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Supplementary Materials1

The supplementary materials are organized as follows: In §A, we present the qualitative results of2

audio and video reconstruction. These results are obtained using the stage-1 MAViL’s decoders,3

which are trained to reconstruct raw inputs. In §B, we offer the comprehensive experimental details4

and hyperparameter configurations for pre-training and fine-tuning on each dataset. In §C, we perform5

additional experiments to evaluate and analyze MAViL’s performance. These experiments include:6

1. Modality-wise masking ratio and masking type analysis.7

2. Contrastive weights/ hyper-parameters analysis.8

3. From-scratch and large model analysis.9

4. Text-audio retrieval tasks on AudioCaps [1] and Clotho [2].10

In §D, we discuss MAViL’s societal impact and limitations.11

Figure 1: Video clip and spectrogram reconstruction on the AudioSet eval set. We sample 4
paired (video, audio) examples as follows: Top left: a puppy video; Top right: a recording from
an ambulance’s dash camera; Bottom left: a person dialing a phone in a dark room; Bottom right:
a singer dancing. Input masking ratio: 70%. In each 3-row group, we show the original video
and its audio spectrogram (top), masked input to MAViL (middle), and MAViL’s video and audio
spectrogram reconstructions (bottom). The spectrogram shape is 1024×128; patch size is 16×16.
Each spectrogram has 64×8=512 patches. After applying 70% masking, there are 154 patches visible
to MAViL. The 8-frame (4-second under 2 fps) video clip size is 8× 3× 224× 224; patch size is
16×16. Each video has 4×14×14 = 784 patches after patch embedding (temporal kernel/stride=2).
After applying 70% masking, there are 235 patches visible to MAViL.
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A Raw Audio-Video Reconstructions12

In Fig. 1, we employ a stage-1 MAViL (ViT-B) to reconstruct raw audio spectrograms and video13

frames with masked inputs. The model is trained using an 80% masking ratio on the AudioSet-2M14

full training set with un-normalized raw spectrograms and video frames as the reconstruction targets15

(Eq.(4), stage-1). We visualize the reconstruction results by MAViL’s audio and video decoders,16

wherein 70% of the input tokens are masked to its encoders. This visualization is performed on the17

AudioSet eval set.18

The results demonstrate that MAViL effectively reconstructs highly corrupted versions of both audio19

spectrograms and video frames in video clips. The generated reconstructions for videos exhibit high20

fidelity and preserve spatial and temporal consistency of visual objects (e.g., the nearby moving21

cars recorded by the ambulance’s dash camera) across different input domains, scenes, and lighting22

conditions. In the case of audio reconstructions, MAViL accurately maintains the positions and23

arrangements of time-frequency components in the spectrogram (e.g., the ambulance’s siren and24

the song by the singer), which are essential for human understanding and perception of sound.25

Furthermore, the reconstructed audio and video components are consistent and well-aligned in time,26

enhancing the overall coherence of the reconstructed content.27

B Experimental Details & Hyper-parameters28

In this section, we provide additional experimental details for data preprocessing, implementation,29

pre-training, fine-tuning, and inference. The hyper-parameters are summarized in Table 1. The30

codebase and the pre-trained models will be available.31

B.1 Data Preprocessing32

In our study, we obtained a total of 2.01 million AudioSet videos, including both the video and33

audio tracks from the balanced and unbalanced training set and the evaluation set. Additionally, we34

managed to collect 198K VGGSound videos. As part of the preprocessing, we resized the video35

tracks to 360p while maintaining the aspect ratio and adjusting the longer dimension to 360 pixels.36

We also resampled the audio tracks to a sampling rate of 16K. We employed different temporal37

footprints for modeling the audio and video in MAViL, specified as the following:38

Following the preprocessing in [3, 4, 5], we transform a raw audio (with mono-channel and under 16K39

sampling rate) into 128 Mel-frequency bands used in Kaldi [6]. This transformation involves using a40

25ms Hanning window that shifted every 10ms. We then normalize the spectrogram according to the41

mean and variance in each dataset. For a 10-second audio, the resulting spectrogram has a dimension42

of 1024× 128.43

Regarding the video part, we utilize 4-second clips consisting of 8 frames captured at a rate of 244

frames per second (fps). Each input frame has a size of 224×224. In the pre-training phase, we apply45

common data augmentations such as random horizontal flip (with a probability of 0.5) and multi-scale46

random cropping (with a scale ranging from 0.2 to 1.0). In contrast, we apply only center cropping47

during the testing or inference phase. When processing a 10-second video clip from AudioSet, we48

randomly sample a starting point and extracted the consecutive 4 seconds of the video (cyclically49

looping back to the beginning if it was shorter than 4 seconds). As a result, the video clip input,50

consisting of 3 channels, had dimensions of 8× 3× 224× 224.51

B.2 Implementation52

Uni-modal Encoders. We adopt the main design choices from original MAE for images [7] and53

Audio-MAE [5]. Specifically, we employ separate 12-layer Transformers with 12 attention heads54

as the encoders for each modality. The patch embedding and positional embeddings layers are also55

separated for each modality. During our investigation, we explored alternative designs, including56

sharing the audio-video encoder weights with separated inputs or concatenating them as done in57

Multi-MAE [8]. However, these alternative architectures resulted in inferior performance compared58

to the proposed architecture of using separated encoders with separated inputs. As a result, we chose59

to adhere to the original design of separate encoders for each modality.60
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In all Transformer encoders (with ViT-B as the default), the embedding dimension H is set to 76861

For each input spectrogram of size 1024× 128 representing a 10-second audio, we tokenize it into62

non-overlapping 16 × 16 spectrogram patches using an audio patch embedding layer. The kernel63

and stride sizes for both the time and frequency dimensions are 16, resulting in a total of 64 × 864

spectrogram patches or tokens for the audio sequence. The flattened audio token sequence has a65

length N of 512. Each audio token corresponds to a 768-dimensional vector. After appending the66

[CLS] token, adding positional embeddings, and applying 80% masking, the final input audio token67

sequence is represented as a′ ∈ R102×768.68

For each video clip with dimensions 8× 3× 224× 224 (4 seconds in duration), we tokenize it into69

non-overlapping cells using a video patch embedding layer. The spatial kernel and stride sizes are70

set to 16, while the temporal kernel and stride sizes are set to 2. This process results in a total of71

4× 14× 14 = 784 video patches or tokens. The flattened video token sequence has a length M of72

784. Each video token corresponds to a 768-dimensional vector. After appending the [CLS] token,73

adding positional embeddings, and applying 80% masking, the final input video token sequence is74

represented as v′ ∈ R156×768.75

Fusion Encoders. Following the ViT-B uni-modal encoders, we incorporate an audio-video fusion76

encoder. The fusion encoder consists of a two-layer (with L=2) Transformer, which can be either a77

vanilla Transformer or an MBT Transformer [3].78

In the vanilla Transformer setup, the fusion encoder, denoted as gav(·), jointly encodes the audio79

and video tokens. This is done by concatenating the output of the uni-modal encoders for audio80

(auml+1) and video (vuml+1) as input, resulting in (al+1
um ∥vl+1

um ) = Transformerl(alum∥vum
l), where81

“∥” denotes concatenation.82

In the MBT setup, we extend the vanilla Transformer by appending an additional 4 trainable MBT83

tokens for each modality. MBT encourages the model to more selectively collate and condense84

relevant information in each modality by forcing information exchange between modalities to pass85

through a small number of learnable bottleneck features b0 = [b1 . . . b4], bi ∈ RH . The use of86

MBT tokens was originally proposed in the context of supervised audio-video learning. Precisely,87

al+1
um ∥bl+1

a = glav(a
l
um∥bl) and vl+1

um ∥bl+1
v = glav(v

l
um∥bl), where bl+1 = (bl+1

a + bl+1
v )/2.88

Decoders. The audio and video decoders are 8-layer Transformers with an embedding dimension89

of 512 and 16 attention heads. In the top decoder layer, we applied a linear prediction head to90

either predict the raw audio spectrogram and video frame patches in stage-1 (i.e., araw ∈ RHa
raw91

and vraw ∈ RHv
raw ), or predict the aliened and contextualized representations in stage-2 (i.e.92

aTeacher,vTeacher, ã, ṽ ∈ RH ). The audio/video encoder and decoder in MAViL have 86M and93

27M parameters, respectively. The floating point operations (FLOPs) for the audio encoder are 48.6G,94

comparable to the audio encoders in Audio-MAE [5] and CAV-MAE [9].95

B.3 Training and Inference96

Pre-training. MAViL operates under a fully self-supervised learning setup for pre-training. For97

pre-training MAViL’s audio branch, we randomly initialize it from scratch. For the visual branch,98

we either randomly initialize it or initialize it with the self-supervised MAE [7] pre-trained on99

ImageNet where we simply repeat and inflate the convolution kernel in its patch-embedding to handle100

the additional temporal domain. Different visual initialization methods are compared in Table 6101

in the main paper and Table 6 in Supplementary. Importantly, MAViL operates under the fully102

self-supervised setup.103

MAViL is pre-trained on the combined unbalanced and balanced training sets of AS-2M. The pre-104

training process is performed using 64 GPUs with a 512 accumulated batch size. In stage-1 and each105

iteration of stage-2 (for K = 3 iterations), we pre-train the model for 20 epochs. Each pre-training106

session takes approximately 20 hours to complete. In total, the pre-training process takes around107

80 hours. Note that the effective learning rate (lreff) depends on the base learning rate (lrbase) and108

the batch size. Precisely, lreff = lrbase ∗ batch size
256 . In our experiments, we also tried using strong data109

augmentations (e.g., mixup [14], SpecAug [14], and CutMix [15]) to augment audio spectrograms110

during the pre-training phase. However, we observed that the resulting performance was either similar111

or worse compared to the baseline. Therefore, by default, we exclude these strong data augmentations112

for both audio and video during the pre-training phase.113
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Pre-training Fine-tuning
Configuration AS-2M PT AS-2M AS-20K VGGSound ESC SPC

Optimizer AdamW [10]
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 0.00001
Base learning rate 0.0002 0.0001† 0.001 0.0002 0.0005 0.001
Learning rate schedule half-cycle cosine decay [11]
Minimum learning rate 0.000001
Gradient clipping None
Warm-up epochs 4 20 4 4 4 1
Epochs 20 100 60 60 60 10
Batch size 512 512 64 256 64 256
GPUs 64 64 8 32 4 4
Weighted sampling False True False True False False*

Weighted sampling size - 200,000 - 200,000 - -
Augmentation R R R R+N R R+N
SpecAug [12] (time/frequency) - 192/48 192/48 192/48 96/24 48/48
Drop path [13] 0.0 0.1 0.1 0.1 0.1 0.1
Mixup [14] 0.0 0.5 0.5 0.5 0.0 0.5
Multilabel n/a True True False False False
Loss Function MSE BCE BCE BCE CE BCE
Dataset Mean for Normalization -4.268 -4.268 -4.268 -5.189 -6.627 -6.702
Dataset Std for Normalization 4.569 4.569 4.569 3.260 5.359 5.448

Table 1: Pre-training (PT) and Fine-tuning (FT) hyper-parameters. For augmentation, R:
sampling random starting points with cyclic rolling in time; N: adding random noise (signal-to-noise
ratio (SNR): 20dB) to spectrograms. For loss functions, BCE: binary cross entropy loss (for multi-
label datasets or when using mixup); CE: cross-entropy loss, MSE: mean square error loss. *: We
repeat and balance each class to 50% of the size of the unknown class. †: For ViT-S, We use a
learning rate of 0.0005 on AS-2M FT and 0.002 on AS-20K FT for the ViT-S model. For the ViT-L
model, we use 0.0001 and 0.0005 for AS-2M and AS-20K FT experiments.

Fine-tuning. We fine-tune MAViL in three scenarios: (1) audio-only, (2) video-only, and (3) au-114

dio+video. We follow the setup in MAE and retain only the pre-trained uni-modal encoders for115

fine-tuning. In the audio-only and video-only setups, we fine-tune the respective encoders in the116

MAViL (stage-2). In the audio+video fusion setup, we introduce a 2-layer vanilla Transformer on top117

of the audio and video encoder in the MAViL (stage-2) and fine-tune it using both audio and video118

inputs. The hyperparameter configurations specified in Table 1 are employed for finetuning on each119

dataset. Empirically we observed a discrepancy in convergence rate between audio and video. We120

circumvent this by applying a 50% learning rate reduction for the weights of the video encoder when121

performing audio+video fusion fine-tuning.122

We adopt the standard fine-tuning pipeline and augmentation in prior audio/audio-video classification123

works [4, 5, 3]. Specifically, we employ SpecAug [12], mixup [14], balanced sampling [16], and124

fine-tuning masking [5] (a 20% random masking rate for time and frequency in audio spectrograms;125

20% for space and time in video clips). For video, we use standard video augmentations used in126

video classification [17, 18].127

To perform importance sampling that balance the fine-tuning scheme on the unbalanced AS-2M (and128

VGGSound), we apply a distributed weighted sampler as prior works [16, 4, 19, 20]. We set the129

probability of sampling a sample proportional to the inverse frequency of its labels, where the label130

frequency is estimated over the training set. Specifically, for a instance i in a dataset D with a label131

pool C, its sampling weight is proportional to
∑

ci∈C wc, where wc =
1000∑

i∈D ci+ϵ and ϵ = 0.01 is132

set to avoid underflow in majority classes. During the fine-tuning process on AS-2M, we randomly133

sample 200K instances (approximately 10% of AS-2M) with replacement in each epoch. We fine-tune134

MAViL for 100 epochs, which corresponds to approximately 10 full epochs of AS-2M. The entire135

fine-tuning process typically takes around 10 hours to complete.136
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Inference. After fine-tuning, we select the last checkpoint for inference. For the video and au-137

dio+video tasks, we adopt the standard approach used in video action recognition [21, 22, 23] by138

uniformly sampling ten 4-second video clips throughout the time domain of a video. Each of these139

sampled video clips is individually fed forward through the model to generate predictions. Note140

that for audio+video classification, the audio input remains the same 10-second audio recording141

throughout the sampling of video clips.142

# Clips (AS-2M) 1 10
Audio 48.7 48.7
Video 29.4 30.3

Audio+Video 52.6 53.3
Table 2: Number of video clips in the inference time.

We average the ten predictions as the instance-level prediction and report the classification perfor-143

mance in Table 6 in §4. Note that these results are based on single-modal predictions, without144

ensembling multiple models. In Table 2, we compare the results obtained from one-clip predictions145

and ten-clip predictions (mAP on AS-2M). The sampling of ten clips leads to improvements of up to146

0.9 mAP for video-only and audio+video tasks, while the audio-only task remains unaffected.147

C Additional Experiments and Analysis148

In this section, we present additional analysis to extend the study of the module-wise contribution in149

Table 3. We then expand our study on another important type of audio task: text-audio retrieval.150

We organize this section as follows: Firstly, we investigate how different choices of masking ratio and151

masking type may affect the model performance. Next, we examine the effects of adjusting contrastive152

weights in the training objective. By exploring different weight settings, we aim to understand153

the influence of contrastive learning on the model’s ability to capture audio-video relationships.154

Furthermore, we compare different approaches to visual backbone initialization and evaluate the155

performance using larger (ViT-L) audio/video encoders in MAViL-Large models. This analysis helps156

us understand the benefits and trade-offs of using larger backbone models and different initialization157

strategies. Additionally, besides audio-video classification tasks and audio-video retrieval tasks158

presented in the main paper. We include our study on audio-text retrieval tasks in the last.159

Method Audio Video
A-MAE/V-MAE (baseline) 36.4 17.4
MAViL stage-1
+ Joint AV-MAE 36.8(+0.4) 17.7(+0.3)
+ Intra and Inter contrast 39.0(+2.2) 22.2(+4.5)

MAViL stage-2
+ Student-teacher learning 41.8(+2.8) 24.8(+2.6)

Table 3: Module-wise Contribution in MAViL).

C.1 Masking Ratio and Type160

In addition to applying a shared masking ratio for each modality, we also investigated the impact of161

applying different masking ratios for audio and video. The results of this analysis are summarized in162

Table 4a. Interestingly, we did not observe a significant change in performance (mAP on AS-20K)163

when using different masking ratios for audio and video. Based on these findings, we simplify the164

approach by defaulting to an 80% masking ratio for both audio and video, as the Joint AV-MAE entry165

(the second row) in Table 3.166

The default masking strategy in our model is random masking, which applies the same Bernoulli167

trial parameterized by a masking ratio (p) to each spectrogram or RGB patch. In Table 4b, we168

explored more advanced masking strategies and compare their impacts. For audio spectrogram, in169

addition to random masking (time-and-frequency agnostic with Bernoulli trials), we investigated time-170

masking (randomly masks multiple periods of time components) and frequency masking (randomly171

masks multiple frequency bands). We perform Bernoulli trials on time or frequency slots instead of172
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Ratio 70% (A) 80% (A) 90% (A)
70% (V) 36.7/17.5 36.8/17.5 36.4/17.3
80% (V) 36.7/17.2 36.8/17.7 36.8/17.4
90% (V) 36.5/17.3 36.6/17.6 36.8/17.5

(a) Modality-wise Masking

Type 70% 80% 90%
Random (A), Random (V) 36.7/17.5 36.8/17.7 36.8/17.5

Time-Freq (A), Random (V) 36.2/17.5 36.3/17.7 36.3/17.8
Random (A), Space-Time (V) 36.7/17.2 36.7/17.3 36.8/17.5

Time-Freq (A), Space-Time (V) 36.0/17.1 36.2/17.1 36.3/17.3

(b) Masking Type

Table 4: Masking Ratio and Masking Type (mAP on AS-20K).

individual patches. For video frames, we explored time-wise masking (randomly masking an entire173

frame) and space-wise masking (randomly masking a spatial patch across time). We set the masking174

ratio between spatial/frequency and time as 2:1 and adjusted the overall ratio from 70% to 90% for175

comparison with random masking.176

Surprisingly, we do not observe improvements when applying these advanced masking strategies177

for multimodal pre-training. The simplest random masking approach achieved the best pre-training178

performance. This observation aligns with the findings in uni-modal MAEs [7, 18, 5], suggesting179

that the random masking strategy is effective and sufficient for multimodal pre-training.180

C.2 Contrastive Weights181

Table 5 showcases the impact of adjusting contrastive weights α and β in MAViL. The results show182

that fine-tuning these contrastive weights leads to improved performance. In our experiments, we set183

α = 0.1 and β = 0.01 which yield the best performance.184

It is important to note that the smaller contrastive weights in Eq.(4) do not imply that the contrastive185

objectives are less significant. The weights are chosen to scale and balance the gradients from the186

reconstruction and the two contrastive objectives to ensure they fall within a comparable range. This187

adjustment enhances training stability. Furthermore, the softmax temperatures used in NCE (Eq. (2))188

are set as τ inter
c = 0.1 (more tolerant) for inter-modal contrastive learning and τ intra

c = 1.0 (stricter)189

for intra-modal contrastive learning. These temperature values help regulate convergence across190

modalities in the contrastive learning process.191

α 0.3 0.1 0.05
Audio 41.5 41.8 41.4
Video 24.3 24.8 24.4

(a) Inter-modal α

β 0.1 0.05 0.01
Audio 41.3 41.5 41.8
Video 24.3 24.7 24.8

(b) Intra-modal β

Table 5: Contrastive Weights (mAP on AS-20K).

C.3 From-scratch Visual Backbone and Large Models192

Under the fully self-supervised setup, MAViL initializes its audio branch from scratch and initialize its193

visual branch either from scratch or from a ImageNet self-supervised pre-trained MAE (IN-SSL). In194

this part, we further explore and compare the visual backbone initialization strategies under different195

model sizes.196

As shown in the top two rows of Table 6, when considering MAViL-Base models, there is a small197

gap (-0.2 mAP on AS-20K) observed in the audio stream when discarding visual initialization from198

the ImageNet self-supervised model. However, a larger gap (-0.9 mAP) is observed in the video199

stream. A similar trend is observed in the AS-2M experiments. This discrepancy in the visual part200

can likely be attributed to biases and visual quality issues such as misalignment, title-only content,201

and low-resolution videos present in AudioSet.202

To address this gap in the visual part, incorporating additional uni-modal pre-training steps could203

potentially improve model performance. For instance, conducting separate audio-only and video-only204

large-scale pre-training as the first step. In this work, we focus on audio-video pre-training solely205

on AudioSet for simplicity and for fair comparison with baselines. The possibility of incorporating206

additional pre-training steps is left for future research.207
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AS-20K AS-2M

Model A-init V-init A V A+V A V A+V

MAViL-Base scratch IN-SSL 41.8 24.8 44.9 48.7 30.3 53.3
MAViL-Base scratch scratch 41.6 23.7 44.6 48.7 28.3 51.9
MAViL-Large scratch IN-SSL 42.1 27.1 45.3 48.8 32.4 53.3
MAViL-Large scratch scratch 42.3 25.3 45.1 49.1 30.6 52.5

Table 6: Visual Backbone Initialization and Model Size (mAP).

When using large models (ViT-L, rows 3-4), the gap in visual mAP (-1.8 mAP) still persists. Interest-208

ingly, the audio part of large models actually benefits from from-scratch visual initialization, showing209

an improvement of +0.2-0.3 mAP. Additionally, when comparing rows 1-2 to rows 2-3, the visual210

stream is benefited more by employing a larger (ViT-L) backbone. Across all the configurations211

(from-scratch or visual initialization with IN-SSL), MAViL consistently outperforms recent baselines212

(in Table 6 of the main paper) by a significant margin.213

C.4 Text-Audio Tasks214

Another important audio-centered multimodal application involves text-to-audio and audio-to-text215

retrieval tasks. In text-to-audio retrieval, the query is a text description, and the model performs a216

search over the (testing) audio collection by computing and ranking the similarity between the query217

embedding and the audio embeddings. To evaluate the audio representations learned by MAViL,218

following CLAP [24], we add a text encoder initialized from Roberta [25]. We perform fine-tuning219

with inter-modal contrast on the same training set used by CLAP. Specifically, AudioCaps [1] and220

Clotho [2], and LAION-630K [24]. In Table 7, we report recall@1, 5, and 10 on the testing sets.221

AudioCaps [1] Clotho [2]

Text-to-Audio Audio-to-Text Text-to-Audio Audio-to-Text

Model R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MMT* [26] 36.1 72.0 84.5 39.6 76.8 86.7 6.7 21.6 33.2 7.0 22.7 34.6
ML-ACT* [27] 33.9 69.7 82.6 39.4 72.0 83.9 14.4 36.6 49.9 16.2 37.6 50.2
CLAP [24] 32.7 68.0 81.2 43.9 77.7 87.6 15.6 38.6 52.3 23.7 48.9 59.9
MAViL 37.3 72.8 84.5 49.3 81.8 91.5 17.2 41.0 53.5 23.3 49.5 63.6

Table 7: Text-to-Audio retrieval and Audio-to-Text retrieval (R@1,5,10↑) on AudioCaps and
Clotho. *: models trained without LAION-630K [24].

As shown above, MAViL significantly outperforms CLAP and other recent audio-text models,222

achieving new state-of-the-art performance on both audio-to-text and text-to-audio retrieval tasks.223

These results further validate the effectiveness of MAViL’s representations not only in audio-video224

and audio-only tasks, but also in audio-text tasks.225

D Limitations and Impacts226

Limitations. There are several limitations associated with MAViL. Firstly, the scale of the data poses227

a limitation. The AudioSet [28] dataset used by MAViL, with two million samples, is approximately228

two orders of magnitude smaller than the text corpora used in recent language models [29, 25, 30]. It229

is also an order smaller than image corpora like ImageNet-21K used by MBT [3].230

Another limitation pertains to the duration of each audio sample. The 10-second recording in231

AudioSet are relatively short, which can hinder the proper learning of distant temporal dependencies232

in audio and video. This limitation restricts the potential applicability of MAViL to tasks that require233

modeling longer audio sequences, such as automatic speech recognition (ASR). Regarding video234

modeling, due to GPU memory constraints and choice of video footprints, MAViL only models235

4-second video segments. This limitation makes it challenging to effectively model long video236

sequences. Additionally, the presence of low-quality videos and misaligned audio-video pairs in237

AudioSet may adversely affects pre-training.238
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Potential Societal Impacts. The datasets used in this paper, including AudioSet and other end task239

datasets, were properly licensed and publicly available at the time of data collection. It is important240

to note that some of the data may have been removed by YouTube or the dataset uploaders. Most of241

the data in these datasets are licensed under the Creative Commons BY-NC-ND 4.0 license or the242

Creative Commons 3.0 International License.243

To investigate the bias in AudioSet, we selected 200 videos containing speech. In these videos, we244

did not observe any visual bias in the sampled speakers, which encompassed a wide range of ages,245

races, and genders. However, it is possible that there may be biases in the distribution of population246

and ethnicity within AudioSet. It is important to exercise caution and be aware of the potential247

unintended gender, racial, and societal biases present in AudioSet, which serves as the pre-training248

data for MAViL.249

Given that AudioSet consists of a vast collection YouTube videos, there is a potential risk that MAViL250

could learn to reconstruct sensitive personal information, which could then be exploited for malicious251

purposes, including the creation of audio deepfakes [31, 32]. To address this concern, the released252

MAViL would be discriminative models, specifically the audio and video encoders, rather than253

generative models such as decoders. This shift aims to mitigate the potential risks associated with254

generating synthetic content that could be misused.255
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