Under review as a conference paper at ICLR 2025

P U e

0@@@@@0@@@@@0@@@@@

@ OR @ AND @ XOR —> Transfer

Figure 1: Function graphs used in the multi-task learning setting.

WHEN AND HOW ARE MODULAR NETWORKS BETTER?

Anonymous authors
Paper under double-blind review

1 MULTI-TASK LEARNING

We extend our experimental setup to explore multi-task learning scenarios where each neural net-
work (NN) architecture is trained to perform multiple Boolean functions simultaneously. This allows
us to evaluate task-conditioned modularity by enabling networks to adjust connectivity and module
selection based on a task identifier provided with each input sample.

1.1 EXPERIMENTAL SET-UP

Consider a set of n Boolean function graphs (or tasks), and their corresponding truth tables 7;, for
1 € {1,2,...,n}. Consider the experimental setup described in Section 3 of the paper. For each
task ¢, we sample an r-fraction of rows from 7T, prepend a one-hot encoded task identifier t = ¢
to each row, and combine these samples from all tasks into a unified training set. This process is
repeated to create the validation and test sets.

We train three architectures:

Monolithic dense: The input dimension of the architecture is expanded to include the task identifier.
The network is then trained using standard methods.

Modular: The modular NN is configured similarly to the single task setting, with L modular layers,
containing M; modules at layer {. Each module consists of an MLP comprising 2 input units, 12
hidden units, and 1 output unit, along with an input selection vector. The input selection vector is a
two-dimensional matrix of size n x M;_1, where n represents the number of tasks.

Given the one-hot encoded task identifier associated with each input sample, the corresponding row
of the input selection vector is used to determine the module’s inputs or inter-module connectivity.
The input selection vector can be interpreted as the weight matrix of a single linear layer that takes
the task identifier as input and generates the input selection vector specific to the module and task.

Please note that the input selection vectors for all the modules are learned or trained along with all
the MLP weights.

Modular-shared: Similar to the single-task modular-shared NN, this architecture replaces individual
modules with M; slots in each hierarchical layer [and employs a pool of M shared modules. Each
slot is defined by an input selection vector of size n X M;_; and a module selection vector of size
nx M.

For each input sample, the task identifier determines the corresponding rows of these matrices,
specifying both the inter-module connectivity and the module selection at each slot. The input
selection and module selection vectors for all the slots are learned or trained along with all the MLP
weights.

Under review as a conference paper at ICLR 2025

Test accuracy - Number of tasks: 2, Tasks: 1 & 2 Test accuracy - Number of tasks: 2, Tasks: 1 & 3 Test accuracy - Number of tasks: 3

Test accuracy
Test accuracy

03 o4 5 02 03 04 5 ¥ 03 [o5
Ratio of truth table in training data Ratio of truth table in training data Ratio of truth table in training data

Training efficency - Number of tasks: 2, Tasks: 1 & 3 Training efficency - Number of tasks: 3

LLRRRRL Lhhhkh

05 06 o1
ing data Ratio of trth table in training data Ratio of truth table n training data

Approximate operations count
Appmxlmale peions

2 03 04
Ratio of truth tabl

= Monolithic: 100% Density s Modular mmm Modular-shared - Monolithic: 100% Density ws Modular e Modular fonolithic: 100% Density wsm Modular s Modular:shared

Figure 2: Test accuracy, and training efficiency results of different NNs relative to training size in
the multi-task learning set-up. For each datapoint, we report the mean and combined standard error
(shaded region).

1.2 RESULTS

We consider the three function graphs shown in Figure|[T]in the multi-task setting.

Learning two tasks (1 & 2): First, we present results for learning two of the three tasks. Here,
the monolithic dense NN consists of 8 input units, 2 output units, and 3 hidden layers with 60 units
in each layer. The modular NN comprises 5 modules in the first layer and 4 modules in the second
layer. The modular-shared NN consists of 4 slots in the first layer, 2 slots in the second layer, and 3
shared modules.

The test accuracy and the training efficiency are presented in Figure[2{column 1). Both modular and
modular-shared NNs consistently outperform the monolithic dense NN. The accuracy gap between
modular and module-shared NN is low, likely due to the sub-function output reuse across the two
tasks (e.g., 2 sub-function outputs with XOR gates are common or reused between tasks 1 and 2).
Modular NNs with their fixed module positions, are particularly effective in capturing sub-function
output reuse both across and within tasks. (See section 2 of the paper for definition)

In terms of training efficiency, both modular and modular-shared NNs require significantly fewer
operations to learn the two tasks effectively. Additionally, modular NNs are able to match the
training efficiency of modular-shared NNs.

Learning two tasks (1 & 3): Next, we present results for a multi-task setting where tasks 1 and
3 are learned simultaneously. The monolithic NN consists of 8 input units, 2 output units, and 3
hidden layers with 72 units in each layer. The modular NN consists of 6 modules in the first layer
and 4 modules in the second layer. Finally, the modular-shared NN comprises 3 slots in the first
layer, 2 slots in the second layer, and 3 shared modules.

The test accuracy and the training efficiency are presented in Figure 2Jcolumn 2). Both modular
and modular-shared NNs again outperform the monolithic dense NN in terms of test accuracy and
training efficiency. However, there is a more significant performance gap between modular-shared
and modular NNs in this case. Since tasks 1 and 3 do not share sub-function outputs, the perfor-
mance advantage of modular NNs due to common sub-function outputs is absent, leading to a larger
difference in accuracy and efficiency.

Learning three tasks: Finally, we examine the multi-task setting where all three tasks are learned
simultaneously. The monolithic NN has 9 input units, 2 output units, and 3 hidden layers with 72
units per layer. The modular NN is configured with 6 modules in both hierarchical layers. The
modular-shared NN has 4 slots in the first layer, 2 slots in the second layer, and 3 shared modules.

Both modular and modular-shared NNs significantly outperform the monolithic dense NN in terms
of generalization performance and training efficiency.

Under review as a conference paper at ICLR 2025

Across all training sizes, modular and modular-shared NNs show comparable test accuracy. This
similarity can be attributed to the substantial amount of sub-function output reuse, which modular
NN can exploit due to their fixed module positions. However, modular-shared NNs consistently
achieve superior training efficiency due to their reduced number of trainable parameters and the
abundant sub-function operation reuse across the three tasks. (See section 2 of the paper for defini-
tion)

1.3 OBSERVATIONS AND IMPLICATIONS

The input or task-identifier-conditioned connectivity inherently favors hierarchically modular NN,
as their input-output function can adapt based on the task. In a single-task setting, where the input-
output function is fixed, this advantage is less apparent. For this reason, we focused on a single-
task or static setting earlier and found that modularity without module reusability does not improve
generalization performance. However, in a multi-task setting where the task identifier is available,
even modular NNs outperform monolithic dense NNs.

	Multi-task learning
	Experimental set-up
	Results
	Observations and implications

