and λ).398

In this paper, we have proposed a weaker assumption (Assumption 4). We conjecture that using399

acceleration techniques, e.g., momentum, variance reduction, and regularization, could relax such400

assumption and achieve better convergence rate, which is an promising direction for future works.401
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A Gradient-based methods in MOO533

(Stochastic) Gradient-based methods in MOO have attracted much attention owing to simple update534

rules and less intensive computation recently, thus rendering them perfect candidates to underpin535

MOO applications in deep learning under first-oracle. However, their theoretical understandings536

remain less explored relative to their counterparts of single objective optimization. Hence, we537

highlight the existing works and corresponding assumptions alongside with convergence metrics.538

Existing Works. Various works managed to explore the convergence rates under different assump-539

tions in strongly-convex, convex, and non-convex functions as listed in Table 4. Using full gradient,540

MGD [4] could achieve tight convergence rates in strongly-convex and non-convex cases, i.e., linear541

rate O(rT ), r ∈ (0, 1) and sub-linear rate O( 1
T ). However, it requires linear search of learning rate542

in the algorithm and sequence convergence ({xt} converges to x∗). The linear search of learning543

rate is a classic technique, but does not fits in gradient-based algorithms in deep learning. Moreover,544

sequence convergence assumption is a too strong assumption. With no local step, our FMGDA545

degenerates to MGD. As a result, our analysis also provide the same order convergence rates in both546

strongly-convex and non-convex functions while avoiding strong and unpractical assumptions. If547

using stochastic gradient, SMGD methods makes a further complicated case. The stochastic gradient548

noise would complicate the analysis and thus it is still unclear whether SMGD is guaranteed to549

converge. [5] provided convergence rate for SMGD but extra assumptions and/or unreasonably large550

batch requirements were needed. On the other hand, [5] and [13] showed that the common descent551

direction provided by SMGD method is likely to be a biased estimation, rendering non-convergence552

issues. Recently, by utilizing momentum, MoCo [14] and CR-MOGM [13] were proposed with553

corresponding convergence guarantees. However, these analyses do not shed light on pure SMGD554

despite its widespread application.555

Assumptions. When applying stochastic gradient to MOO, common descent direction estimation556

λT∇F(x, ξ) is a biased estimation and thus rendering potential non-convergence issues [5, 13].557

This is a limitation for SMGD. However, SMGD does work well with a wide range of applications558

in practice. Understanding under what conditions can SMGD have convergence guarantee is thus559

an important problem. [48] assumes convexity property(H5): f(x, ξ) − f(x∗, ξ) ≥ c
2∥x − x∗∥2560

almost sure. [5] utilizes weaker assumptions but still needs first moment bound (Assumption 5.2(b)):561

E[∥∇f(x, ξ) − ∇f(x)∥] ≤ η(a + b∥∇f(x)∥) and Lipschitz continuity of λ (Assumption 5.4):562

∥λk − λt∥ ≤ β
∥∥[(∇f1(xk)−∇f1(xt))

T , . . . , (∇fS(xk)−∇fS(xt))
T
]∥∥.563

In this paper, we use (α, β)-Lipschitz continuous stochastic gradient (Assumption 4). In essence, we564

need the stochastic gradient estimation satisfying E[∥∇f(x, ξ)−∇f(y, ξ′
)∥2] ≤ α∥x− y∥2 + βσ2565

for any two independent samples ξ and ξ
′
. For the inequality E[∥∇f(x, ξ) − ∇f(y, ξ′

)∥2] ≤566

α∥x− y∥2 + βσ2 in Assumption 4, the notation σ2 just represents a general positive constant. This567

σ2 does not denote the variance of the stochastic gradient variance. Thus, this inequality does not568

Table 3: List of key notation.
Notation Definition
i Client index
M Total number of clients
s Objective/task index
S Total number of Objectives/tasks
Si Number of objectives/tasks of client i’s interest
k Local step index
K Total number of local steps
t Communication round index
T Total number of communication rounds
x ∈ Rd Global model parameters of FMOL in Problem (2)
x0 ∈ Rd Initial solution of FMOL in Problem (2)
x∗ ∈ Rd A Pareto optimal solution of FMOL in Problem (2)
ηL The learning rate on the client side
ηt The learning rate on the server side in round t
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depend on the batch size of the stochastic gradient. More specifically, unlike the assumption in [5]569

that characterizes the difference between a stochastic gradient and its full gradient (hence depending570

on the batch size), our Assumption 4 only measures the average norm square of two stochastic571

gradient difference∇f(x, ξ)−∇f(y, ξ′
) given any two points x and y and any two samples ξ and572

ξ
′
. In other words, Assumption 4 does not involve any full gradient, and hence no dependence on573

batch size. In the revised version of this paper, we will replace σ2 by a C to signify that it is a general574

constant.575

It is a natural extension of the classic Lipschitz continuous gradient assumption and could generalize576

existing assumptions.577

1. If ξ and ξ
′

are the whole dataset, by setting α = L2 and β = 0, (α, β)-Lipschitz continuous578

stochastic gradient condition generalizes the traditional Lipschitz continuous gradient assumption579

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.580

2. If ξ is one data sample, ξ
′

are the whole dataset and x = y, by setting α = 0 and β = 1,581

(α, β)-Lipschitz continuous stochastic gradient condition generalizes the traditional bounded variance582

assumption ∥∇f(x, ξ)−∇f(x)∥2 ≤ σ2.583

3. If ξ is one data sample, ξ
′

are the whole dataset and x = y, by setting β = αk, (α, β)-Lipschitz584

continuous stochastic gradient condition generalizes the bound on the first moment assumption585

(assumption 5.2(b)) and bounded sets assumption (assumption 5.3) [5] (E[∥∇f(x, ξ)−∇f(x)∥] ≤586

αk(Ci + Ĉi∥∇fi(xk)∥) and ∥∇fi(x)∥ ≤M∇ + LΘ).587

Metrics. For strongly-convex functions, we use ∆t
Q =

∑
s∈[S] λ

t,∗
s [fs(xt)− fs(x∗)] as588

the metrics. We note similar metrics are used in other works. For example, [5] uses589

mint=1,...,T

∑
s∈[S]

[
λt
sfs(xt)− λ̄T fs(x∗)

]
where λ̄T =

∑T
t=1

t∑T
t=1 t

λt, and [14] utilizes590 ∑
s∈[S] λ

t,∗
s [fs(xt)− fs(x∗)] as the metrics. In non-convex functions, ∥dt∥2 are used as the metrics591

for FMOO, where dt = λT
t ∇F(xt) and λt is calculated based on accumulated (stochastic) gradients592

∆t. We note, directly extended from MOO [13, 14] , d∗
t = λ∗T

t ∇F(xt) could also be used as the593

metrics in FMOO, where λ∗
t is calculated based on full gradients ∇F(xt). However, we prefer dt594

for the following reasons: i). For applying gradient descent with no local steps, dt degenerates to595

d∗
t . ii). Clearly, ∥dt∥2 ≤ ∥d∗

t ∥2 as λ∗
t is calculated based on gradients ∇F(xt). Hence, ∥dt∥2 is596

stronger convergence measure for FMOO. iii). λt is calculated in the algorithm and thus being more597

practical to use in practice, while λ∗
t is unknown. Also, the convergence of dt implicitly indicates λt598

converges to λ∗
t .599

B Proof of gradient descent type methods600

For gradient descent type methods, each step utilizes a full gradient to update and the corresponding601

parameter λ is deterministic. For clarity of notation, we drop ∗ for λ, that is, we use λs
t to represent602

the solution of quadratic problem (Step 6 in the algorithm) for task s in the t-th round.603

Lemma 1. Under bounded gradient assumption, the local model updates for any client s could be604

bounded605

Gt,k
s,i = ∥x

t,k
s,i − xt∥2 ≤ 4η2LK

2G2, (3)

Ht,s = ∥∇fs(xt)−∆s
t∥2 ≤ 4η2LK

2L2G2. (4)

Proof. For one task s ∈ [S] and one client i ∈ Rs, the local update
∥∥∥xt − xt,k

s,i

∥∥∥2 could be further606

bounded.607

∥∥∥xt − xt,k
s,i

∥∥∥2 =
∥∥∥xt − xt,k−1

s,i + ηL∇fs,i(xt,k−1
s,i )

∥∥∥2 (5)

≤ (1 +
1

K − 1
)
∥∥∥xt − xt,k−1

s,i

∥∥∥2 + η2LK
∥∥∥∇fs,i(xt,k−1

s,i )
∥∥∥2 (6)

≤ (1 +
1

K − 1
)
∥∥∥xt − xt,k−1

s,i

∥∥∥2 + η2LKG2 (7)
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Table 4: Convergence rate (shaded parts are our results) for strongly-convex and non-convex functions,
respectively:

Methods Rate
Assumption

Setting Algorithm SC NC

Vanilla Gradient

MGD [4] O(rT ), r ∈ (0, 1) O( 1
T ) Sequence convergence

MGD O(exp(−µT )) O( 1
T ) -

SMGD [5] O( 1
T ) - Lipschitz continuity of λ

SMGD [48] O( 1
T ) - Convexity property

SMGD [33] - O( 1√
T
) Given exact solution λ∗

SMGD Õ( 1
T ) O( 1√

T
) Asm. 4

Momentum
MoCo [14] - O( 1√

T
) -

CR-MOGM [13] - O( 1√
T
) -

Federated Settings
FMGDA O(exp(−µT )) O( 1

T ) -
FSMGDA Õ( 1

T ) O( 1√
T
) Asm. 4

Assumptions. Linear search [4]: stepsize linear search; sequence convergence [4]: {xt}
converges to x∗; first moment bound (Asm. 5.2(b) [5]): E[∥∇f(x, ξ) − ∇f(x)∥] ≤
η(a + b∥∇f(x)∥); Lipschitz continuity of λ (Asm. 5.4 [5]): ∥λk − λs∥ ≤
β
∥∥[(∇f1(xk)−∇f1(xt))

T , . . . , (∇fm(xk)−∇fm(xt))
T
]∥∥; convexity property(H5) [48]:

f(x, ξ)− f(x∗, ξ) ≥ c
2∥x− x∗∥2 almost sure; (α, β)-Lipschitz continuous stochastic gradient (Asm.

4).

≤
∑

τ∈[k−1]

(
2η2LKG2

)(
1 +

1

K − 1

)τ

(8)

≤ (K − 1)

[(
1 +

1

K − 1

)K

− 1

]
(η2LKG2) (9)

≤ 4η2LK
2G2, (10)

where the first inequality comes from Young’s inequality, the second inequality follows from bounded608

gradient assumption, and the last inequality follows if
(
1 + 1

K−1

)K

− 1 ≤ 4 for K > 1.609

We have the bound for local update for each task s, Ht,s, as follows:610

Ht,s = ∥∇fs(xt)−∆s
t∥2 (11)

=

∥∥∥∥∥∥ 1

K

∑
k∈[K]

1

|Rs|
∑
i∈Rs

[
∇fs,i(xt)−∇fs,i(xt,k

s,i )
]∥∥∥∥∥∥

2

(12)

≤ 1

K

∑
k∈[K]

1

|Rs|
∑
i∈Rs

∥∥∥∇fs,i(xt)−∇fs,i(xt,k
s,i )

∥∥∥2 (13)

≤ 1

K
L2

∑
k∈[K]

1

|Rs|
∑
i∈Rs

∥∥∥xt − xt,k
s,i

∥∥∥2 (14)

≤ 4η2LK
2L2G2. (15)

611

Lemma 2. For general L-smooth functions {fs, s ∈ [S]}, choose the learning rate ηt s.t. ηt ≤612
3

2(1+L) , the update dt of the algorithm satisfies:613

ηt
4
∥dt∥2 ≤ −fs(xt+1) + fs(xt) + 6η2LK

2L2G2 (16)
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Proof.

fs(xt+1) ≤ fs(xt) + ⟨∇fs(xt),−ηtdt⟩+
1

2
L∥ηtdt∥2 (17)

= fs(xt) + ⟨∇fs(xt)−∆s
t ,−ηtdt⟩ − ηt ⟨∆s

t ,dt⟩+
1

2
L∥ηtdt∥2 (18)

≤ fs(xt) + ⟨∇fs(xt)−∆s
t ,−ηtdt⟩ − ηt∥dt∥2 +

1

2
L∥ηtdt∥2 (19)

≤ fs(xt) +
1

2
∥∇fs(xt)−∆s

t∥2 +
1

2
η2t ∥dt∥2 − ηt∥dt∥2 +

1

2
Lη2t ∥dt∥2 (20)

= fs(xt) +
1

2
∥∇fs(xt)−∆s

t∥2 − ηt

(
1− 1

2
ηt −

1

2
Lηt

)
∥dt∥2 (21)

≤ fs(xt) + 2η2LK
2L2G2 − ηt

(
1− 1

2
ηt −

1

2
Lηt

)
∥dt∥2. (22)

The third inequality follows from ⟨∆s
t ,dt⟩ ≥ ∥dt∥2 since dt is a general solution in the convex hull614

of the family of vectors {∆s
t , s ∈ [S]} (see Lemma 2.1 [11])615

By setting
(
1− 1

2ηt −
1
2Lηt

)
≥ 1

4 , that is, ηt ≤ 3
2(1+L) , we have616

ηt
4
∥dt∥2 ≤ −fs(xt+1) + fs(xt) + 2η2LK

2L2G2. (23)

617

B.1 Strongly Convex Functions618

Theorem 3 (FMGDA for µ-Strongly Convex FMOL). Let ηt = η such that η ≤ 3
2(1+L) , η ≤ 1

2L+µ619

and η ≥ 1
µT . Under Assumptions 1- 3, pick xt as the final output of the FMGDA algorithm with620

weights wt = (1 − µη
2 )1−t. Then, it holds that E[∆t

Q] ≤ ∥x0 − x∗∥2µ exp(−ηµT
2 ) + δ, where621

∆t
Q ≜

∑
s∈[S] λ

t,∗
s [fs(xt)− fs(x∗)] and δ =

8η2
LK2L2G2S2

µ + 2η2LK
2L2G2.622

Proof.

fs(xt+1) ≤ fs(xt) + ⟨∇fs(xt),−ηtdt⟩+
1

2
L∥ηtdt∥2 (24)

≤ fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 (25)

+ ⟨∇fs(xt),−ηtdt⟩+
1

2
L∥ηtdt∥2, (26)

where the first inequality is due to L-smoothness, the second inequality follows from µ-strongly623

convex.624

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] (27)

≤

〈∑
s∈[S]

λs
t∇fs(xt),xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
t∇fs(xt),−ηtdt

〉
+

1

2
L∥ηtdt∥2

(28)

=

〈∑
s∈[S]

λs
t∇fs(xt),xt − x∗ − ηtdt

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥ηtdt∥2 (29)

= ⟨dt,xt − x∗ − ηtdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηtdt∥2 +

〈∑
s∈[S]

λs
t∇fs(xt)− dt,xt − x∗ − ηtdt

〉
(30)
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= ⟨dt,xt − x∗⟩ − ηt∥dt∥2 −
µ

2
∥xt − x∗∥2 +

1

2
Lη2t ∥dt∥2 +

〈∑
s∈[S]

λs
t∇fs(xt)− dt,xt+1 − x∗

〉
(31)

≤ 1

2ηt

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
ηt∥dt∥2 −

µ

2
∥xt − x∗∥2 +

1

2
Lη2t ∥dt∥2 (32)

+
1

4ϵ

∥∥∥∥∥∥
∑
s∈[S]

λs
t∇fs(xt)− dt

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Ht

+ϵ ∥xt+1 − x∗∥2 (33)

≤ 1

2ηt

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
ηt∥dt∥2 −

µ

2
∥xt − x∗∥2 +

1

2
Lη2t ∥dt∥2 (34)

+
1

4ϵ
Ht + ϵ

(
2 ∥xt − x∗∥2 + 2η2t ∥dt∥2

)
(35)

≤ 1

2ηt

(
(1− µ

2
ηt)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
−

(
1

2
ηt −

1

2
Lη2t −

µ

4
η2t

)
∥dt∥2 +

2

µ
Ht,

(36)

where ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2t ∥dt∥2 + 2 ⟨ηtdt,xt − x∗⟩, and we choose ϵ = µ
8 in the625

last inequality.626

From Lemma 2, it is clear that627

|fs(xt+1)− fs(xt)| ≤ |2η2LK2L2G2 − ηt
4
∥dt∥2| (37)

≤ 2η2LK
2L2G2 +

ηt
4
∥dt∥2. (38)

∆t
Q =

∑
s∈[S]

λs
t [fs(xt)− fs(x∗)] ≤

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] + |fs(xt+1)− fs(xt)| (39)

≤ 1

2ηt

(
(1− µ

2
ηt)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
−

(
1

4
ηt −

1

2
Lη2t −

µ

4
η2t

)
∥dt∥2 +

2

µ
Ht + 2η2LK

2L2G2.

(40)

Ht =

∥∥∥∥∥∥
∑
s∈[S]

λs
t∇fs(xt)− dt

∥∥∥∥∥∥
2

(41)

≤ S
∑
s∈[S]

(λs
t )

2Ht,s (42)

≤ 4η2LK
2L2G2S2. (43)

By setting ηt ≤ 1
2L+µ , we have628

∆t
Q =

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] (44)

≤ 1

2ηt

(
(1− µ

2
ηt)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
+

8η2LK
2L2G2S2

µ
+ 2η2LK

2L2G2︸ ︷︷ ︸
δ

. (45)

Averaging using weight wt = (1− µη
2 )1−t and using such weight to pick output x. By using Lemma629

1 in [21] with η ≥ 1
uR , we ahve630

E[∆Q] ≤ ∥x0 − x∗∥2µ exp(−ηµT

2
) + δ (46)
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= O(µ exp(−µT )) +O(δ). (47)

If we set ηL sufficiently small such that δ = O(µ exp(−µT )), then we have the convergence rate631

E[∆Q] = O(µ exp(−µT )).632

B.2 Non-Convex Functions633

Theorem 1 (FMGDA for Non-convex FMOL). Let ηt = η ≤ 3
2(1+L) . Under Assumptions 1 and 2,634

if at least one function fs, s ∈ [S] is bounded from below by fmin
s , then the sequence {xt} output by635

FMGDA satisfies: mint∈[T ] ∥dt∥2 ≤ 4(f0
s−fmin

s )
Tη + δ, where δ ≜ (8η2LK

2L2G2)/η.636

Proof. From Lemma 2, we have637

ηt
4
∥dt∥2 ≤ −fs(xt+1) + fs(xt) + 2η2LK

2L2G2. (48)

With constant learning rate ηt = η,638

1

T

∑
t∈[T ]

∥dt∥2 ≤
4(f0

s − fmin
s )

Tη
+

8η2LK
2L2G2

η
. (49)

With constant learning rate η and local learning rate ηL = O( 1√
TKLG

), we have639

1

T

∑
t∈[T ]

∥dt∥2 ≤ O(
1

T
) (50)

640

C Proof of stochastic gradient descent type methods641

For stochastic gradient descent type methods, each step utilizes a stochastic gradient to update and642

the corresponding parameter λ is stochastic, depending on the random samples in each client. For643

clarity of notation, we drop ∗ for λ, that is, we use λs
t to represent the solution of quadratic problem644

(Step 6 in the algorithm) for task s in the t-th round.645

Lemma 3. Under bounded stochastic gradient assumption, the local model updates could be bounded646

Gt,k
s,i = E∥xt,k

s,i − xt∥2 ≤ 6η2Lk
2 ∥∇fs,i(xt)∥2 , (51)

E

∥∥∥∥∥∥
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

≤ S2D2. (52)

Further with assumption 4, we have647

Ht,s = E
∥∥∇fs(xt, ξt)−∆t

s

∥∥2 ≤ αη2LK
2D2 + βσ2. (53)

Proof. For one task s ∈ [S] and one client i ∈ Rs, the local update
∥∥∥xt − xt,k

s,i

∥∥∥2 could be further648

bounded.649

Gt,k
s,i = E

∥∥∥xt − xt,k
s,i

∥∥∥2 (54)

= E

∥∥∥∥∥∥
∑
τ∈[k]

ηL∇fs,i(xt,τ
s,i , ξ

t,τ
s,i )

∥∥∥∥∥∥
2

(55)

≤ η2Lk
2D2. (56)
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E

∥∥∥∥∥∥
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

≤ S
∑
s∈[S]

E
[
(λt

s)
2
∥∥∆t

s

∥∥2] (57)

≤ S
∑
s∈[S]

E
[∥∥∆t

s

∥∥2] (58)

≤ S
∑
s∈[S]

E

∥∥∥∥∥∥ 1

Rs

∑
i∈Rs

1

K

∑
τ∈[K]

∇fs,i(xt,τ
s,i , ξ

t,τ
s,i )

∥∥∥∥∥∥
2

(59)

≤ S
∑
s∈[S]

1

Rs

∑
i∈Rs

1

K

∑
τ∈[K]

E
∥∥∇fs,i(xt,τ

s,i , ξ
t,τ
s,i )

∥∥2 (60)

≤ S2D2. (61)

Ht = E
∥∥∇fs(xt, ξt)−∆t

s

∥∥2 (62)

≤ E

∥∥∥∥∥∥ 1

K

∑
k∈[K]

1

|Rs|
∑
i∈Rs

(
∇fs,i(xt, ξt)−∇fs,i(xt,k

s,i , ξ
t,k
s,i )

)∥∥∥∥∥∥
2

(63)

≤ 1

K

∑
k∈[K]

1

|Rs|
∑
i∈Rs

E
∥∥∥∇fs,i(xt, ξt)−∇fs,i(xt,k

s,i , ξ
t,k
s,i )

∥∥∥2 (64)

≤ 1

K

∑
k∈[K]

1

|Rs|
∑
i∈Rs

(
αE∥xt − xt,k

s,i∥
2 + βσ2

)
(65)

≤ αη2LK
2D2 + βσ2. (66)

650

C.1 Strongly Convex Functions651

Theorem 7 (FSMGDA for µ-Strongly Convex FMOL). Let ηt = η = Ω( 1
µT ). Under Assumptions 3,652

5 and 6, pick xt as the final output of the FSMGDA algorithm with weight wt = (1− µη
2 )1−t. Then,653

it holds that: E[∆t
Q] ≤ ∥x0 − x∗∥2µ exp(−η

2µT ) + δ, where ∆t
Q =

∑
s∈[S] λ

t,∗
s [fs(xt)− fs(x∗)]654

and δ = 1
µS

2(αη2LK
2D2 + βσ2) + ηS2D2

2 .655

Proof. Taking expectation over random samples conditioning on xt, we have656

E∥xt+1 − x∗∥2 = E

∥∥∥∥∥∥xt − ηt
∑
s∈[S]

λt
s∆

t
s − x∗

∥∥∥∥∥∥
2

(67)

= ∥xt − x∗∥2 − E

〈
xt − x∗, 2ηt

∑
s∈[S]

λt
s∆

t
s

〉
+ E

∥∥∥∥∥∥ηt
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

(68)

= ∥xt − x∗∥2 − E

〈
xt − x∗, 2ηt

∑
s∈[S]

λt
s∇fs(xt, ξt)

〉
(69)

+ E

〈
xt − x∗, 2ηt

∑
s∈[S]

λt
s(∇fs(xt, ξt)−∆t

s)

〉
+ E

∥∥∥∥∥∥ηt
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

(70)
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= ∥xt − x∗∥2 −

〈
xt − x∗, 2ηt

∑
s∈[S]

E[λt
s]∇fs(xt)

〉
(71)

+ E

〈
xt − x∗, 2ηt

∑
s∈[S]

λt
s(∇fs(xt, ξt)−∆t

s)

〉
+ E

∥∥∥∥∥∥ηt
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

(72)

≤ ∥xt − x∗∥2 − 2ηt

µ

2
∥xt − x∗∥2 +

∑
s∈[S]

E[λt
s](fs(xt)− fs(x∗))

+ ϵ ∥xt − x∗∥2 (73)

+
1

4ϵ
4η2tE

∥∥∥∥∥∥
∑
s∈[S]

λt
s(∇fs(xt, ξt)−∆t

s)

∥∥∥∥∥∥
2

+ η2tE

∥∥∥∥∥∥
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

(74)

≤ ∥xt − x∗∥2 − 2ηt

µ

2
∥xt − x∗∥2 +

∑
s∈[S]

E[λt
s](fs(xt)− fs(x∗))

+ ϵ ∥xt − x∗∥2 (75)

+
1

4ϵ
4η2tS

∑
s∈[S]

E
[
(λt

s)
2
∥∥(∇fs(xt, ξt)−∆t

s)
∥∥2]+ η2tE

∥∥∥∥∥∥
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

(76)

≤ ∥xt − x∗∥2 − 2ηt

µ

2
∥xt − x∗∥2 +

∑
s∈[S]

E[λt
s](fs(xt)− fs(x∗))

+ ϵ ∥xt − x∗∥2 (77)

+
1

4ϵ
4η2tS

∑
s∈[S]

E
∥∥∇fs(xt, ξt)−∆t

s

∥∥2 + η2tE

∥∥∥∥∥∥
∑
s∈[S]

λt
s∆

t
s

∥∥∥∥∥∥
2

(78)

≤ ∥xt − x∗∥2 − 2ηt

µ

2
∥xt − x∗∥2 +

∑
s∈[S]

E[λt
s](fs(xt)− fs(x∗))

+ ϵ ∥xt − x∗∥2 (79)

+
1

4ϵ
4η2tS

2(αη2LK
2D2 + βσ2) + η2tS

2D2 (80)

≤ (1− ηtµ

2
)∥xt − x∗∥2 − 2ηt

∑
s∈[S]

E[λt
s](fs(xt)− fs(x∗))

 (81)

+
2

µ
ηtS

2(αη2LK
2D2 + βσ2) + η2tS

2D2, (82)

where the first equality is due to strongly-convex objective functions, and we set ϵ = ηtµ
2 .657

∑
s∈[S]

E[λt
s](fs(x)− fs(x∗)) ≤

1

2ηt
(1− ηtµ

2
)∥xt − x∗∥2 −

1

2ηt
∥xt+1 − x∗∥2 (83)

+
1

µ
S2(αη2LK

2D2 + βσ2) +
ηtS

2D2

2︸ ︷︷ ︸
δ

(84)

Averaging using weight wt = (1− µηt

2 )1−t and using such weight to pick output x. By using Lemma658

1 in [21] with constant learning rate ηt = η = Ω( 1
µT ), we have659

E[∆Q] ≤ ∥x0 − x∗∥2µ exp(−η

2
µT ) +O(δ) (85)

where δ = 1
µS

2(αη2LK
2D2 + βσ2) + ηS2D2

2 .660
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By letting β = η, ηL = O( 1√
T
) and η = Θ( log(max(1,µ2T ))

µT ),661

E[∆Q] ≤ Õ(
1

T
). (86)

662

C.2 Non-convex Functions663

Theorem 5 (FSMGDA for Non-convex FMOL). Let ηt = η ≤ 3
2(1+L) . Under Assumptions 4–6, if664

an objective fs is bounded from below by fmin
s , then the sequence {xt} output by FSMGDA satisfies:665

mint∈[T ] E ∥dt∥2 ≤
2S(f0

s−fmin
s )

ηT + δ, where δ = LηS2D2 + S(αη2LK
2D2 + βσ2).666

Proof. Taking expectation on the random data samples conditioning on xt, we have667

Efs(xt+1) ≤ fs(xt) + E

〈
∇fs(xt),−ηt

∑
j∈[S]

λt
j∆

t
j

〉
+

1

2
LE

∥∥∥∥∥∥ηt
∑
j∈[S]

λt
j∆

t
j

∥∥∥∥∥∥
2

(87)

= fs(xt) + E

〈
∇fs(xt),−ηt

∑
j∈[S]

λt
j∇fj(xt, ξt)

〉
(88)

+ ηtE

〈
∇fs(xt),

∑
j∈[S]

λt
j

[
−∆t

j +∇fj(xt, ξt)
]〉

+
1

2
Lη2tE

∥∥∥∥∥∥
∑
j∈[S]

λt
j∆

t
j

∥∥∥∥∥∥
2

(89)

≤ fs(xt)− ηt
∑
j∈[S]

E[λt
j ] ∥∇fj(xt)∥2 (90)

+ ηtE

〈
∇fs(xt),

∑
j∈[S]

λt
j

[
−∆t

j +∇fj(xt, ξt)
]〉

+
1

2
Lη2tE

∥∥∥∥∥∥
∑
j∈[S]

λt
j∆

t
j

∥∥∥∥∥∥
2

(91)

≤ fs(xt)− ηt
∑
j∈[S]

E[λt
j ] ∥∇fj(xt)∥2 +

ηt
2
SE∥λt

s∇fs(xt)∥2 (92)

+
ηt
2

∑
j∈[S]

E∥∇fj(xt, ξt)−∆t
j∥2 +

1

2
Lη2tE

∥∥∥∥∥∥
∑
j∈[S]

λt
j∆

t
j

∥∥∥∥∥∥
2

(93)

≤ fs(xt)−
ηt
2

∑
j∈[S]

E
∥∥λt

j∇fj(xt)
∥∥2 + ηt

2

∑
j∈[S]

E∥∇fj(xt, ξt)−∆t
j∥2 +

1

2
Lη2tE

∥∥∥∥∥∥
∑
j∈[S]

λt
j∆

t
j

∥∥∥∥∥∥
2

.

(94)

Here we construct a virtual stochastic gradient ∇fs(xt, ξt) with an independent sample. As668

λt
s only depends on ∆t

s, so λt
s and ∇fs(xt, ξt) are independent, from which the first in-669

equality follows. The second inequality is due to ab ≤ 1
2a

2 + 1
2b

2. Specifically,670

E
〈
∇fs(xt),

∑
j∈[S] λ

t
j(−∆t

j +∇fj(xt, ξt))
〉

=
∑

j∈[S] E
〈
λt
s∇fs(xt),−∆t

j +∇fj(xt, ξt)
〉
≤671

S
2E∥λ

t
s∇fs(xt)∥2 + 1

2

∑
s∈[S] E∥∇fs(xt, ξt) − ∆t

s∥2. Also, following the fact that672

λt
s ∈ [0, 1], we have ηt

∑
s∈[S] E[λt

s] ∥∇fs(xt)∥2 ≥ ηt
∑

s∈[S] E[(λt
s)

2] ∥∇fs(xt)∥2 =673

ηt
∑

s∈[S] E ∥λt
s∇fs(xt)∥

2. We also note that there exist a task s, such that S
2E∥λ

t
s∇fs(xt)∥2 ≤674

1
2

∑
j∈[S] E∥λt

j∇fj(xt)∥2, which leads to the last inequality.675
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Rearranging the terms, we have676

∑
s∈[S]

E
∥∥λt

s∇fs(xt)
∥∥2 ≤ 2 (fs(xt)− Efs(xt+1))

ηt
+

∑
s∈[S]

E∥∇fs(xt, ξt)−∆t
s∥2 + LηtE

∥∥∥∥∥∥
∑
j∈[S]

λt
j∆

t
j

∥∥∥∥∥∥
2

.

(95)

With constant learning rate ηt = η and averaging from T communication rounds, we have677

1

T

∑
t∈[T ]

E ∥dt∥2 ≤
1

T

∑
t∈[T ]

S
∑
s∈[S]

E
∥∥λt

s∇fs(xt)
∥∥2 (96)

≤ 2S (fs(x1)− Efs(xT+1))

ηT
+ S(αη2LK

2D2 + βσ2) + LηS2D2. (97)

With constant learning rate η = 1√
T

, local learning rate ηL = O( 1
T 1/4 ) and β = η,678

1

T

∑
t∈[T ]

E ∥dt∥2 = O( 1√
T
). (98)

679

D Further Experiments and Additional Results680

In the following, we provide the detailed machine learning models for our experiments:681

1) MultiMNIST Datasets and Learning Tasks: We test the convergence performance of our682

algorithms using the “MultiMNIST” dataset [45], which is a multi-task learning version of the683

MNIST dataset [49] from LIBSVM repository. Specifically, to convert the hand-written classification684

problem into a multi-task problem, we randomly chose 60000 images and divided them into M685

agents. Each agent has two tasks, where each task has n = 60000/(2 ∗M) samples. Due to space686

limitations, we only present the convergence results for the case of non-i.i.d. data partition (i.e., data687

heterogeneity) and relegate the results of the i.i.d. data case to the appendix. For the non-i.i.d. data688

partition, we use the same data partition strategy as in [22], where each client can access data with689

at most two labels. In our experiments, a group of images is positioned in the top left corner, while690

another group of images is positioned in the bottom right. The two tasks are task “L” (to categorize691

the top-left digit) and task “R” (to classify the bottom-right digit). The overall problem is to classify692

the images of different tasks at different agents. All algorithms use the same randomly generated693

initial point. Here, we present experiments with M = 10 agents, where each agent has two tasks (i.e.,694

A ∈ RM×2 is an all-one matrix). We set the local update rounds K = 10. Experiments with a larger695

number of agents (M = 5, 10, 30) are provided here. The learning rates are chosen as ηL = 0.1 and696

ηt = 0.1, ∀t.697

2): River Flow Dataset and Learning Tasks: We further test our algorithms on FMOL problems of698

larger sizes. In this experiment, we use the River Flow dataset[46], which is for flow prediction flow699

at eight locations within the Mississippi River network. Thus, there are eight tasks in this problem.700

In this experiment, we set ηL = 0.001, ηt = 0.1, M = 10, and keep the batch size = 256 while701

comparing K, and keep K = 30 while comparing the batch size. To better visualize 8 different tasks,702

we illustrate the normalized loss in radar charts in Fig. 2(b). We again verify that utilizing a larger703

training batch size and conducting additional local steps K results in accelerated convergence.704

3): CelebA Dataset and Learning Tasks: We utilize the CelebA dataset [47], consisting of 200K705

facial images annotated with 40 attributes. We approach each attribute as a binary classification task,706

resulting in a 40-way multi-task learning (MTL) problem. To create a shared representation function,707

we implement ResNet-18 [50] without the final layer, attaching a linear layer to each attribute for708

classification. In this experiment, we set ηL = 0.0005, ηt = 0.1, M = 10, and K = 10. Figure709

3 displays a radar chart depicting the loss value of each binary classification task. In Figure 3, we710

demonstrate the efficacy of our FMGDA and FSMGDA algorithms in both i.i.d. case and non-i.i.d.711

case.712
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(a) Non-i.i.d. case. (b) i.i.d case.

Figure 3: Experiments on CelebA dataset.

Experiments on i.i.d. data: First, we compare the convergence results with the same experimental713

settings in our Section. 5 but tested on the i.i.d data. As shown in Fig. 4, both FMGDA and FSMGDA714

successfully converged in i.i.d. data, and the algorithm with a larger training batch size and more715

local updates K may converge faster.716
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(b) Loss v.s. Local update rounds.

Figure 4: Experiments on i.i.d. data.

Impact of the number of clients: In this experiment, we choose the different number of clients from717

the discrete set {5, 10, 30} and fix learning rates at 0.1 and local update rounds at 10. As shown in718

Fig. 5, a larger number of workers leads to faster convergence rates of our proposed algorithms both719

in i.i.d. case and non-i.i.d. case; this is mainly because more samples have been used while training720

while having more workers.721
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Figure 5: Loss value comparisons of algorithms on a different numbers of clients M .
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Figure 6: Comparisons of different step-sizes.
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Impact of the Step-size: In this experiment, we choose the value of the learning rate ηL from722

the discrete set {0.05, 0.01, 0.1} and fix worker number at 5, local update rounds at 10. As shown723

in Fig. 6, larger local step-sizes lead to faster convergence rates on both FMGDA algorithm and724

FSMGDA algorithm.725
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