
Under review as a conference paper at ICLR 2023

A APPENDIX

Theorem A.1. Given a target graph GT (VT , ET) and a query graph GQ(VQ, EQ), if GQ ⊂ GT ,
and the subtree generation function Ψ as defined in Eq. (2) meets the following condition:

∀ graph pair (GS , G), if GS ⊂ G, then Ψ(GS) ⊂ Ψ(G), (9)

then there exists an injective function f :VQ → VT , ensuring the l-hop subtrees of the subgraph is
isomorphic to the subtrees of the corresponding subgraph:

∀l ≥ 1, q ∈ VQ, t = f(q) ∈ VT ⇒ T (l)
q ⊂ T

(l)
t , (10)

Proof. According to the definition of subgraph matching (McCreesh et al., 2018), when GQ is
a subgraph of GT , there must exists an injective function f : VQ → VT , such that ∀qi, qj ∈
VQ, (qi, qj) ∈ EQ ⇒ (f(qi), f(qj)) ∈ ET . For any subgraph in the query graph, e.g., S(VS , ES) ∈
GQ, we always have a subgraph in the original graph GT , denoted as GS(VG, EG), that corresponds
to the set of the query node as VG = f(VS). This tells us that S ⊂ GS . According to this,
consider any given node from VQ: q ∈ VQ, S(l)

q is a subgraph of GQ and its image G
S

(l)
q

in

GT , i.e. S
(l)
q ⊂ G

S
(l)
q

. By definition, the node in S
(l)
q or G

S
(l)
q

is at most l-hop from node q or

t = f(q), we know that G
S

(l)
q

must be a subgraph of S(l)
t , i.e.,G

S
(l)
q

⊂ S
(l)
t . Put all together, we

have S
(l)
q ⊂ G

S
(l)
q

⊂ S
(l)
t . Based on the listed constrain, we then have T

(l)
q ⊂ T

(l)
t .

Theorem A.2. Given a node q in the query graph and a node t in the target graph, the following
three conditions are equivalent:

1) T
(l+1)
q ⊂ T

(l+1)
t .

2) There exists an injective function on the neighborhood of these nodes as f :N(q) → N(t), s.t.
∀qi ∈ N(q), ti = f(qi), T

(l)
qi ⊂ T

(l)
ti .

3) There exists a perfect matching on the bipartite graph B(l)(N(t), N(q), E), where ∀tj ∈
N(t), qi ∈ N(q), (tj , qi) ∈ E if and only if T (l)

qi ⊂ T
(l)
tj .

We prove this theorem by introducing the following two theorem. Theorem A.3 shows that con-
dition 1) is equivalent to condition 2), i.e. the WL subtree isomorphism test can be accomplished
in a recursive manner then prove Theorem. A.4 that the condition 2) equals to condition 3) which
means every iteration in the recursive process equals to examine the existence of a perfect matching,
respectively.
Theorem A.3. Given a node q in the query graph and a node t in the target graph, the following two
conditions are equal:
1) T (l+1)

q ⊂ T
(l+1)
t , where l is an integer and l ≥ 1.

2) There exists an injective function on the neighboring set of these nodes as f : N(q) →
N(t), s.t.∀qi ∈ N(q), ti = f(qi), T

(l)
qi ⊂ T

(l)
ti .

Proof. We assume fq is a subtree isomorphism injective function in the condition 1), that ∀ node
u, v ∈ T

(l+1)
q , (u, v) is an edge of T (l+1)

q ⇒ ((fq(u), fq(v)) is an edge of T (l+1)
t . Similarly We also

assume fqi is subtree isomorphism injective in the condition 2).
On the one hand, if condition 1) is true then fq exists. Using the property of WL tree, we have
∀qi ∈ N(q), T (l)

qi ⊂ T
(l+1)
q , which means the l-order WL tree of any node qi in q’s neighbourhood

belongs to the l+ 1-order WL tree originate from the node q. This suggests that fq maps T (l)
qi into a

tree T
(l)
f(qi)

= T
(l)
ti , which is a subtree of T (l+1)

t ,. Then the condition 2) is true.

On the other hand, if condition 2) holds, then we define the mapping as fq(v) =

{
fqi(v), v ∈ T

(l)
qi

q, v = q
.

13

Under review as a conference paper at ICLR 2023

Here, the function fb(v) is a standard injective function T
(l)
bi

This implies this is a subtree isomorphic
mapping, so 1) holds.

The above theorem provides a recursive solution to the WL subtree isomorphism algorithm. Intu-

itively, we can maintain an indicator matrix S(l) ∈ R|VT |×|VQ|, where S
(l)
tq =

{
1, T

(l)
q ⊂ T

(l)
t

0, else
.

This matrix captures the relation between all pairs of nodes and thus can be used for recursion up-
date. Next, we will show that the update process can be implemented as a perfect matching problem,
i.e., what makes condition 2) true is equivalent to finding a perfect matching on a bipartite graph, as
shown in the following theorem:

Theorem A.4. Assume the neighboring set of node t and q as X = N(t) and Y = N(q), re-
spectively. Accordingly, we form a bipartite graph as B(l)

t,q (X,Y,E). Here, we define the edges as

E = {(ti, qj) : T
(l)
qi ⊂ T

(l)
tj }, where ti and qj represent the ith and jth neighbour of node t and

q, respectively. Under this setting, the injective function f from the condition 2) in Theorem. A.3
induces a perfect matching.

Proof. The injective function f of condition 2) in Theorem A.3 maps every node qi in N(q) to ti =
f(qi) ∈ N(t) and T

(l)
qi ⊂ T

(l)
ti holds. While T (l)

qi ⊂ T
(l)
ti means (qi, ti) ∈ E, the injective f naturally

corresponds every node qi to an edge (qi, tj). Since f is an injective function, qi1
̸= qi2 ⇒ ti1 ̸= ti2 ,

indicating that all these edges (qi, ti), i = 1, ..., |N(q)| are different, which actually forms a perfect
matching.

Theorem A.5. Given the sampled query graph and the target graph, we can construct their adjacency
matrices , ÃQ and AT , and the degree matrix of the sampled query graph D̃Q = diag(

∑
s((ÃQ):s)).

Here, we denote the indicator matrix at the l-th hop as S(l). To check the validity of |N(W)| ≥ |W |,
we can check whether each element of Φ is true or not, where Φ := ZN(W) ≥ 1, ZN(W) =

aggregatesum(AT , Z
T
W) and ZW = aggregatemax(D̃

−1
Q · ÃQ, (S(l))T).

Proof. For each node pair t, q and their corresponding W = N ′(q) in the sampled query graph, We
first transform the neighboring set of W , i.e., N(W), as following:

N(W) = {ti ∈ N(t)|∃qj ∈ W = N ′(q), s.t.T (l)
qj

⊂ T
(l)
ti }

= {ti ∈ N(t)|∃qj ∈ W = N ′(q), s.t.Sti,qj = 1}

= {ti ∈ N(t)| max
q′∈N ′(q)

S
(l)
ti,q′ = 1}

= N(t) ∩ {ti| max
q′∈N ′(q)

S
(l)
ti,q′ = 1}

= N(t) ∩M(q)

(11)

Let M(q) = {ti|maxq′∈N ′(q) S
(l)
ti,q′ = 1}, we can compute M(q) via a standard maximizing

aggregation process on the sampled adjacency matrix ÃQ, in which treats the indicator matrix
(S(l))T ∈ R|VQ|×|VT | as node attributes. This process will output the representation of node q
as follows,

zq,: = max{(S(l))Tj,:, ∀j ∈ N ′(q)}, (12)

The obtained vector zq,: is to represent M(q) where zqi =

{
1, i ∈ M(q)
0, else

. We rewrite this into a

matrix format as
ZW = aggregatemax(ÃQ, (S

(l))T) (13)

where ZW ∈ R|VQ|×|VT | and its q-th row vector is zq:.

14

Under review as a conference paper at ICLR 2023

Recall that we demand N(W) = N(t)∩M(q). After acquiring M(q), we can compute the |N(W)|
as follows, {

|M(q)| =
∑

i zq,i

|N(W)| =
∑

i zq,i, i ∈ N(t)
(14)

In essence, this is to implement a summation aggregation on the target graph using the node repre-
sentation ZW , i.e.,

ZN(W) = aggregatesum(AT , Z
T
W) (15)

where ZN(W) ∈ R|VT |×|VQ| is an integer matrix and its element (t, q) shows the score of |N(W)|
between node t and q. This transformation converts the counting operation as aggregation such that
we can check the aggregated values to determine whether there is a perfect matching. Given a node
pair (t, q), we have |N(W)| = [ZN(W)]tq and |W | = |N ′(q)| =

∑
s[ÃQ]qs. Therefore, the question

becomes to check whether [ZN(W)]tq ≥
∑

s[ÃQ]qs holds. We can then derive the perfect matching
as follows:

[ZN(W)]tq ≥
∑
s

[ÃQ]qs

⇔[ZN(W)]tq/
∑
s

[ÃQ]qs ≥ 1

⇔[aggregatesum(AT , Z
T
W)]tq/d̃q ≥ 1

⇔[aggregatesum(AT , Z
T
W) · D̃−1Q]tq ≥ 1

⇔[aggregatesum(AT , Z
T
W · D̃−1Q)]tq ≥ 1

(16)

where d̃q is the degree of node q in the sampled graph. The degree matrix of the sample graph is
defined as D̃Q = diag[

∑
s((ÃQ):s)]. Now recall that Φ is the matrix whose (t, q) element is the

comparison result of |N(W)| and |W | of (t, q), according to eq 16, we have:

Φ(l+1)(ÃQ, AT) = aggregatesum(AT , Z
T
W · D̃−1Q) ≥ 1, (17)

where
ZT
W · D̃−1Q = [aggregatemax(ÃQ, (S

(l)))]T · D̃−1Q
= [D̃−1Q · aggregatemax(ÃQ, (S

(l)))]T

= [aggregatemax(D̃
−1
Q · ÃQ, (S(l)))]T

(18)

Theorem A.6. Every chordless cycle is atomic. Every chordless cycle CQ in an induced subgraph
GQ must correspond to a chordless cycle CT in the origin graph GT .

Proof. Chordless cycle does not have any chord, thus there is no smaller cycle in the chordless cycle,
which means chordless cycle is atomic. Assuming GQ is a subgraph of GT , every node of CQ must
correspond to a node in GT , and these nodes form a circle CT in GT . Since GQ is an induced
subgraph of GT , if CT has a chord, then CQ must have a chord, which contradicts the condition that
CQ is a chordless graph.

A.1 IMPLEMENTATION DETAILS

The python implementation of D2Match is available at:

https://www.dropbox.com/sh/8pvj8drvj0l2zou/AAB5j7e7frVwMiun1QcCNbMFa?
dl=0

At the beginning of subtree isomorphism test, the model needs an initial indicator matrix S
(0)
subtree

as the input of the first iteration. According to the definition of the indicator matrix, S(0)
subtree shows

the isomorphism relation between the subtree of 0-hop neighbors, which are the nodes themselves
in this case. Since all nodes will be isomorphic to each other if not considering the node attributes,
the indicator matrix S

(0)
subtree is actually a similarity matrix w.r.t node attributes. To get a similarity

matrix of attributes, we can either directly calculate the similarity between nodes or employ neural

15

Under review as a conference paper at ICLR 2023

networks on these attributes to learn the matrix. In our model, we implement both methods to
initialize the matrix, called the initialization of the raw and the learnable:

Raw : S
(0)
subtree = CosineSimilarity(XT , XQ) = Norm(XT) ·Norm(XT

Q)

Learnable : S
(0)
subtree = MLP(XT) ·MLP(XQ)

T
(19)

where the raw initialization is to calculate the cosine similarity between the nodes’ attributes, and
the learnable initialization employs a MLP to generate hidden representations of nodes and compute
their dot similarities.

In practice, we find the raw initialization performs better. This is because the node attributes of
datasets are usually binary categorical vectors, which induces clear identification information of the
nodes and can be easily captured by cosine similarity.

Our implementation of the GNN block in the model is slightly different from the description. Specif-
ically, we use compute the similarity of each pair of nodes as:

[S(l+1)
gnn]ij = MLP (concat([H

(l)
T]i, [H

(l)
Q]j)). (20)

The main difference is that we do not output a |VT |×|VQ| matrix, but a |VT |×|VQ|×|D(l+1)| tensor,
where D(l+1) denotes the hidden dim of l + 1 layer. The intuition is that a tensor that represents
the node pairs’ similarity with vectors can retain more information than a similarity matrix with
scalar elements. In this setting, the final indicator matrix S(l+1) can not be generated as S(l+1) =

S
(l+1)
gnn ⊙ S

(l+1)
subtree, because S

(l+1)
subtree ∈ R|VT |×|VQ| but S(l+1)

gnn ∈ R|VT |×|VQ|×|D(l+1)|. Thus we
broadcast S(l+1)

subtree to S̃
(l+1)
subtree where ∀k ∈ [0, D(l+1)), [S̃

(l+1)
subtree]ijk = [S

(l+1)
subtree]ij and the final

indicator matrix S(l+1) = S
(l+1)
gnn ⊙ S̃

(l+1)
subtree

At the end of our models, we get the subtree indicator matrix S
(L)
subtree and the GNN indicator matrix

S
(L)
gnn. The model will output the final score from S

(L)
subtree and S

(L)
gnn, respectively. For the subtree

module, we check whether the indicator matrix is feasible to induce the subgraph isomorphism.
Note that for a node i in the target graph and a node j in the query graph, i is possible to match j

unless [S(L)
subtree]ij = 1. So we check whether the subtree indicator matrix meets the following two

conditions:

1) Every node in a query graph should match at least one node in the target graph:

∀j,max
i

(S
(L)
subtree)ij = 1

⇔
∑
j

max
i

(S
(L)
subtree)ij = |VQ|

⇔
∑
j

max
i

(S
(L)
subtree)ij/|VQ| = 1

(21)

2) The number of nodes in the target graph that match at least one node in the query graph is more
than the number of nodes of query graph:∑

i

max
j

(S
(L)
subtree)ij ≥ |VQ| ⇔

∑
i

max
j

(S
(L)
subtree)ij/|VQ| ≥ 1 (22)

To make the subtree model differentiable, we use a learnable sigmoid to replace all the logical
judgment in the model:

LSigmoid(x) = σ(ax+ b) (23)
where a, b are learnable parameters; σ is the sigmoid function. The result of subtree module can be
fomulated as:

rsubtree = LSigmoid(
∑
i

max
j

(S
(L)
subtree)ij/|VQ|) · LSigmoid(

∑
j

max
i

(S
(L)
subtree)ij/|VQ|) (24)

For the GNN module, we employ the neural tensor network(NTN) (Bai et al., 2019) and generate a
score according to the output of NTN and the aggregated indicator tensor:

rgnn = σ(MLP (concat[NTN(H
(L)
T ,H

(L)
Q),

∑
i

∑
j

S
(L)
subtree])) (25)

16

Under review as a conference paper at ICLR 2023

Where H
(L)
T ,H

(L)
Q are the node representations generated by the GNNs. NTN is the NTN layer.

The final prediction is:
r = rgnn · rsubtree (26)

Although the model’s prediction is obtained by integrating the two modules, we can not directly train
the model through the final score r because it will bring difficulties in the training process. When
fitting a negative sample, the resulting subtree module tends to be zero, forcing the overall gradient
to be zero which hinders the training of the GNN module.

Therefore, we train the two blocks with different objectives. For the subtree module which aims to
learn the isomorphism relation, the result should be either 0 for not matching or 1 for matching. So
we employ MAE loss to enforce the results to be either 0 or 1. For the GNN module, we use MSE
to encourage the output of GNNs to capture the similarity. Suppose the ground-truth label is y, and
our loss function is

L = MSE(rgnn, y) +MAE(rsubtree, y) (27)

Both our model and all baselines use the Adam as optimizer and set the learning rate to 3e − 4. To
ensure fairness, we set all models with adjustable number of layers to 5 layers, and set the hidden
dimension to 10.

target graph
query graph

(a)

target graph
query graph

(b)

target graph
query graph

(c)

Figure 3: The detected subgraphs by D2Match

A.2 D2MATCH AT WORK

Recall that D2Match learns an indicator matrix to capture pairwise similarities. It plays the role of
permutation matrix in matching, allowing us to pinpoint the matched subgraph. This is particularly
useful since the exact position is required for some downstream applications such as web search. In
comparison, other learning-based methods are unable to pinpoint local correspondences, but only
establish the existence of a matching. We provide a visualization of the matched subgraph to better
understand the problem difficulty and the effectiveness of our method, as shown in the Fig. 3.

A.3 ABLATION STUDIES

We perform ablation studies for the GNN module, subtree module, and chordless cycle.

The GNN module in our analysis will capture the distributional features on the graph, such as the
edge density difference between classes. The GNN module is thus essential for datasets with mul-
tiple distributions, also called biased data. We run experiments on both the biased and unbiased
synthetic datasets to show the performance of our method and its variation that without the GNN
module, as shown in Table 3. D2Match outperforms D2Match without the GNN module as our
theory predicts. But our GNN module shares the same weaknesses as the other GNN models when
dealing with evenly distributed data. We observe that the performance of the GNN module drops
significantly on hard datasets similar to other GNN models. The subtree module can significantly
improve the performance because it harnesses the property of subgraph-matched data, making it
robust to data’s distribution. Our subtree module outperformed the GNN module on all datasets in
our ablation study, demonstrating its effectiveness.

17

Under review as a conference paper at ICLR 2023

Table 3: The ablation study of D2Match module

Synthetic Synthetic+ Proteins Proteins∗ IMDB-Binary IMDB-Binary∗ FirstMMDB FirstMMDB∗

D2Match (gnn only) 61.1±13.31 70.2±18.58 95.2±1.04 77.2±8.11 50.0±0.00 64.4±19.73 69.7±26.98 67.8±24.38

D2Match (subtree only) 70.0±2.09 74.8±2.56 100.0±0.00 82.0±2.92 92.9±1.04 82.8±4.02 100.0±0.0 72.0±6.20

D2Match 72.7±4.45 86.6±1.44 100.0±0.00 83.4±2.97 93.3±1.03 90.2±1.79 100.0±0.0 86.4±7.44

Table 7: The hard dataset details

Synthetic+ Proteins∗ Mutag∗ Enzymes∗ Aids∗ IMDB-Binary∗ Cox2∗ FirstMMDB∗

Average nodes (target) 40.0 38.8 18.2 31.5 14.7 19.0 41.3 1376.7
Average nodes (query) 15.0 11.4 9.1 15.4 4.4 14.2 15.0 15.0

Average edges (target) 259.5 146.7 40.2 120.6 30.0 177.1 87.0 6141.6
Average edges (query) 67.3 35.5 17.6 52.6 7.1 102.6 29.9 45.6

We also perform the ablation study on the Synthetic dataset to test the effect of chordless cycles,as
shown in Table 4. Results show the chordless cycles boost the performance with limited extra time
consumption.

Synthetic RunTime

D2Match 74.3±1.60 19.7s/epoch
D2Match (w/o cc) 72.7±4.45 10.3s/epoch

Table 4: The ablation study of cc
proteins mutag

Seed(0) 100.0±0.00 100.0±0.00
Seed(1) 100.0±0.00 100.0±0.00
Seed(2) 100.0±0.00 100.0±0.00

Fixed 100.0±0.00 100.0±0.00

Table 5: Random seed comparison

Training(s/epoch) Inference(s/epoch)

SimGNN 1.732 0.385
NeuroMatch 2.234 0.311
GMN-embed 1.850 0.290

GraphSim 3.223 0.433
IsoNet 10.553 1.939

D2Match-Subtree(S=2) 2.940 0.456
D2Match-Subtree(S=3) 3.889 0.581
D2Match-Subtree(S=4) 4.410 0.673
D2Match-Subtree(S=5) 5.143 0.750

D2Match-GNN 2.678 0.495
D2Match 8.163 1.114

Table 6: Runtime analysis

A.4 RANDOM EFFECT

Although our experiments do not rely on random seeds, a random split may affect the results. To
test this, we set up several random seeds and permute the raw data order before getting the five-fold.
We experiment on the Protein and Mutag datasets with trivial random seed 0,1,2 and obtain nearly
identical performance. See Table 5.

While other methods based on GNNs tend to capture the divergence of distributions in the training
set and hence are easily affected by randomness, our subtree module performs the matching explic-
itly by the degeneracy property, as opposed to modeling the data distribution in others, hence ours
is insensitive to data partitioning.

A.5 RUNTIME ANALYSIS

We add the runtime analysis experiment as follows. We compare our method with baselines on the
synthetic dataset and record the training and inference time (second) per epoch. The results are
shown in Table 6.

Our model is slower than some strong baselines like SimGNN and NeuroMatch in the experiment
because they deal with the graph-level representations. Our model is faster than IsoNet, which
performs edge-level matching.

We conduct an additional ablation study to explore the time consumption of each module in our
model. The results show that the time consumption of our model mainly comes from the sampling
in the subtree module whose running time is linearly related to the sampling number. When we set

18

Under review as a conference paper at ICLR 2023

Table 8: The dataset details

Synthetic Proteins Mutag Enzymes Aids IMDB-Binary Cox2 FirstMMDB

Average nodes (target) 40.0 39.1 17.9 33.0 15.7 19.8 41.3 1376.5
Average nodes (query) 15.0 14.4 9.0 14.8 7.9 14.6 14.4 15.0

Average edges (target) 241.7 146.5 39.5 125.6 32.4 193.1 87.0 6144.3
Average edges (query) 50.6 68.9 25.1 75.3 17.1 141.0 42.8 68.1

the sampling number as 2, the running time is on par with the others. Furthermore, the running time
for the GNN module is the same as for the other baselines. In sum, we observe that our model’s
scalability is acceptable as both complexity analysis and empirical running time show ours is slower
than others only by a constant factor.

A.6 DATASET DETAILS

We describe the average node number and average edge number of the target graph and query graph
in the Table 8 and Table 7. Except the hard datasets, we generate 1000 graph pairs for Synthetic,
Proteins, Mutag, Enzymes, Cox2 and FirstMMDB and 2000 graph pairs for Aids and IMDB-Binary
which have smaller graph size. For the hard dataset, we uniformly generate 500 graph pairs.

A.7 RESULTS ON MORE DATASETS

We conduct experiments on the OGB benchmark dataset (Hu et al., 2020), including Ogbg-molhiv
and Ogbg-molpcb. We follow the same strategy in the paper to construct normal and hard versions
for these datasets and choose the best-performing baselines for comparison, including SimGNN and
NeuroMatch. We present new results in Table 9.

We find that our model performs slightly better than others on normal datasets while gaining a
significant advantage over baselines on hard datasets. These results are consistent with our previous
experiments, demonstrating that our model exploits the subgraph matching property, rather than
simply modeling the divergence of the data distribution as other GNNs.

We experiment on continuous features from the MNIST, CIFAR10 and PPI datasets, as these are
constructed from vision data(Dwivedi et al., 2020) or biological information data(Zitnik & Leskovec,
2017). We As expected, our model achieves consistent performance as well. See Table 10.

ogb-molhiv ogb-molhiv∗ ogb-molpcba ogb-molpcba∗

SimGNN 99.4±0.65 81.6±2.70 99.8±0.27 86.2±2.28
NeuroMatch 98.3±1.68 86.0±3.54 99.8±0.27 90.6±3.51

D2Match 99.8±0.27 99.6±0.54 100.0±0.00 100.0±0.00

Table 9: Obg dataset performance comparison

Cifar10 MNIST PPI

SimGNN 89.0±21.82 98.5±0.93 77.0±24.67
NeuroMatch 98.1±1.14 95.9±1.34 50.0±0.00

D2Match 99.3±0.27 98.8±1.15 98.8±1.06

Table 10: Continues dataset perfor-
mance

A.8 COMPARISON WITH EXACT METHOD

we compare exact matching solutions, including VF2[1] and ISMAGS[2]. By nature, we know that
exact matching methods obtain 100 % accuracy.

As a trade-off between accuracy and execution time, we make the comparison inspired by the setup
in NeuroMatch (Rex et al., 2020). We say an execution succeeds when its run time is less than 60s.
We compare the success rate of the exact methods by varying the query graph size from 10 to 50 on
the synthetic data, as shown in Figure.4.

We show in our experiment that the failure of exact matching methods increases significantly when
the target graph has more than 30 nodes, compared to our stable performance, indicating the incom-
petence of these methods on large-scale datasets.

19

Under review as a conference paper at ICLR 2023

10 15 20 25 30 35 40 45 50
Query size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

D2Match
0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

VF2
ISMAGS
D2Match

Figure 4: Comparison with exact method

20

