
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Figure 1: Function graphs used in the multi-task learning setting.

WHEN AND HOW ARE MODULAR NETWORKS BETTER?

Anonymous authors
Paper under double-blind review

1 MULTI-TASK LEARNING

We extend our experimental setup to explore multi-task learning scenarios where each neural net-
work (NN) architecture is trained to perform multiple Boolean functions simultaneously. This allows
us to evaluate task-conditioned modularity by enabling networks to adjust connectivity and module
selection based on a task identifier provided with each input sample.

1.1 EXPERIMENTAL SET-UP

Consider a set of n Boolean function graphs (or tasks), and their corresponding truth tables Ti, for
i ∈ {1, 2, . . . , n}. Consider the experimental setup described in Section 3 of the paper. For each
task i, we sample an r-fraction of rows from Ti, prepend a one-hot encoded task identifier t = i
to each row, and combine these samples from all tasks into a unified training set. This process is
repeated to create the validation and test sets.

We train three architectures:

Monolithic dense: The input dimension of the architecture is expanded to include the task identifier.
The network is then trained using standard methods.

Modular: The modular NN is configured similarly to the single task setting, with L modular layers,
containing Ml modules at layer l. Each module consists of an MLP comprising 2 input units, 12
hidden units, and 1 output unit, along with an input selection vector. The input selection vector is a
two-dimensional matrix of size n×Ml−1, where n represents the number of tasks.

Given the one-hot encoded task identifier associated with each input sample, the corresponding row
of the input selection vector is used to determine the module’s inputs or inter-module connectivity.
The input selection vector can be interpreted as the weight matrix of a single linear layer that takes
the task identifier as input and generates the input selection vector specific to the module and task.

Please note that the input selection vectors for all the modules are learned or trained along with all
the MLP weights.

Modular-shared: Similar to the single-task modular-shared NN, this architecture replaces individual
modules with Ml slots in each hierarchical layer l and employs a pool of M shared modules. Each
slot is defined by an input selection vector of size n ×Ml−1 and a module selection vector of size
n×M .

For each input sample, the task identifier determines the corresponding rows of these matrices,
specifying both the inter-module connectivity and the module selection at each slot. The input
selection and module selection vectors for all the slots are learned or trained along with all the MLP
weights.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Test accuracy, and training efficiency results of different NNs relative to training size in
the multi-task learning set-up. For each datapoint, we report the mean and combined standard error
(shaded region).

1.2 RESULTS

We consider the three function graphs shown in Figure 1 in the multi-task setting.

Learning two tasks (1 & 2): First, we present results for learning two of the three tasks. Here,
the monolithic dense NN consists of 8 input units, 2 output units, and 3 hidden layers with 60 units
in each layer. The modular NN comprises 5 modules in the first layer and 4 modules in the second
layer. The modular-shared NN consists of 4 slots in the first layer, 2 slots in the second layer, and 3
shared modules.

The test accuracy and the training efficiency are presented in Figure 2(column 1). Both modular and
modular-shared NNs consistently outperform the monolithic dense NN. The accuracy gap between
modular and module-shared NNs is low, likely due to the sub-function output reuse across the two
tasks (e.g., 2 sub-function outputs with XOR gates are common or reused between tasks 1 and 2).
Modular NNs with their fixed module positions, are particularly effective in capturing sub-function
output reuse both across and within tasks. (See section 2 of the paper for definition)

In terms of training efficiency, both modular and modular-shared NNs require significantly fewer
operations to learn the two tasks effectively. Additionally, modular NNs are able to match the
training efficiency of modular-shared NNs.

Learning two tasks (1 & 3): Next, we present results for a multi-task setting where tasks 1 and
3 are learned simultaneously. The monolithic NN consists of 8 input units, 2 output units, and 3
hidden layers with 72 units in each layer. The modular NN consists of 6 modules in the first layer
and 4 modules in the second layer. Finally, the modular-shared NN comprises 3 slots in the first
layer, 2 slots in the second layer, and 3 shared modules.

The test accuracy and the training efficiency are presented in Figure 2(column 2). Both modular
and modular-shared NNs again outperform the monolithic dense NN in terms of test accuracy and
training efficiency. However, there is a more significant performance gap between modular-shared
and modular NNs in this case. Since tasks 1 and 3 do not share sub-function outputs, the perfor-
mance advantage of modular NNs due to common sub-function outputs is absent, leading to a larger
difference in accuracy and efficiency.

Learning three tasks: Finally, we examine the multi-task setting where all three tasks are learned
simultaneously. The monolithic NN has 9 input units, 2 output units, and 3 hidden layers with 72
units per layer. The modular NN is configured with 6 modules in both hierarchical layers. The
modular-shared NN has 4 slots in the first layer, 2 slots in the second layer, and 3 shared modules.

Both modular and modular-shared NNs significantly outperform the monolithic dense NN in terms
of generalization performance and training efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Across all training sizes, modular and modular-shared NNs show comparable test accuracy. This
similarity can be attributed to the substantial amount of sub-function output reuse, which modular
NNs can exploit due to their fixed module positions. However, modular-shared NNs consistently
achieve superior training efficiency due to their reduced number of trainable parameters and the
abundant sub-function operation reuse across the three tasks. (See section 2 of the paper for defini-
tion)

1.3 OBSERVATIONS AND IMPLICATIONS

The input or task-identifier-conditioned connectivity inherently favors hierarchically modular NNs,
as their input-output function can adapt based on the task. In a single-task setting, where the input-
output function is fixed, this advantage is less apparent. For this reason, we focused on a single-
task or static setting earlier and found that modularity without module reusability does not improve
generalization performance. However, in a multi-task setting where the task identifier is available,
even modular NNs outperform monolithic dense NNs.

3


	Multi-task learning
	Experimental set-up
	Results
	Observations and implications


