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ABSTRACT

In recent years, constrained decentralized stochastic bilevel optimization has be-
come increasingly important due to its versatility in modeling a wide range of
multi-agent learning problems, such as multi-agent reinforcement learning and
multi-agent meta-learning with safety constraints. However, one under-explored
and fundamental challenge in constrained decentralized stochastic bilevel optimiza-
tion is how to achieve low sample and communication complexities, which, if not
addressed appropriately, could affect the long-term prospect of many emerging
multi-agent learning paradigms that use decentralized bilevel optimization as a
bedrock. In this paper, we investigate a class of constrained decentralized bilevel
optimization problems, where multiple agents collectively solve a nonconvex-
strongly-convex bilevel problem with constraints in the upper-level variables. Such
problems arise naturally in many multi-agent reinforcement learning and meta learn-
ing problems. In this paper, we propose an algorithm called Prometheus (proximal
tracked stochastic recursive estimator) that achieves the firstO(ε−1) results in both
sample and communication complexities for constrained decentralized bilevel opti-
mization, where ε > 0 is a desired stationarity error. Collectively, the results in this
work contribute to a theoretical foundation for low sample- and communication-
complexity constrained decentralized bilevel learning.

1 INTRODUCTION

In recent years, the problem of constrained decentralized bilevel optimization has attracted increasing
attention due to its foundational role in many emerging multi-agent learning paradigms with safety or
regularization constraints. Such applications include, but are not limited to, safety-constrained multi-
agent reinforcement learning for autonomous driving (Bennajeh et al., 2019), sparsity-regularized
multi-agent meta-learning (Poon & Peyré, 2021), and rank-constrained decentralized matrix com-
pletion for recommender systems (Pochmann & Von Zuben, 2022), etc. As its name suggests, a
defining feature of constrained decentralized bilevel optimization is “decentralized,” which implies
that the problem needs to be solved over a network without any coordination from a centralized server.
As a result, all agents must rely on communications to reach a consensus on an optimal solution.
Due to the potentially unreliable network connections and the limited computation capability at
each agent, such network-consensus approaches for constrained decentralized bilevel optimization
typically call for low sample and communication complexities. To date, however, none of the existing
works on sample- and communication-efficient decentralized bilevel optimization in the literature
considered domain constraints (e.g., Gao et al. (2022); Yang et al. (2022); Lu et al. (2022); Chen et al.
(2022b) and Section 2 for detailed discussions). In light of the growing importance of constrained
decentralized bilevel optimization, our goal in this paper is to fill this gap by developing sample- and
communication-efficient consensus-based algorithms that can effectively handle domains constraints.

Specifically, this paper focuses on a class of constrained decentralized multi-task bilevel optimization
problems, where we aim to solve a decentralized nonconvex-strongly-convex bilevel optimization
problem with i) multiple lower-level problems and ii) consensus and domain constrains on the upper
level. Such problems naturally arise in security-constrained bi-level model for integrated natural
gas and electricity system (Li et al., 2017), multi-agent actor-critic reinforcement learning (Zhang
et al., 2020) and constraint meta-learning (Liu et al., 2019). In the optimization literature, a natural
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approach for handling domain constraints is the proximal operator. However, as will be shown later,
proximal algorithm design and theoretical analysis for constrained decentralized bilevel optimization
problems is much more complicated than those of unconstrained counterparts and the results are
very limited. In fact, in the literature, the proximal operator for constrained bilevel optimization has
been under-explored even in the single-agent setting, not to mention the more complex multi-agent
settings. The most related works in terms of handling domain constraints can be found in (Hong
et al., 2020; Chen et al., 2022a; Ghadimi & Wang, 2018), which rely on direct projected (stochastic)
gradient descent to solve the constrained bilevel problem. In contrast, our work considers general
domain constraints that require evaluation of proximal operators in each iteration. Also, these works
only considered the single-agent setting, and hence their techniques are not implementable over
networks. Actually, up until this work, it is unclear how to design proximal algorithms to handle
domain constraints for decentralized bilevel optimization. Moreover, it is worth noting that existing
methods for hyper-gradient approximation in both single- and multi-agent bilevel optimization are
either based on first-order Taylor-type approximation approaches (Khanduri et al., 2021; Ghadimi &
Wang, 2018; Hong et al., 2020), implicit differentiation (Ghadimi & Wang, 2018; Gould et al., 2016;
Ji et al., 2021), or iterative differentiation (Franceschi et al., 2017; Maclaurin et al., 2015; Ji et al.,
2021), all of which suffer from high communication and sample complexities that are problematic in
decentralized settings over networks.

The main contribution of this paper is that we propose a series of new proximal-type algorithmic
techniques to overcome the challenges mentioned above and achieve low sample and communica-
tion complexities for constrained decentralized bilevel optimization problem. The main technical
contributions of this work are summarized below:

• We propose a decentralized optimization approach called Prometheus (proximal tracked stochastic
recursive estimator), which is a cleverly designed hybrid algorithm that integrates proximal
operations, recursive variance reduction, lower-level gradient tracking, and upper-level consensus
techniques. We show that, to achieve an ε-stationary point, Prometheus enjoys a convergence rate
of O(1/T ), where T is the maximum number of iterations. This implies O(ε−1) communication
complexity and O(

√
nKε−1 + n) sample complexity per agent.

• We propose a new hyper-gradient estimator for the upper-level function, which leads to a far
more accurate stochastic estimation than the conventional stochastic estimator used in (Khanduri
et al., 2021; Ghadimi & Wang, 2018; Hong et al., 2020; Liu et al., 2022). We show that our new
hyper-gradient stochastic estimator has a smaller variance and outperforms existing estimators both
theoretically and experimentally. We note that our proposed estimator could be of independent
interest for other bilevel optimization problems.

• We reveal an interesting insight that the variance reduction in Prometheus is not only suffi-
cient but also necessary in the following sense: a “non-variance-reduced” special version of
Prometheus could only achieve a much slower O(1/

√
T ) convergence to a constant error-ball

rather than an ε-stationary point with arbitrarily small ε-tolerance. This insight advances our under-
standing and state of the art of algorithm design for constrained decentralized bilevel optimization.

The rest of the paper is organized as follows. In Section 2, we review related literature. In Section 3, we
provide the preliminaries of the decentralized bilevel optimization problem. In Section 4, we provide
details on our proposed Prometheus algorithm, including the convergence rate, communication
complexity, and sample complexity results. Section 5 provides numerical results to verify our
theoretical findings and Section 6 concludes this paper.

2 RELATED WORK

In this section, we first provide a quick overview of the state-of-the-art on single-agent constrained
bilevel optimization as well as decentralized bilevel optimization.

1) Constrained Bilevel Optimization in the Single-Agent Setting: As mentioned in Section 1,
various techniques have been proposed to solve single-agent bilevel optimization, such as utilizing
full-gradient-based techniques (e.g., AID-based methods (Rajeswaran et al., 2019; Franceschi et al.,
2018; Ji et al., 2021), ITD-based methods (Pedregosa, 2016; Maclaurin et al., 2015; Ji et al., 2021)),
stochastic gradient-based techniques (Ghadimi & Wang, 2018; Khanduri et al., 2021; Guo & Yang,
2021), STORM-based techniques (Cutkosky & Orabona, 2019), and VR-based techniques (Yang
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et al., 2021). However, none of these existing works have considered domain constraints. To our
knowledge, the only works that considered domain constraints in the single-agent setting can be
found in (Hong et al., 2020; Chen et al., 2022a; Ghadimi & Wang, 2018). In (Ghadimi & Wang,
2018), the authors proposed a double-loop algorithm called BSA, where in the inner loop the lower
level problem is solved to sufficient accuracy, while in the outer loop projected (stochastic) gradient
descent is utilized to update the model parameters. The double-loop structure of BSA led to slow
convergence. In (Hong et al., 2020), a two-timescale single loop stochastic approximation (TTSA)
algorithm based on projected (stochastic) gradient descent was proposed to solve the constrained
bilevel optimization problems. However, TTSA has to choose step-sizes of different orders for
the upper and lower level problems to ensure convergence, which leads to suboptimal complexity
results. Later in (Chen et al., 2022a), an algorithm called STABLE algorithm is proposed to utilize a
momentum-based gradient estimator and combines the Moreau-envelop-based analysis to achieve
an O(ε−2) sample-complexity. As mentioned in Section 1, however, the methods in (Ghadimi &
Wang, 2018; Hong et al., 2020; Chen et al., 2022a) consider only simple constraints. Moreover, the
aforementioned methods are not applicable in the decentralized setting.

2) Decentralized Bilevel Optimization: Decentralized bilevel optimization has also received in-
creasing attention in recent years. For example, Yang et al. (2022), Lu et al. (2022) and Chen et al.
(2022b) respectively proposed stochastic gradient (SG)-type decentralized algorithms for bilevel
optimization and achieve an O(ε−2) sample-communication complexity. The VRDBO method in
(Gao et al., 2022) employed the momentum-based techniques for decentralized bilevel optimization
to achieve better O(ε−1.5) complexity results. However, VRDBO updates upper- and lower-level
variables in an alternating fashion. As will be shown later, our Prometheus algorithm updates
upper-level and lower-level variables simultaneously, which renders a much lower implementation
complexity than VRDBO. Besides, Prometheus achieves O(

√
nKε−1 + n) sample complexities,

which is a near-optimal sample complexity and outperforms existing decentralized bilevel algorithms.
It is worth noting that, the in aforementioned works, consensus requirements exist on both lower-
and upper-level subproblems. To certain extent, such a formulation can be viewed as multiple agents
collaboratively solving the same bilevel optimization problem. In contrast, our work only has a con-
sensus requirement in the upper-level subproblem, which implies multiple different lower-level tasks.
This is more practically-relevant and a more appropriate formulation for multi-agent reinforcement
learning, multi-agent meta-learning, etc. We note that the most related work on decentralized bilevel
optimization is (Liu et al., 2022), which also considered multiple lower-level tasks. However, the
INTERACT method in (Liu et al., 2022) is unconstrained and cannot handle non-smooth objectives
considered in our work. In contrast, we propose a special proximal operator x̃i,t to address this
challenge. Last but not least, we note that none of the aforementioned works on decentralized bilevel
optimization took domain constraints into consideration. For clearer comparisons, we summarize and
compare the complexity results of all algorithms mentioned above in Table 1.

3 PROBLEM FORMULATION AND MOTIVATING APPLICATIONS

1) Network Consensus Formulation for Decentralized Bilevel Optimization: Consider an undi-
rected connected network G = (N ,L) that represents a peer-to-peer network, whereN and L are the
sets of agents (nodes) and edges, respectively, with |N | = m. Each agent i has local computation ca-
pability and can share information with its neighboring agents denoted asNi , {i′ ∈ N : (i, i′) ∈ L}.
Each agent i has access to a local dataset of size n. All agents in the network collaboratively solve
the following constrained decentralized bilevel optimization problem:

min
xi∈X

1

m

m∑
i=1

[`(xi) + h(xi)] ,
1

mn

m∑
i=1

n∑
j=1

[f
(
xi,y

∗
i (xi; ξ̄ij)

)
+ h(xi)]

s.t. y∗i (xi) = arg min
yi∈Rp2

g(xi,yi) ,
1

n

n∑
j=1

g(xi,yi; ζij), ∀i; xi = xi′ , if (i, i′) ∈ L, (1)

where X ⊆ Rp1 is a convex constraint set, and xi ∈ X and yi ∈ Rp2 are parameters to be trained for
the upper-level and lower-level subproblems at agent i, respectively. Here, `(xi) , f (xi,y

∗
i (xi)) =

1
n

∑n
j=1 f

(
xi,y

∗
i (xi); ξ̄ij

)
is the local objective function, and h(xi) is a convex proximal function

(possibly non-differentiable) for regularization. The equality constraints xi = xi′ ensure that the
local copies at connected agents i and i′ are equal to each other, hence the name “consensus form.”
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Table 1: Comparisons among algorithms for bilevel optimization problems. Sample complexities
(both upper and lower) as defined in the sense of achieving an ε-stationary point defined in (2), n is
the size of dataset at each agent.

Algorithms Constriants Samp. Complex. Comm. Complex. Decentralized

BSA (Ghadimi & Wang, 2018) 3 O(ε−2) - 7

SUSTAIN (Khanduri et al., 2021) 7 Õ(ε−1.5) - 7

RSVRB (Guo & Yang, 2021) 7 O(ε−1.5) - 7

VRBO (Yang et al., 2021) 7 O(ε−1.5) - 7

AID-BiO /ITD-BiO Ji et al. (2021) 7 O(nε−1) - 7

TTSA (Hong et al., 2020) 3 O(ε−5/2) - 7

STABLE (Chen et al., 2022a) 3 O(ε−2) - 7

DSBO (Yang et al., 2022) 7 O(ε−2) O(ε−2) 3

SPDB (Lu et al., 2022) 7 O(ε−2) O(ε−2) 3

DSBO (Chen et al., 2022b) 7 O(ε−2) O(ε−2) 3

VRDBO (Gao et al., 2022) 7 O(ε−1.5) O(ε−1.5) 3

INTERACT (Liu et al., 2022) 7 O(nε−1) O(ε−1) 3

INTERACT-VR Liu et al. (2022) 7 O(
√
nKε−1 + n) O(ε−1) 3

Prometheus [Ours.] 3 O(
√
nKε−1 + n) O(ε−1) 3

Next, we define the notion of ε-stationarity point for Problem (1) for convergence performance
characterization. We say that {xi,yi,∀i ∈ [m]} is an ε-stationarity point if it satisfies:

E‖x̃− 1⊗ x̄‖2︸ ︷︷ ︸
Saddle point

error

+E‖x− 1⊗ x̄‖2︸ ︷︷ ︸
Consensus error

+ E‖y − y∗‖2︸ ︷︷ ︸
lower problem error

≤ ε, (2)

where x̄ , 1
m

∑m
i=1 xi, y , [y>1 , ...y

>
m]>, and y∗ , [y∗1

>, ...y∗m
>]>, and x̃ is a proximal point

that will be defined later in Section 4. The first term in (2) quantifies the convergence of the x̄ to a
proximal point of stationarity of the global objective. The second term in (2) measures the consensus
error among local copies of the upper variable, while the last term in (2) quantifies the (aggregated)
error in the lower problem’s iterates across all agents. Thus, ε→ 0 implies that the algorithm achieves
three goals simultaneously: i) consensus of upper variables, ii) stationary point of Problem (1), and
iii) solution to the lower problem. As mentioned in Section 1, two of the most important performance
metrics in decentralized optimization are the sample and communication complexities.

2) Motivating Applications: Problem (1) arises naturally from many interesting real-world applica-
tions. Here, we present two motivating applications to showcase its practical relevance:
• Multi-agent meta-learning (Rajeswaran et al., 2019): Meta-learning (or learning to learn) is to

find model that can adapt to multiple related tasks. A popular meta-learning framework is the
model-agnostic meta learning (MAML), which minimizes an upper objective of empirical risk on
all tasks. Consider a multi-agent meta-learning task with m lower level problems and m agents
collectively solve this meta-learning problem over a network. This problem can be formulated as:

min
x∈X

m∑
i=1

f (x,y∗i (x)) , s.t. y∗i (x) ∈ argmin
yi∈Rp2

g (x,yi) , i = 1, . . . ,m. (3)

Here, agent i has a local dataset with n samples, x ∈ X is the constrained (e.g., due to safety)
model parameters shared by all agents, and yi are task-specific parameters solved by each agent.

• Decentralized min-max optimization (Huang et al., 2022): Another application of the constrained
decentralized bilevel optimization in (1) is the decentralized nonconvex strongly-concave min-max
optimization problem, which is typically seen in, e.g., multi-agent reinforcement learning (Zhang
et al., 2021), fair multi-agent machine learning (Baharlouei et al., 2019), and data poisoning
attack (Liu et al., 2020b). A decentralized min-max optimization problem is a special case of a
decentralized bilevel optimization problem because:

min
x∈X

max
yi∈Rp2
i=1,...,m

m∑
i=1

f (x,yi)⇐⇒min
x∈X

m∑
i=1

f (x,yi (x∗)) , s.t. y∗i (x) = argmin
yi∈Rp2

−f (x,yi) , ∀i.

4



Under review as a conference paper at ICLR 2023

4 SOLUTION APPROACH

In this section, we first present the Prometheus algorithm for solving the constrained decentralized
bilevel optimization problems in Problem (1) in Sections 4.1–4.2. Then, we provide its theoretical
convergence guarantees in Section 4.3. Lastly, we will reveal a key insight on the necessity of using
the proposed variance reduction techniques in Section 4.4. Due to space limitation, we relegate the
proofs and the notation Table. 2 to supplementary material.

4.1 PRELIMINARIES

To present the Prometheus algorithm, we first introduce several basic components as preparation.

1) Network-Consensus Matrix: Our Prometheus algorithm is based on the network-consensus
mixing approach: in each iteration, every agent exchanges and aggregates neighboring information
through a consensus weight matrix M ∈ Rm×m. We define λ as the second largest eigenvalue of the
matrix M. Let [M]ii′ represent the element in the i-th row and the i′-th column in M. The choice of
M should satisfy the following properties: (a) doubly stochastic:

∑m
i=1[M]ii′ =

∑m
j=1[M]ii′ = 1;

(b) symmetric: [M]ii′ = [M]i′i,∀i, i′ ∈ N ; and (c) network-defined sparsity: [M]ii′ > 0 if
(i, i′) ∈ L; otherwise [M]ii′ = 0,∀i, i′ ∈ N .

2) Stochastic Estimators: In Prometheus, we need to estimate the stochastic gradient of the bilevel
problem using the implicit function theorem. We note that in the literature of bilevel optimization
with stochastic gradient, a commonly adopted stochastic gradient estimator is of the form (Khanduri
et al., 2021; Ghadimi & Wang, 2018; Hong et al., 2020; Liu et al., 2022):

∇̄f(xi,t,yi,t; ξ̄ij) = ∇xf(xi,t,yi,t; ξ
0
i )− 1

Lg
∇2

xyg(xi,t,yi,t; ζ
0
i )Ĥi,k∇yf(xi,t,yi,t; ξ

0
i ), (4)

where Ĥi,k , K
∏k(K)
p=1 (I− ∇

2
yyg(xi,t,yi,t;ζ

p
i )

Lg
). Here,K ∈ N is a predefined parameter and k(K) ∼

U{0, . . . ,K − 1} is an integer-valued random variable uniformly chosen from {0, . . . ,K − 1}.
It can be shown that Ĥi,k is a biased estimator for the Hessian inverse

[
∇2

yyg (x,y; ζ)
]−1

=∑∞
i=1(I−∇2

yyg (x,y; ζ))i. However, this estimator has the limitation that it only incorporates the
first term in the Taylor approximation, thus resulting in a large variance and could eventually increase
the communication complexity of decentralized bilevel optimizaiton.

To address this issue, in this paper, we propose a new stochastic gradient estimator as follows:

Hi,0 = I;Hi,k=I+

(
I−
∇2

yyg
(
xi,t,yi,t; ζ

k
i

)
Lg

)
Hi,k−1 = I+

k(K)∑
j′=1

j′∏
p=1

(
I−
∇2

yyg (xi,t,yi,t; ζ
p
i )

Lg

)
;

∇̄f(xi,t,yi,t; ξ̄ij)=∇xf(xi,t,yi,t; ξ
0
i )− 1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

)
Hi,k∇yf(xi,t,yi,t; ξ

0
i ). (5)

Compared to the conventional estimator, the key difference in our new estimator lies in the matrix
Hi,k. The new Hessian inverse estimator is inspired by ideas in stochastic second-order optimiza-
tion (Agarwal et al., 2016). Similar technique to estimate the Hessian inverse can also be found
in Koh & Liang (2017). However, our Hessian inverse estimator differ from Koh & Liang (2017)
in the following key aspects: (i) In our Hessian inverse estimator, we multiply the hessian term
∇2
yyg(x, y; ξ) by 1/Lg as it ensures that 1/Lg × ∇2

yyg(x, y; ξ) will have eigenvalue less than 1.
Otherwise, the power series of the Hessian Inverse will not converge. In comparison, Koh & Liang
(2017) does not have 1/Lg term because the authors assume w.l.o.g. that the Hessian∇2

yyg(x, y) � 1,
which implies that the authors implicitly assume Lg = 1. (ii) Koh & Liang (2017) is only designed
for solving a conventional single-level minimization problem with loss function L(·). In comparision,
our proposed stochastic estimator can be used in bilevel learning especially for solving non-smooth
regularizers in the upper-level problems. Note that our Hi,k is in a recursive form that is able to
capture the entire Taylor series at once without increasing the sample complexity. Thanks to this
recursive form, Hi,k utilizes O(k2) samples, as opposed to only O(k) samples in the conventional
Ĥi,k-Hessian inverse estimator, thus leading to a much smaller variance and eventually much lower
communication complexity. It is worth noting that although our Hi,k estimator leverages more
training samples, the computation cost is the same as that of Ĥi,k due to the recursive structure in (5).
In Sections 4.3 and 5, we will theoretically and numerically demonstrate the smaller variance of our
new estimator over the conventional one.
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4.2 THE Prometheus ALGORITHM.

Our Prometheus algorithm is an advanced triple-hybrid of proximal, gradient tracking, and variance
reduction techniques. The procedure of Prometheus can be organized into three key steps:

• Step 1 (Local Proximal Operations): In each iteration t, each agent i performs the following
proximal operations to cope with the domain constraint set X for the upper-level variables:

x̃i,t = x̃i(xi,t) = arg minx∈X [〈ui,t,x− xi,t〉+ τ
2‖x− xi,t‖2 + h(x)], (6)

where τ > 0 is a proximal control parameter and ui,t is an auxiliary vector. The proximal
update rule is motivated by the SONATA method (Scutari & Sun, 2019) used in a decentralized
minimization.

• Step 2 (Consensus Update in Upper-Level Variables): Next, each agent i updates the upper and
lower model parameters xi,yi as follows:

xi,t+1 =
∑
i′∈Ni

[M]ii′xi′,t + α(x̃i(xi,t)− xi,t), yi,t+1 = yi,t − βvi,t, (7)

where α and β are constant step-sizes for updating x- and y-variables, respectively. Note that
updating xi,t+1 in Eq. (7) is a local weighted average at agent i and plus a local update in the spirit
of Frank-Wolfe given a proximal point. The right-hand side of Eq. (7) performs a local stochastic
gradient descent update for the y-variable at each agent i.
Remark 1. The used auxiliary proximal operator x̃i,t and the resultant local update α(x̃i(xi,t)−
xi,t) in the consensus step play an important role in helping us alleviate the non-smooth objective
challenge. It will be difficult to achieve convergence guarantees in decentralized learning if we use
xi,t+1 = PX (xi,t − αui,t) = argmin

x̃∈X
‖x̃− (xi,t − αui,t)‖2 instead. See proof details in Lemma

5 and 7 in our Appendix.

• Step 3 (Local Variance-Reduced Stochastic Gradient Estimate): In the local gradient estimator
step, each agent i estimates its local gradients using the following stochastic gradient estimators:

pi(xi,t,yi,t) =


∇̄f(xi,t,yi,t) = 1

n

∑n
j=1 ∇̄f(xi,t,yi,t; ξ̄ij), if mod(t, q) = 0,

pi(xi,t−1,yi,t−1)

+ 1
|Si,t|

∑
j∈Si,t

(
∇̄f

(
xi,t,yi,t, ξ̄ij

)
−∇̄f

(
xi,t−1,yi,t−1, ξ̄ij

))
,

(8a)

di(xi,t,yi,t) =


∇̄g(xi,t,yi,t) = 1

n

∑n
i=1 ∇̄g(xi,t,yi,t; ζij), if mod(t, q) = 0,

di(xi,t−1,yi,t−1)

+ 1
|Si,t|

∑
j∈Si,t (∇g (xi,t,yi,t, ζij) −∇g (xi,t−1,yi,t−1, ζij)) .

(8b)

Here, Si,t is the sample mini-batch in the t-th iteration, and q is a pre-determined inner loop
iteration number. The local stochastic gradient estimation is a recursive estimator that shares some
structural similarity with those in SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018), and
PAGE (Li et al., 2021) used for traditional minimization problems.

• Step 4 (Gradient Tracking in Upper-Level Parameters): Each agent i updates ui,t and vi,t by
averaging over its neighboring tracked gradients:

ui,t =
∑
i′∈Ni

[M]ii′ui′,t−1 + pi(xi,t,yi,t)− pi(xi,t−1,yi,t−1); vi,t = di(xi,t,yi,t). (9)

To summarize, we illustrate the Prometheus algorithm in Algorithm 1.

4.3 CONVERGENCE PERFORMANCE ANALYSIS OF THE Prometheus ALGORITHM

Now, we focus on the convergence performance analysis for the proposed Prometheus algorithm.
Before presenting the main convergence results, we first state several technical assumptions:
Assumption 1. For all ζ ∈ supp (πg) where supp(π) is the support of π, x ∈ X ,X ⊆ Rp1 ,y ∈ Rp2 ,
the lower-level function g has the following properties : i) g(x,y; ζ) is µg-strongly convex with
µg > 0, ∇yg(x,y; ζ) is Lg-Lipschitz continuous with Lg > 0; ii)

∥∥∇2
xyg(x,y; ζ)

∥∥2 ≤ Cgxy for
some Cgxy > 0,∇2

xyg(x,y; ζ) and∇2
yyg(x,y; ζ) are Lipschitz continuous with constants Lgxy > 0

and Lgyy > 0, respectively.
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Algorithm 1 The Prometheus Algorithm at Each Agent i.

Set parameter pair (xi,0,yi,0) = (x0,y0).
Calculate local gradients: ui,0 = ∇̄f(xi,0,yi,0);vi,0 = ∇yg(xi,0,yi,0);
for t = 1, · · · , T do

Update local parameters (xi,t+1,yi,t+1) as in Eq. (6)-(7);
if Prometheus : then

Compute local estimators (pi(xi,t+1,yi,t+1),di(xi,t+1,yi,t+1)) as in Eq. (8);
end if
if Prometheus-SG: then

Compute local estimators (pi(xi,t+1,yi,t+1),di(xi,t+1,yi,t+1)) as in Eq. (10);
end if
Track global gradients (ui,t+1,vi,t+1) as in Eq. (9);

end for

Assumption 2. For all ξ ∈ supp (πf ) where supp(π) is the support of π, x ∈ X ,X ⊆ Rp1 , the upper-
level function f has the following properties : ∇xf(x,y; ξ),∇yf(x,y; ξ) (w.r.t. y) are Lipschitz
smooth continuous with constant Lfx ≥ 0, Lfy ≥ 0. ‖∇yf(x,y; ξ)‖ ≤ Cfy , for some Cfy ≥ 0.
Assumption 3. i) The stochastic gradient estimate of the upper-level function satisfies:
Eξ̄[‖∇̄f(x,y; ξ̄)− Eξ̄[∇̄f(x,y;ξ̄)]‖2] ≤ σ2

f ; and ii) The stochastic gradient estimate of the lower-
level function satisfies: Eζ [‖∇yg(x,y; ζ)−∇yg(x,y)‖2] ≤ σ2

g .

We note that Assumptions.1, 2 and 3(b) are standard in the literatures of bilevel optimization (see,
e.g., Ghadimi & Wang (2018); Khanduri et al. (2021). In addition, Assumption 3(a) has been verified
in (Khanduri et al., 2021).

To establish the convergence result of Prometheus, we first prove the Lipschitz-smoothness of the
new gradient estimator proposed in (5), which is stated as follows:
Lemma 1. (Lipschitz-smoothness of the new stochastic gradient estimator in (5)). If the stochastic
functions f(x,y; ξ) and g(x,y; ζ) satisfy Assumptions 1–3, then we have (i) for a fixed y ∈
Rp2 ,

∥∥∇̄f (x1,y; ξ̄
)
− ∇̄f

(
x2,y; ξ̄

)∥∥2 ≤ L2
f ‖ x1 − x2‖2 ,∀ x1, x2 ∈ Rp1 ; and (ii) for a fixed

x ∈ Rp1 ,
∥∥∇̄f (x,y1; ξ̄

)
− ∇̄f

(
x,y2; ξ̄

)∥∥2 ≤ L2
f ‖y1 − y2‖2 ,∀y1,y2 ∈ Rp2 . In the above

expressions, Lf > 0 is defined as: L2
f := 2L2

fx
+ 6C2

gxyL
2
fy

(
K

2µgLg−µ2
g

)
+ 6C2

fy
L2
gxy

(
K

2µgLg−µ2
g

)
+

6C2
gxyC

2
fy

K
L2
g

∑K
j=1 j

2
(
1− µg

Lg

)2(j−1) 1
L2
g
L2
gyy .

Remark 2. We note that the Lipschitz-smoothness constant Lf of Lemma 1 is smaller than that of
the conventional estimator in (4), which we denote as Lconv here, i.e., Lf ≤ Lconv . This also shows
superiority of our new estimator. Due to space limitation, we state the definition of Lconv in Lemma 4
in the appendix.

Next, we need the following Lipschitz-continuity properties of the approximate gradient ∇̄f(x,y),
the lower level solution y∗, and the true gradient∇`(x), which have been proved in the literature:
Lemma 2. (Ghadimi & Wang, 2018) Under Assumptions 1–2, we have ‖∇̄f(x,y) −
∇`(x)‖ ≤ L ‖y∗(x)−y‖, ‖y∗ (x1)−y∗ (x2)‖ ≤ Ly ‖x1−x2‖ , ‖∇` (x1)−∇` (x2)‖ ≤
L` ‖x1−x2‖ for all x,x1,x2 ∈ Rp1 ,y ∈ Rp2 , where the Lipschitz constants are defined as:
L , Lfx+

LfyCgxy
µg

+ Cfy (
Lgxy
µg

+
LgyyCgxy

µ2
g

), L` , L+
LCgxy
µg

, and Ly ,
Cgxy
µg

.

Lemma 2 establishes the smoothness of the implicit function in (1), which only relies on the
Assumptions 1 and 2 to hold. Lastly, following the same token as in (Hong et al., 2020), we show a
critical fact on the exponentially fast decay of the bias of our stochastic estimator in (5), which is
stated below.
Lemma 3 (Exponentially Decaying Bias). Under Assumptions 1–3, the stochastic gradient estimate
of the upper level objective in (5) satisfies ‖∇f(x,y)− E[∇̄f(x,y; ξ̄)]‖ ≤ CgxyCfy

µg
(1− µg

Lg
)K .

The assumptions and Lemmas 1-3 above lead to the main convergence result of Prometheus which
is stated next.
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Theorem 1. Under Assumptions1-3, if the step-sizes α≤min
{

(1−λ)m

2
√
β(L`+τ)

τ
6+3τ ,

(1−λ)m

8
√
βL2

f

τ
6+3τ ,

τ
3L`

,

(1−λ)µ2
gβ

1.5

23040L2
yL

2 ,
8
√
βτ

12m(1−λ) ,
20L2

yτ

27(1−λ)β1.5L2
fm
, τ(1−λ)

24mL2
fβ
, τ
√
β(1−λ)
12m ,

µg(1−λ)
240L2

y

β2.5

9L2
f
m τ

6+3τ , (1−λ)β 2m
3

τ
6+3τ

}
,

β ≤
{√

40Ly
3Lf

, 1−λ
16Lf

, (
µg(1−λ)2

1440L2
yL

2
f

)2,
2µg

81L2
f

}
, then the outputs of Prometheus satisfy:

1

T

T−1∑
t=0

[
E‖xt − 1⊗ x̄t‖2 + E‖x̃t − 1⊗ x̄t‖2 + E‖yt − y∗t ‖2

]
= O

(
1

T

)
.

Remark 3. It is worth noting that, compared to existing works on decentralized bilevel optimization,
the major challenge in proving the convergence results in Theorem 1 stems from the proximal
operator needed to solve the upper-level subproblem, which prevents the use of conventional descent
lemma for convergence analysis (see Eq. (34) in the appendix). Also, compared to single-agent
constrained bilevel optimization, one cannot provide theoretical convergence guarantee by using
the direct projection method x̃i,t = arg minx∈X ‖x − (xi,t − τui,t)‖2 as in (Hong et al., 2020;
Chen et al., 2022a) due to the gradient tracking procedure in the decentralized learning. Instead, we
use a different proximal update rule as shown in (6). We will numerically show in Section 5 that
Prometheus with the direct proximal operator can only converge to a neighborhood of a stationary
point. Further, Theorem 1 implies the following sample and communication complexity results:

Corollary 2 (Sample and Communication Complexities of Prometheus). Under the conditions of
Theorem 1, to achieve an ε-stationary solution, Prometheus requires that: i) the total number of
communication rounds is O(ε−1), and ii) the total number of samples is O(

√
nKε−1 + n).

4.4 DISCUSSION: THE BENEFIT OF VARIANCE REDUCTION IN Prometheus

Since the variance reduction in (8) in Step 3 of Prometheus requires full gradient evaluation, it is
tempting to ask what is the benefit of using the variance reduction technique. In other words, could
we relinquish variance reduction (VR) in Step 3 to avoid full gradient evaluation? To answer this
question, consider changing Step 3 to the following basic stochastic gradient estimator without VR:

pi(xi,t,yi,t) = ∇̄f(xi,t,yi,t, ξ̄i0); di(xi,t,yi,t) = ∇g(xi,t,yi,t; ζi0). (10)

Interestingly, the following convergence result states that there always exists a non-vanishing constant
independent of m, n, and α if (10) is used in Step 3 of Prometheus (i.e., a constant only dependent
on problem instance and cannot be made arbitrarily small algorithmically).

Proposition 3. Under Assumptions1–3, with step-sizes α ≤ min{ 1−λ
8βLf

, τ
3L`

, (1−λ)m

2
√
β(L`+τ)

τ
6+3τ ,

τ
√
β

6m(1−λ) ,
τ(1−λ)
48mL2

fβ
,

(1−λ)µ2
gβ

1.5

23040L2
yL

2 ,O(T−
1
2 ), (1−λ)m

4

√
βτ}, β ≤ min{ 1−λ

8Lf
,

(1−λ)4µ2
g

4802L2
yL

2
f
,O(T−

1
3 )}, we

have the following result if (10) replaces Step 3 in Prometheus,

1

T

T−1∑
t=0

(
E‖xt − 1⊗ x̄t‖2 + E‖x̃t − 1⊗ x̄t‖2

)
= O

(
1√
T

)
+ C′σ, (11)

where the constantC ′σ is defined asC ′σ , 9(6+3τ)
τ2 ((

CgxyCfy
µg

(1− µg
Lg

)K)2+σ2
f )+ 27(1−λ)

40(8+4α2)L2
y

β1.5

ατ σ
2
g .

Remark 4. A key insight of Proposition 3 is in order. The SG-type update in (10) is similar to the SG-
type update in unconstrained bilevel optimization in the single-agent setting (Ji et al., 2021). However,
unlike the SG-type method in (Ji et al., 2021) that can approach zero at an O(1/

√
T ) convergence

rate, the SG-type method can only approach a constant error C ′σ at an O(1/
√
T ) convergence rate in

the constrained decentralized setting. The non-vanishing constant error C ′σ is caused by the variance
σ2
f and σ2

g of the stochastic gradient . This make the benefit of using the variance reduction techniques
to eliminate the {σf , σg}-variance in order to approach zero asymptotically.

5 NUMERICAL RESULTS

In this section, we will first conduct experiments to demonstrate the small variance of our new stochas-
tic gradient estimator. Then, we will compare Prometheus’ convergence with several baselines.
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Figure 2: Five-agent network.
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Figure 3: Ten-agent network.

Figure 1: Hessian inverse
estimator comparison.

1) New estimator vs. conventional estimator: Note that the major dif-
ference between the new and conventional estimators lies in how they esti-
mate the Hessian inverse of the matrix A. Thus, it suffices to compare the
Hessian inverse approximations. The conventional estimator to estimate
the A−1 can be denoted as Ã−1

conv = K
∏k(K)
p=1 (I−As), while the new es-

timator can be denoted as Ã−1 =
∑k(K)
j′=1

∏j′

p=1(I−As). To see the ben-
efits of our estimator and due to the high complexity of computing matrix
inverse, here we consider a small example A = [[0.25, 0.0], [0.0, 0.25]],
so that A−1

true = [[4, 0], [0, 4]]. Let As be a random matrix obtained from
A plus Gaussian noise. We use Ã−1

conv and Ã−1 to estimate A−1, respectively. We run 10000
independent trials with K = 10 and the results are shown in Fig. 1. We can see from Fig. 1 that the
new Hessian inverse estimator has a much smaller variance than the conventional one. Additional
experiments on varing K and different matrix A are relegated to our Appendix.

2) Convergence Performance: We verify our theoretical results of Prometheus by conducting exper-
iments on a meta-learning problem tested on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky
et al., 2009) datasets. Due to space limitation, we provide additional experiments on hyper-parameter
optimization in the appendix. Due to the lack of existing algorithms for solving constrained decentral-
ized bilevel optimization problem, we compare the convergence performance of Prometheus against
several stripped-down version of Prometheus:
• Prometheus with Stochastic Gradient (Prometheus-SG): Prometheus-SG is the SG-type algorithm

discussed in Section 4.4: pi(xi,t,yi,t) = ∇̄f(xi,t,yi,t, ξ̄i0);di(xi,t,yi,t) = ∇g(xi,t,yi,t; ζi0).

• Prometheus with Direct Proximal Method (Prometheus-dir): Instead of performing x̃i,t =
arg minx∈X [〈ui,t,x − xi,t〉 + τ

2‖x − xi,t‖2 + h(xi)] in Prometheus, Prometheus-dir directly
adds the constraints on x: x̃i,t= arg minx∈X ‖x− (xi,t − τui,t)‖2.

• Proximal Decentralized Stochastic Gradient Descent (Prox-DSGD): This algorithm is motivated
by the DSGD algorithm, which can be viewed as Prometheus without using gradient tracking.
Specifically, we updates local gradient as ui,t = ∇̄f(xi,t,yi,t; ξ̄i0);vi,t = ∇g(xi,t,yi,t; ζi0).

We also note that the Prox-DSGD algorithm can be seen as a generalization of DSBO (Yang et al.,
2022), SPDB (Lu et al., 2022), DSBO (Chen et al., 2022b) with the proximal operator. Prometheus -
dir can also be seen as an extension of the algorithm INTERACT (Liu et al., 2020a) to handle the
constrained decentralized bilevel optimization problem. We compare Prometheus with these base-
lines using a two-hidden-layer neural network with 20 hidden units. The consensus matrix is chosen
as M = I− 2L

3λmax(L) , where L is the Laplacian matrix of G and λmax(L) denotes the largest eigenvalue
of L. Due to space limitation, we relegate the detailed parameter choices of all algorithms to the
appendix. In Fig. 2, we compare the performance of Prometheus, Prometheus-SG, Prometheus-dir,
and Prox-DSGD on the MNIST and CIFAR-10 datasets with with a five-agent network. The network
topology can be seen in Fig. 4 in Appendix D. We note that Prometheus converges much faster than
than all other algorithms in terms of the total number of communication rounds. In Fig. 3, we also
observe similar results when the number of tasks (and agents) is increased to 10. Our experimental
results thus verify our theoretical analysis that Prometheus has the lowest communication complexity.

6 CONCLUSION

In this paper, we studied the constrained decentralized nonconvex-strongly-convex bilevel optimiza-
tion problems. First, we proposed an algorithm called Prometheus with a new stochastic estimator.
We then showed that, to achieve an ε-stationary point, Prometheus achieves a sample complexity of
O(K

√
nε−1 + n) and a communication complexity of O(ε−1). Our numerical studies also showed

the advantages of our proposed Prometheus and verified the theoretical results. Collectively, the
results in this work contribute to the state of the art of low sample- and communication-complexity
constrained decentralized bilevel learning.
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Variable Definition
N Set of nodes.
L Set of edges.
m Number of agents.
i i-th agent.
j j-th local sample at each agent.
T Total iteration numbers.
t t-th iteration.
K K ∈ N is a predefined parameter.
k k is an integer-valued random variable uniformly chosen from {0, . . . ,K − 1}.
α Upper-level step-size.
β Lower-level step-size.
τ Proximal control parameter.
µg Constant from the strongly-convex assumption, see details in Assumption. 1.
Lg Constant from the Lipschitz continuous assumption, see details in Assumption. 1.
Cgxy Constant from the bounded gradient assumption, see details in Assumption. 1.
Lgxy Constant from the gradient Lipschitz continuous assumption, see details in Assumption. 1.

Lfx , Lfy Constant from the Lipschitz smooth continuous assumption, see details in Assumption. 2.
Cfy Constant from the bounded gradient assumption, see details in Assumption. 2.
σf , σg Constant from the bounded variance assumption, see details in Assumption. 3.
M Consensus weight matrix M ∈ Rm×m.
λ Second largest eigenvalue of matrix M.

Table 2: Notation Table.

A ADDITIONAL THEORETICAL RESULTS

Lemma 4. (Lipschitz-smoothness of conventional stochastic gradient estimator). With
the conventional stochastic gradient estimator ∇̄f(xi,t,yi,t; ξ̄ij) = ∇xf(xi,t,yi,t; ξ

0
i ) −

K
Lg
∇2

xyg(xi,t,yi,t; ζ
0
i ) ·
∏k(K)
p=1 (I − ∇

2
yyg(xi,t,yi,t;ζ

p
i )

Lg
)∇yf(xi,t,yi,t; ξ

0
i ). If the stochastic functions

f(x,y; ξ) and g(x,y; ζ) satisfy Assumptions 1–3, then we have

(i) For a fixed y ∈ Rp2 , Eξ̄
∥∥∇f ( x1,y; ξ̄

)
−∇f

(
x2,y; ξ̄

)∥∥2 ≤ L2
conv ‖ x1 − x2‖2 ,∀ x1, x2 ∈

Rdp1 .

(ii) For a fixed x ∈ Rp1 , Eξ̄
∥∥∇f (x,y1; ξ̄

)
−∇f

(
x,y2; ξ̄

)∥∥2 ≤ L2
conv ‖y1 − y2‖2 ,∀y1,y2 ∈

Rp2 .

We have

L2
conv :=2L2

fx + +6C2
gxyL

2
fy

(
K

2µgLg − µ2
g

)
+ 6C2

fyL
2
gxy

(
K

2µgLg − µ2
g

)
+ 6C2

gxyC
2
fy

K2

L2
g

max
k(K)
{k(K)2

(
1− µg

Lg

)2(k(K)−1)

} 1

L2
g

L2
gyy . (12)

In the above expressions, Lconv ≥ Lf , Lf is the Lipschitz constant for our proposed stochastic
gradient estimator and can be found in Lemma. 1.

B PROOF OF MAIN RESULTS

Before diving in our theoretical analysis, we first introduce the following notations:

xt =
1

m

m∑
i=1

xi,t,xt =
[
x>1,t, · · · ,x>m,t

]>
,

pt =
[
p1(x1,t,y1,t)

>, · · · ,pm(xm,t,ym,t)
>]> ,

13
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dt =
[
d1(x1,t,y1,t)

>, · · · ,dm(xm,t,ym,t)
>]> ,

p̄t =
1

m

m∑
i=1

pi(xi,t,yi,t), d̄t =
1

m

m∑
i=1

di(xi,t,yi,t), (13)

To prove Theorem 1, we structure our proof into the following key steps:

Step 1:
Lemma 5 (Descending Inequality for upper function). Under the stated assumptions, the following
descending inequality holds for Prometheus:

`(x̄t+1)− `(x̄t) ≤(
αL`
2mr

+
ατ

2rm
)‖xt − 1⊗ x̄t‖2 + (

αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

‖y∗i,t − yi,t‖2 +
3α

2rm
‖ut − 1⊗ ūt‖2 − h (x̄t+1) + h (x̄t)

+
3α

2rm
‖ 1

m

m∑
i=1

∇̄f(xi,t,yi,t)− ūt‖2, (14)

where y∗i,t = arg miny g(xi,t,y).

Proof.

x̃i,t = argmin
x∈X

〈ui,t,x− xi,t〉+
τ

2
‖x− xi,t‖2 + h (x) , (15)

x̄t+1 = x̄t + α

(
1

m

m∑
i=1

x̃i,t − x̄t

)
, (16)

It follows form the optimal conditions of h(xi) that

0 ≥ 〈ui,t + τ (x̃i,t − xi,t) + ∂h (x̃i,t) , x̃i,t − x̄t〉
≥ 〈ui,t + τ (x̄t − xi,t) , x̃i,t − x̄t〉+ τ ‖x̃i,t − x̄t‖2 + 〈∂h (x̃i,t) , x̃i,t − x̄t〉
≥ 〈ui,t + τ (x̄t − xi,t) , x̃i,t − x̄t〉+ τ ‖x̃i,t − x̄t‖2 + h (x̃i,t)− h (x̄t) . (17)

From convexity, we have:

h (x̄t+1) ≤ (1− α)h (x̄t) + αh

(
1

m

m∑
i=1

x̃i,t

)
≤ h (x̄t) + α

1

m

m∑
i=1

(h (x̃i,t)− h (x̄t)) . (18)

Therefore, it follows that

α
1

m

∑
〈ui,t + τ (x̄t − xi,t) , x̃i,t − x̄t〉+

ατ

m
‖x̃i,t − 1x̄t‖2 + h (x̄t+1)− h (x̄t) ≤ 0. (19)

Then, we have

`(x̄t+1)− `(x̄t)
(a)

≤ 〈∇`(x̄t), x̄t+1 − x̄t〉+
L`
2
‖x̄t+1 − x̄t‖2

(b)

≤

〈
∇` (x̄t) , α

(
1

m

∑
i∈m

x̃i,t − x̄t

)〉
+
α2L`

2

∥∥∥∥∥ 1

m

m∑
i=1

x̃i,t − x̄t

∥∥∥∥∥
2

≤α 1

m

m∑
i=1

〈∇` (x̄t) , x̃i,t − x̄t〉+
α2L`

2

1

m
‖x̃t − 1x̄t‖2

(c)

≤α 1

m

m∑
i=1

〈∇` (x̄t)− ui,t − τ (x̄t − xi,t) , x̃i,t − x̄t〉+
α2L`

2

1

m
‖x̃t − 1x̄t‖2

− ατ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t)
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=
α

m

m∑
i=1

〈∇` (x̄t)− ui,t, x̃i,t − x̄t〉+
ατ

m

m∑
i=1

〈xi,t − x̄t, x̃i,t − x̄t〉

+
α2L`
2m

‖x̃t − 1x̄t‖2 −
ατ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t)

=
α

m

m∑
i=1

〈
∇` (x̄t)−

1

m

m∑
i1=1

∇`(xi1,t), x̃i,t − x̄t

〉

+
α

m

m∑
i=1

〈
1

m

m∑
i1=1

∇`(xi1,t)− ui,t, x̃i,t − x̄t

〉

+
ατ

m

m∑
i=1

〈xi,t − x̄t, x̃i,t − x̄t〉+
α2L`
2m

‖x̃t − 1x̄t‖2 −
ατ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t)

(d)

≤ α

m

m∑
i=1

1

2r
‖∇` (x̄t)−∇`(xi,t)‖2 +

α

m

m∑
i=1

r

2
‖x̃i,t − x̄t‖2

+
α

m

m∑
i=1

1

2r
‖ 1

m

m∑
i1=1

∇`(xi1,t)− ui,t‖2 +
α

m

m∑
i=1

r

2
‖x̃i,t − x̄t‖2 +

ατ

m

m∑
i=1

1

2r
‖xi,t − x̄t‖2

+
ατ

m

m∑
i=1

r

2
‖x̃i,t − x̄t‖2 +

α2L`
2m

‖x̃t − 1x̄t‖2 −
ατ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t)

(e)

≤ α

m

m∑
i=1

1

2r
L`‖x̄t − xi,t‖2 +

α

m

m∑
i=1

r

2
‖x̃i,t − x̄t‖2 +

ατ

m

m∑
i=1

1

2r
‖xi,t − x̄t‖2

+
α

m

m∑
i=1

3

2r
‖ 1

m

m∑
i1=1

∇`(xi1,t)−
1

m

m∑
i1=1

∇g(xi1,t,yi1,t)‖2

+
α

m

m∑
i=1

3

2r
(‖ 1

m

m∑
i1=1

∇̄f(xi1,t,yi1,t)− ūt‖2 + ‖ūt − ui,t‖2) +
α

m

m∑
i=1

r

2
‖x̃i,t − x̄t‖2

+
ατ

m

m∑
i=1

r

2
‖x̃i,t − x̄t‖2 +

α2L`
2m

‖x̃t − 1x̄t‖2 −
ατ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t)

(f)

≤ (
αL`
2mr

+
ατ

2rm
)‖xt − 1⊗ x̄t‖2 + (

αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

‖y∗i,t − yi,t‖2 +
3α

2rm
‖ut − 1⊗ ūt‖2 − h (x̄t+1) + h (x̄t)

+
3α

2rm
‖ 1

m

m∑
i=1

∇̄f(xi,t,yi,t)− ūt‖2, (20)

where (a) is because of Lipschitz continuous gradients of l, (b) is because of the updating rules. (c) is
from 17. (d) and (e) are because of the triangle inequality. (f) is from the definition of ui,t, `i(xi,t) .

Step 2:

Lemma 6 (Error Bound on y∗(x)). Under the stated Assumptions 1-3, letting α ≤ 1
4Lf

, we have

‖yi,t+1 − y∗i,t+1‖2 ≤−
µgβ

4
‖y∗i,t − yi,t‖2 +

9β

2µg
‖∇yg(xi,t,yi,t)− vi,t‖2

− (1 +
µgβ

4
)
β2

2
‖vi,t‖2 +

5L2
y

µgβ
‖xi,t − xi,t+1‖2, (21)
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Proof.

‖yi,t+1 − y∗i,t‖2 = ‖yi,t − βvi,t − y∗i,t‖2 = ‖yi,t − y∗i,t‖2 + β2‖vi,t‖2 − 2β〈yi,t − y∗i,t,vi,t〉.
(22)

Under the Assumption 1.(a), we have:

g(xi,t,y)− g(xi,t,yi,t)−
µg
2
‖y − yi,t‖2 ≥ 〈∇yg(xi,t,yi,t),y − yi,t〉

=〈vi,t,y−yi,t+1〉+ 〈∇yg(xi,t,yi,t)− vi,t,y − yi,t+1〉+ 〈∇yg(xi,t,yi,t),yi,t+1 − yi,t〉
=〈vi,t,y−yi,t+1〉+ 〈∇yg(xi,t,yi,t)− vi,t,y − yi,t+1〉+ 〈∇yg(xi,t,yi,t),yi,t+1 − yi,t〉

− 1

4β
‖yi,t+1 − yi,t‖2 +

1

4β
‖yi,t+1 − yi,t‖2. (23)

With β ≤ 1/2Lg , it follows that

1

4β
‖yi,t+1 − yi,t‖2 ≥

Lg
2
‖yi,t+1 − yi,t‖2

≥ g(xi,t,yi,t+1)−g(xi,t,yi,t)− 〈∇yg(xi,t,yi,t),yi,t+1 − yi,t〉. (24)

Combining (23) and (24), with the update yi,t+1 − yi,t = −βvi,t, we have:

g(xi,t,y)− g(xi,t,yi,t+1)− µg
2
‖y − yi,t‖2

≥〈vi,t,y − yi,t+1〉+ 〈∇yg(xi,t,yi,t)− vi,t,y − yi,t+1〉 −
1

4β
‖yi,t+1 − yi,t‖2

=〈vi,t,y − yi,t〉+ 〈vi,t,yi,t − yi,t+1〉+ 〈∇yg(xi,t,yi,t)− vi,t,y − yi,t+1〉 −
β

4
‖vi,t‖2

=〈vi,t,y − yi,t〉+ β‖vi,t‖2 + 〈∇yg(xi,t,yi,t)− vi,t,y − yi,t+1〉 −
β

4
‖vi,t‖2

=〈vi,t,y − yi,t〉+ 〈∇yg(xi,t,yi,t)− vi,t,y − yi,t+1〉+
3β

4
‖vi,t‖2. (25)

Let y = y∗i,t, we have

g(xi,t,y
∗
i,t)− g(xi,t,yi,t+1)− µg

2
‖y∗i,t − yi,t‖2

≥〈vi,t,y∗i,t − yi,t〉+ 〈∇yg(xi,t,yi,t)− vi,t,y
∗
i,t − yi,t+1〉+

3β

4
‖vi,t‖2

(a)

≥〈vi,t,y∗i,t − yi,t〉 −
2

µg
‖∇yg(xi,t,yi,t)− vi,t‖2 −

µg
8
‖y∗i,t − yi,t+1‖+

3β

4
‖vi,t‖2

(b)

≥〈vi,t,y∗i,t − yi,t〉 −
2

µg
‖∇yg(xi,t,yi,t)− vi,t‖2

− µg
4
‖y∗i,t − yi,t‖2 −

µg
4
‖yi,t − yi,t+1‖2 +

3β

4
‖vi,t‖2

(c)
=〈vi,t,y∗i,t − yi,t〉 −

2

µg
‖∇yg(xi,t,yi,t)− vi,t‖2 −

µg
4
‖y∗i,t − yi,t‖2 + (

3β

4
− µgβ

2

4
)‖vi,t‖2,

(26)

where (a) follows from −〈x,y〉 ≤ 1
2c‖x‖

2 + c
2‖y‖

2 and c = µ
4 , (b) is due to ‖x + y‖2 ≤ 2‖x‖2 +

2‖y‖2, and (c) is from yi,t+1 − yi,t = −βvi,t.
Since g(xi,t,y

∗
i,t) ≤ g(xi,t,yi,t+1) and mutiplying 2β on both sides of Eqs. 26, we have

−µgβ
2
‖y∗i,t−yi,t‖2 ≥ 2β〈vi,t,y∗i,t−yi,t〉 −

4β

µg
‖∇yg(xi,t,yi,t)−vi,t‖2+(

3β2

2
−µgβ

3

2
)‖vi,t‖2.

(27)
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Then, we have

−2β〈vi,t,yi,t − y∗i,t 〉 ≤ −
µgβ

2
‖y∗i,t−yi,t‖2 +

4β

µg
‖∇yg(xi,t,yi,t)−vi,t‖2−(

3β2

2
−µgβ

3

2
)‖vi,t‖2.

(28)

Next, combining (22) and (28) and setting β, we have

‖yi,t+1 − y∗i,t‖2 ≤(1− µgβ

2
)‖y∗i,t − yi,t‖2 +

4β

µg
‖∇yg(xi,t,yi,t)− vi,t‖2

+ (
β2

2
−µgβ

3

2
)‖vi,t‖2

≤(1− µgβ

2
)‖y∗i,t − yi,t‖2 +

4β

µg
‖∇yg(xi,t,yi,t)− vi,t‖2 +

β2

2
‖vi,t‖2. (29)

Then, it holds that

‖yi,t+1 − y∗i,t+1‖2 = ‖yi,t+1 − y∗i,t + y∗i,t − y∗i,t+1‖2

(a)

≤ (1 +
µgβ

4
)‖yi,t+1 − y∗i,t‖2 + (1 +

4

µgβ
)‖y∗i,t − y∗i,t+1‖2

(b)

≤(1 +
µgβ

4
)‖yi,t+1 − y∗i,t‖2 + (1 +

4

µgβ
)L2

y‖xi,t − xi,t+1‖2

(c)

≤(1 +
µgβ

4
)(1− µgβ

2
)‖y∗i,t − yi,t‖2 + (1 +

µgβ

4
)
4β

µg
‖∇yg(xi,t,yi,t)− vi,t‖2

− (1 +
µgβ

4
)
β2

2
‖vi,t‖2 + (1 +

4

µgβ
)L2

y‖xi,t − xi,t+1‖2

(d)

≤ (1−µgβ
4

)‖y∗i,t−yi,t‖2 +
9β

2µg
‖∇yg(xi,t,yi,t)− vi,t‖2 − (1 +

µgβ

4
)
β2

2
‖vi,t‖2

+
5L2

y

µgβ
‖xi,t − xi,t+1‖2, (30)

where (a) follows from ‖x+ y‖2 ≤ (1 + 1/c)‖x‖2 + (1 + c)‖y‖2 and c = µgβ/4, (b) follows from
Assumption 3, (c) follows from plugging (29), and (d) due to the facts that:

(1 +
µgβ

4
)(1− µgβ

2
) = 1 +

µgβ

4
− µgβ

2
−
µ2
gβ

2

8
≤ 1− µgβ

4
,

(1 +
µgβ

4
)
4β

µg
≤ (1 +

µg
4
· 1

2µg
)
4β

µg
=

9β

2µg
,

1 +
4

µgβ
≤ 1

µgβ
+

4

µgβ
=

5

µgβ
. (31)

Plugging (31) into (30) yields:

‖yi,t+1 − y∗i,t+1‖2 − ‖y∗i,t − yi,t‖2

≤− µgβ

4
‖y∗i,t − yi,t‖2 +

9β

2µg
‖∇yg(xi,t,yi,t)− vi,t‖2

− (1 +
µgβ

4
)
β2

2
‖vi,t‖2 +

5L2
y

µgβ
‖xi,t − xi,t+1‖2. (32)

This completes the proof of the lemma.

Step 3:
Lemma 7 (Iterates Contraction). The following contraction properties of the iterates hold:

‖xt − 1⊗ x̄t‖2 ≤(1 + c1)λ2‖xt−1 − 1⊗ x̄t−1‖2 + (1 +
1

c1
)α2‖x̃t−1 − xt−1‖2,

17



Under review as a conference paper at ICLR 2023

‖ut − 1⊗ ūt‖2 ≤(1 + c2)λ2‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)‖pt − pt−1‖2. (33)

where c1 and c2 are arbitrary positive constants. Additionally, we have

‖xt − xt−1‖2 ≤ 8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2.
‖yt − yt−1‖2 ≤ β2‖vt−1‖2, (34)

Proof. Define M̃ = M⊗ Im. First for the iterates xt, we have the following contraction:

‖M̃xt − 1⊗ x̄t‖2 = ‖M̃(xt − 1⊗ x̄t)‖2 ≤ λ2‖xt − 1⊗ x̄t‖2, (35)

This is because xt − 1⊗ xt is orthogonal 1, which is the eigenvector corresponding to the largest
eigenvalue of M̃, and λ = max{|λ2|, |λm|}. Hence,

‖xt − 1⊗ x̄t‖2 = ‖M̃xt−1 + α(x̃t−1 − xt−1)− 1[x̄t−1 + α(
1

m

m∑
i=1

x̃i − xt−1)]‖2

≤ (1 + c1)λ2‖xt−1 − 1⊗ x̄t−1‖2 + (1 +
1

c1
)α2‖x̃t−1 − xt−1‖2. (36)

For ut, we have

‖ut − 1⊗ ūt‖2

=‖M̃ut−1 + pt − pt−1 − 1⊗
(
ūt−1 + p̄(xi,t,yi,t)− p̄(xi,t−1,yi,t−1)

)
‖2

≤(1 + c2)λ2‖ut−1 − 1⊗ ut−1‖2 + (1 +
1

c2
)‖pt − pt−1

− 1⊗
(
p̄(xi,t,yi,t)− p̄(xi,t−1,yi,t−1)

)
‖2

≤(1 + c2)λ2‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)‖
(
I− 1

n
(11>)⊗ I

)(
pt − pt−1

)
‖2

(a)

≤ (1 + c2)λ2‖ut−1 − 1⊗ ūt−1‖2 + (1 +
1

c2
)‖pt − pt−1‖2. (37)

where (a) is due to ‖I− 1
m (11>)⊗ I‖ ≤ 1.

According to the update, we have

‖xt − xt−1‖2 = ‖M̃xt−1 + α(x̃t−1 − xt−1)− xt−1‖2

=‖(M̃− I)xt−1 + α(x̃t−1 − xt−1)‖2 ≤ 2‖(M̃− I)xt−1‖2 + 2α2‖x̃t−1 − xt−1‖2

=2‖(M̃− I)(xt−1 − 1⊗ x̄t−1)‖2 + 2α2‖x̃t−1 − xt−1‖2

≤8‖(xt−1 − 1⊗ x̄t−1)‖2 + 2α2‖x̃t−1 − xt−1‖2

≤8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2, (38)

‖yi,t − yi,t−1‖2 ≤ β2‖vi,t−1‖2. (39)

Step 4: With the results from Step 1, we have

`(x̄t+1)− `(x̄t)

≤(
αL`
2mr

+
ατ

2rm
)‖xt − 1⊗ x̄t‖2 + (

αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)‖x̃t − 1⊗ x̄t‖2

18
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+ L2 3α

2rm

m∑
i=1

‖y∗i,t − yi,t‖2 +
3α

2rm
‖ut − 1⊗ ūt‖2 − h (x̄t+1) + h (x̄t)

+
3α

2rm
‖ 1

m

m∑
i=1

∇̄f(xi,t,yi,t)− ūt‖2. (40)

With the results from Step 2, we have

‖yi,t+1 − y∗i,t+1‖2 − ‖yi,t − y∗i,t‖2

≤ −µgβ
4
‖y∗i,t − yi,t‖2 +

9β

2µg
‖∇yg(xi,t,yi,t)− vi,t‖2

− (1 +
µgβ

4
)
β2

2
‖vi,t‖2 +

5L2
y

µgβ
‖xi,t − xi,t+1‖2. (41)

Combing (40) and (41) and telescoping the inequality, we have

`(x̄T+1)− `(x̄0) + h (x̄T+1)− h (x̄0) +
µg(1− λ)

20(8 + 4α2)L2
y

√
β
[
‖yT+1 − y∗T+1‖2 − ‖y∗0 − y0‖2

]
≤(

αL`
2mr

+
ατ

2rm
)

T∑
t=0

‖xt − 1⊗ x̄t‖2 + (
αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)

T∑
t=0

‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

T∑
t=0

‖y∗t − yt‖2 +
3α

2rm

T∑
t=0

‖ut − 1⊗ ūt‖2

+
3α

2rm

T∑
t=0

‖ 1

m

m∑
i=1

∇̄f(xt,yt)− ūt‖2 −
µgβ

3/2

4

µg(1− λ)

20(8 + 4α2)L2
y

T∑
t=0

‖y∗t−yt‖2

+
µg(1− λ)

20(8 + 4α2)L2
y

√
β[

9β

2µg

T∑
t=0

‖∇yg(xt,yt)− vt‖2 − (1 +
µgβ

4
)
β2

2

T∑
t=0

‖vt‖2

+
5L2

y

µgβ

T∑
t=0

‖xt − xt+1‖2]

≤(
αL`
2mr

+
ατ

2rm
)

T∑
t=0

‖xt − 1⊗ x̄t‖2 + (
αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)

T∑
t=0

‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

T∑
t=0

‖y∗t − yt‖2 +
3α

2rm

T∑
t=0

‖ut − 1⊗ ūt‖2

+
3α

2rm

T∑
t=0

‖ 1

m

m∑
i=1

∇̄f(xt,yt)− ūt‖2 −
µgβ

3/2

4

µg(1− λ)

20(8 + 4α2)L2
y

T∑
t=0

‖y∗t−yt‖2

+
µg(1− λ)

20(8 + 4α2)L2
y

√
β[

9β

2µg

T∑
t=0

‖∇yg(xt,yt)− vt‖2 − (1 +
µgβ

4
)
β2

2

T∑
t=0

‖vt‖2

+
5L2

y

µgβ

T∑
t=0

(8‖(xt − 1⊗ x̄t)‖2 + 4α2‖(xt − 1⊗ x̄t)‖2 + 4α2‖(x̃t − 1⊗ x̄t)‖2)], (42)

where the last inequality follows from Eqs. (34).

Proof of Theorem 1

From the variance technique in Prometheus, we have

Et‖∇̄f(xi,t,yi,t)− pi(xi,t,yi,t)‖2

=Et‖∇̄f(xi,t,yi,t)− pi(xi,t,yi,t) + Eξ̄i,t [pi(xi,t,yi,t)]− Eξ̄i,t [pi(xi,t,yi,t)]‖
2
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=Et‖pi(xi,t,yi,t)− Eξ̄i,t [pi(xi,t,yi,t)]‖
2 + Et‖∇̄f(xi,t,yi,t)− Eξ̄i,t [pi(xi,t,yi,t)]‖

2

≤Et‖pi(xi,t,yi,t)− Eξ̄i,t [pi(xi,t,yi,t)]‖
2 + (

CgxyCfy
µg

(
1− µg

Lg

)K
)2, (43)

Moreover, with t ∈ ((nt − 1) q, ntq − 1] ∩ Z, we have

Et‖pi(xi,t,yi,t)− Eξ̄i,t [pi(xi,t,yi,t)]‖
2

=Et‖pi(xi,t−1,yi,t−1) +
1

|S|

S∑
i=1

[
∇̄g(xi,k,yi,k; ξ̄i,t)− ∇̄g(xi,k−1,yi,k−1; ξ̄i,t)

]
− Eξ̄i,t [pi(xi,t,yi,t)] + Eξ̄i,t [pi(xi,t−1,yi,t−1)]− Eξ̄i,t [pi(xi,t−1,yi,t−1)]‖2

=Et‖pi(xi,t−1,yi,t−1)− Eξ̄i,t [pi(xi,t−1,yi,t−1)]‖2 + ‖ 1

|S|

S∑
i=1

[
∇̄g(xi,k,yi,k; ξ̄i,t)

− ∇̄g(xi,k−1,yi,k−1; ξ̄i,t)
]
− Eξ̄i,t [pi(xi,t,yi,t)] + Eξ̄i,t [pi(xi,t−1,yi,t−1)]‖2

(b

≤Et‖pi(xi,t−1,yi,t−1)− Eξ̄i,t [pi(xi,t−1,yi,t−1)]‖2

+
1

|S|
L2
fEt(‖xi,t − xi,t−1‖2 + ‖yi,t − yi,t−1‖2), (44)

where the last inequality use the mean variance theorem.

Telescoping over t from ((nt − 1)q + 1 to t, where t ≤ ntq − 1, we obtain that

Et‖pi(xi,t,yi,t)− Eξ̄i,t [pi(xi,t,yi,t)]‖
2

≤Et‖pi(xi,(nt−1)q,yi,(nt−1)q)− Eξ̄i,t [pi(xi,(nt−1)q,yi,(nt−1)q)]‖2

+
1

|S|
L2
f

t−1∑
t=(nt−1)q

Et(‖xi,t − xi,t−1‖2 + ‖yi,t − yi,t−1‖2 (45)

Next, for ‖pt − pt−1‖2, we have the following cases:

Case 1: t ∈ ((nt − 1) q, ntq − 1] ∩ Z:

E‖pt − pt−1‖2 =

m∑
i=1

E

∥∥∥∥∥∥ 1

|Si,t|
∑
j∈Si,t

∇xf
(
xi,t,yi,t; ξ̄j,t

)
−∇xf

(
xi,t−1,yi,t−1; ξ̄j,t

)∥∥∥∥∥∥
2

(46)

≤ 1

|Si,t|2
m∑
i=1

∑
j∈Si,t

E
∥∥∇xf

(
xi,t,yi,t; ξ̄j,t

)
−∇xf

(
xi,t−1,yi,t−1; ξ̄j,t

)∥∥2
(47)

≤ L2
f

m∑
i=1

E ‖xi,t−1 − xi,t‖2 + L2
f

m∑
i=1

E
∥∥yi,t−1 − yi,t

∥∥2

≤L2
f (‖xt − xt−1‖2 + β2‖vt−1‖2). (48)

Case 2: t = ntq:

E‖pt − pt−1‖2

=E‖pt − pt−1 − Eξ̄i,tpi(xi,t,yi,t) + Eξ̄i,tpi(xi,t,yi,t)

− Eξ̄i,t [pi(xi,t−1,yi,t−1) + Eξ̄i,tpi(xi,t−1,yi,t−1)‖2

≤3E‖pt − Eξ̄i,t [pi(xi,t,yi,t)‖
2 + 3E‖pt−1 − Eξ̄i,t [pi(xi,t−1,yi,t−1)‖2

+ 3L2
fE(‖xt − xt−1‖2 + β2‖vt−1‖2)

(a)

≤3E
∥∥∥pntq − Eξ̄i,tpi(xi,ntq,yi,ntq)

∥∥∥2

+ 3L2
fβ

2E ‖vntq−1‖2
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+ 3E
∥∥∥p(xi,(nt−1)q,yi,(nt−1)q − Eξ̄i,tpi(xi,(nt−1)q,yi,(nt−1)q)

∥∥∥2

+

ntq−1∑
r′=(nt−1)q+1

3L2
f

|S|
E
(
‖xr′ − xr′−1‖2 + ‖yr′ − yr′−1‖2

)
+ 3L2

fE ‖xntq−1 − xntq‖
2
,

(49)

where (a) is from (45) and set t = ntq.

Telescoping from r = (nt − 1) q + 1 to ntq and set |S| = q, we have

ntq∑
r=(nt−1)q+1

E‖pr − pr−1‖2

≤3(q + 1)E
∥∥∥pntq − Eξ̄i,tpi(xi,ntq,yi,ntq)

∥∥∥2

+ 3(q + 1)E
∥∥∥p(nt−1)q − Eξ̄i,tpi(xi,(nt−1)q,yi,(nt−1)q)

∥∥∥2

+

ntq∑
r=(nt−1)q+1

4L2
f

q
E
(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)

=

ntq∑
r=(nt−1)q+1

4L2
f

q
E
(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
. (50)

Since E
∥∥∥pntq − Eξ̄i,tpi(xi,ntq,yi,ntq)

∥∥∥2

= E
∥∥∥p(nt−1)q − Eξ̄i,tpi(xi,(nt−1)q,yi,(nt−1)q)

∥∥∥2

= 0,
and with eqs.(46),we have

T∑
t=1

‖pt − pt−1‖2 ≤
T∑
t=1

[
4L2

fE ‖xt − xt−1‖2 + 4L2
f ‖yt − yt−1‖2

]
(51)

Since Et‖pi(xi,(nt−1)q,yi,(nt−1)q) − Eξ̄i,t [pi(xi,(nt−1)q,yi,(nt−1)q)]‖2 = 0, |S| = q, we can
conclude that

T∑
t=0

‖ 1

m

m∑
i=1

∇̄f(xi,t,yi,t)− ūt‖2

=

T∑
t=0

‖ 1

m

m∑
i=1

∇̄f(xi,t,yi,t)− p̄t‖2 =

T∑
t=0

‖∇̄f(xi,t,yi,t)− pi(xi,t,yi,t)‖2

≤L2
f

T∑
t=0

(‖xt − xt−1‖2 + ‖yt − yt−1‖2) + (
CgxyCfy
µg

(
1− µg

Lg

)K
)2 · T

≤L2
f

T∑
t=0

(8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2) + (
CgxyCfy
µg

(
1− µg

Lg

)K
)2 · T, (52)

where the last inequality follows from (34).

Similarly, we have

T∑
t=0

‖ 1

m

m∑
i=1

∇g(xi,t,yi,t)− vi,t‖2
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≤L2
f

T∑
t=0

(‖xt − xt−1‖2 + ‖yt − yt−1‖2)

≤L2
f

T∑
t=0

(8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2). (53)

Besides, with the results from Step 3, the update rule of pi(xi,t,yi,t) and (51) , we have

‖xt − 1⊗ x̄t‖2 ≤ (1 + c1)λ2‖xt−1 − 1⊗ x̄t−1‖2 + (1 +
1

c1
)α2‖x̃t−1 − xt−1‖2,

‖ut − 1⊗ ūt‖2 − ‖ut−1 − 1⊗ ūt−1‖2 ≤ ((1 + c2)λ2 − 1)‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)4L2

f (‖xt − xt−1‖2 + β2
m∑
i=1

‖vi,t−1‖2)

(a)

≤ ((1 + c2)λ2 − 1)‖ut−1 − 1⊗ ūt−1‖2 + (1 +
1

c2
)4L2

f (8‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2), (54)

where (a) follows from eqs.(38).

Then, we have

‖xT+1 − 1⊗ x̄T+1‖2 − ‖x0 − 1⊗ x̄0‖2

≤((1 + c1)λ2 − 1)

T+1∑
t=1

‖xt−1 − 1⊗ x̄t−1‖2 + (1 +
1

c1
)α2

T+1∑
t=1

‖x̃t−1 − 1⊗ x̄t−1‖2. (55)

‖uT+1 − 1⊗ ūT+1‖2 − ‖u0 − 1⊗ ū0‖2

≤((1 + c2)λ2 − 1)

T+1∑
t=1

‖ut−1 − 1⊗ ūt−1‖2 + (1 +
1

c2
)4L2

f

T+1∑
t=1

(8‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2‖vt−1‖2). (56)

Combing (55), (56), and (42), we have

E{`(x̄T+1)− `(x̄0) + h(x̄T+1)− h(x̄0) +
µg(1− λ)

20(8 + 4α2)L2
y

√
β
[
‖yT+1 − y∗T+1‖2 − ‖y∗0 − y0‖2

]
+

1√
β

[‖xT+1 − 1⊗ x̄T+1‖2 − ‖x0 − 1⊗ x̄0‖2] + β[‖uT+1 − 1⊗ ūT+1‖2 − ‖u0 − 1⊗ ū0‖2]}

≤(
αL`
2mr

+
ατ

2rm
)

T∑
t=0

‖xt − 1⊗ x̄t‖2 + (
αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)

T∑
t=0

‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

T∑
t=0

‖y∗t − yt‖2 +
3α

2rm

T∑
t=0

‖ 1

m

m∑
i=1

∇̄f(xt,yt)− ūt‖2

+
3α

2rm

T∑
t=0

‖ 1

m

m∑
i=1

∇g(xt,yt)− vt‖2 −
µgβ

4

µg(1− λ)

20(8 + 4α2)L2
y

√
β

T∑
t=0

‖y∗t−yt‖2

+
µg(1− λ)

20(8 + 4α2)L2
y

√
β[

9β

2µ

T∑
t=0

(L2
f

T∑
t=0

(8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2
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+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2))− (1 +
µgβ

4
)
β2

4

T∑
t=0

‖vt‖2

+
5L2

y

µgβ

T∑
t=0

(8‖(xt − 1⊗ x̄t)‖2 + 4α2‖(xt − 1⊗ x̄t)‖2 + 4α2‖(x̃t − 1⊗ x̄t)‖2)]

+
1√
β

((1 + c1)λ2 − 1)

T+1∑
t=1

E‖xt−1 − 1⊗ x̄t−1‖2 +
1√
β

(1 +
1

c1
)α2

T+1∑
t=1

E‖x̃t−1 − xt−1‖2

+ β((1 + c2)λ2 − 1)

T+1∑
t=1

E‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)βL2

f

T+1∑
t=1

(8E‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2E‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2E‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2E‖vt−1‖2)

(a)

≤ (
αL`
2mr

+
ατ

2rm
)

T∑
t=0

‖xt − 1⊗ x̄t‖2 + (
αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)

T∑
t=0

‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

T∑
t=0

‖y∗t − yt‖2 +
3α

2rm
[L2
f

T∑
t=0

(8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2) + (
CgxyCfy
µg

(
1− µg

Lg

)K
)2 · T ]

+
3α

2rm

T∑
t=0

[L2
f

T∑
t=0

(8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2)]− µgβ

4

µg(1− λ)

20(8 + 4α2)L2
y

√
β

T∑
t=0

‖y∗t−yt‖2

+
µg(1− λ)

20(8 + 4α2)L2
y

√
β[

9β

2µ

T∑
t=0

(L2
f

T∑
t=0

(8‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2))− (1 +
µgβ

4
)
β2

4

T∑
t=0

‖vt‖2

+
5L2

y

µgβ

T∑
t=0

(8‖(xt − 1⊗ x̄t)‖2 + 4α2‖(xt − 1⊗ x̄t)‖2 + 4α2‖(x̃t − 1⊗ x̄t)‖2)]

+
1√
β

((1 + c1)λ2 − 1)

T+1∑
t=1

E‖xt−1 − 1⊗ x̄t−1‖2 +
1√
β

(1 +
1

c1
)α2

T+1∑
t=1

E‖x̃t−1 − xt−1‖2

+ β((1 + c2)λ2 − 1)

T+1∑
t=1

E‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)βL2

f

T+1∑
t=1

(8E‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2E‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2E‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2E‖vt−1‖2), (57)

where (a) follows from (52) and (53). Next, choosing c1 = c2 = 1
λ − 1, we have

`(x̄T+1)− `(x̄0) + h(x̄T+1)− h(x̄0) +
µg(1− λ)

20(8 + 4α2)L2
y

√
β
[
‖ȳT+1 − y∗T+1‖2 − ‖y∗0 − ȳ0‖2

]
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+
1√
β

[‖xT+1 − 1⊗ x̄T+1‖2 − ‖x0 − 1⊗ x̄0‖2] + β[‖uT+1 − 1⊗ ūT+1‖2 − ‖u0 − 1⊗ ū0‖2]

≤C ′1
T∑
t=0

‖xt − 1⊗ x̄t‖2 + C ′2

T∑
t=0

‖x̃t − 1⊗ x̄t‖2 + C ′3

T∑
t=0

‖yt − y∗t ‖2

+ C ′4

T∑
t=0

‖ut − 1⊗ ūt‖2 + C ′5

T∑
t=0

‖vt‖2

+
3α

2rm
(
CgxyCfy
µg

(
1− µg

Lg

)K
)2 · T, (58)

where the constants are

C ′1 =(
αL`
2mr

+
ατ

2rm
) + (8 + 4α2)[

5L2
y

µgβ

µg(1− λ)

20(8 + 4α2)L2
y

√
β +

µg(1− λ)

20(8 + 4α2)L2
y

√
βL2

f

9β

2µ

+
3α

2rm
L2
f +

1

1− λ
L2
fβ] + (λ− 1)

1√
β
, (59)

C ′2 =(
αr

m
+
ατr

2m
+
α2L`
2m
−ατ
m

)+4α2[
5L2

y

µgβ

µg(1− λ)

20(8 + 4α2)L2
y

√
β +

µg(1− λ)

20(8 + 4α2)L2
y

√
βL2

f

9β

2µ

+
3α

2rm
L2
f+

1

1− λ
L2
fβ] +

1

1− λ
α2 1√

β
, (60)

C ′3 =L2 3α

2rm
− µgβ

4

µg(1− λ)

20(8 + 4α2)L2
y

√
β, (61)

C ′4 =
3α

2rm
+ (λ− 1)β, (62)

C ′5 =− µg(1− λ)

20(8 + 4α2)L2
y

√
β(1 +

µgβ

4
)
β2

2
+ β3 1

1− λ
L2
f

+ β2(
µg(1− λ)

20(8 + 4α2)L2
y

√
βL2

f

9β

2µ
+

3α

2rm
L2
f ). (63)

To ensure C ′1 ≤ 1−λ
4 , we have

C ′1 =(
αL`
2mr

+
ατ

2rm
) + (8 + 4α2)[

5L2
y

µgβ

µg(1− λ)

20(8 + 4α2)L2
y

√
β +

µg(1− λ)

20(8 + 4α2)L2
y

√
βL2

f

9β

2µ

+
3α

2rm
L2
f +

1

1− λ
L2
fβ] + (λ− 1)

1√
β

≤(
αL`
2mr

+
ατ

2rm
) + (8 + 4α2)[

5L2
y

µgβ

µg(1− λ)

20(8 + 4α2)L2
y

√
β +

µg(1− λ)

160L2
y

√
βL2

f

9β

2µ

+
3α

2rm
L2
f +

1

1− λ
L2
fβ] + (λ− 1)

1√
β

≤[
1− λ
4
√
β

+ (
1− λ
4
√
β

+
1− λ
8
√
β

+
1− λ
16
√
β

+
1− λ
16β

) + (λ− 1)
1√
β

]

≤[
1− λ
4
√
β

+
1− λ
4
√
β

+
1− λ
8
√
β

+
1− λ
16
√
β

+
1− λ
16
√
β

+ (λ− 1)
1√
β

] = −1− λ
4

1√
β
, (64)

where α ≤ min{ (1−λ)m

2
√
β(L`+τ)

τ
6+3τ ,

(1−λ)m

8
√
βL2

f

τ
6+3τ }, β ≤ min{

√
40Ly
3Lf

, 1−λ
16Lf
}, r = τ

6+3τ .

To ensure C ′2 ≤ 0, we have

C ′2 = (
αr

m
+
ατr

2m
+
α2L`
2m
−ατ
m

)+4α2[
5L2

y

µgβ

µg(1− λ)

20(8 + 4α2)L2
y

√
β +

µg(1− λ)

20(8 + 4α2)L2
y

√
βL2

f

9β

2µ

+
3α

2rm
L2
f+

1

1− λ
L2
fβ] +

1

1− λ
α2 1√

β
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≤ (
αr

m
+
ατr

2m
+
α2L`
2m
−ατ
m

)+4α2[
1

β

(1− λ)

32

√
β +

(1− λ)

160L2
y

√
βL2

f

9β

2

+
3α

2rm
L2
f+

1

1− λ
L2
fβ] +

1

1− λ
α2 1√

β

≤ (
ατ

12m
+

ατ

12m
) +

ατ

6m
− ατ

m
+

ατ

12m
+

ατ

12m
+

ατ

12m
+
ατ

6m
+

ατ

12m
= − ατ

6m
, (65)

where α ≤ min{ τ
3L`

, 8
√
βτ

12m(1−λ) ,
20L2

yτ

27(1−λ)β1.5L2
fm
, τ(1−λ)

24mL2
fβ
, τ
√
β(1−λ)
12m }, r = τ

6+3τ .

To ensure C ′3 ≤ 0, we have

C3 = L2 3α

2rm
− µgβ

4

µg(1− λ)

20(8 + 4α2)L2
y

√
β

≤
µ2
gβ

8

(1− λ)

240L2
y

√
β − µgβ

4

µg(1− λ)

20(8 + 4α2)L2
y

√
β

≤ µgβ

8

µg(1− λ)

20(8 + 4α2)L2
y

√
β − µgβ

4

µg(1− λ)

20(8 + 4α2)L2
y

√
β

≤ −µgβ
8

µg(1− λ)

20(8 + 4α2)L2
y

√
β ≤ −β

1.5

8

µ2
g(1− λ)

240L2
y

, (66)

where α ≤ µ2
gβ

1.5

8
(1−λ)

2880L2
yL

2 .

To ensure C ′4 ≤ 0, we have

C ′4 =
3α

2rm
+ (λ− 1)β ≤ 0, (67)

where α ≤ (1− λ)β 2m
3

τ
6+3τ , r = τ

6+3τ .

To ensure C ′5 ≤ 0, we have

C ′5 =− µg(1− λ)

20(8 + 4α2)L2
y

√
β(1 +

µgβ

4
)
β2

2
+ β3 1

1− λ
L2
f + β2(

µg(1− λ)

20(8 + 4α2)L2
y

√
βL2

f

9β

2µ
+

3α

2rm
L2
f )

≤− µg(1− λ)

240L2
y

β2.5

2
+ β3 1

1− λ
L2
f + β2(

(1− λ)

160L2
y

√
βL2

f

9β

2
+

3α

2rm
L2
f )

≤− µg(1− λ)

240L2
y

β2.5

2
+
µg(1− λ)

240L2
y

β2.5

6
+
µg(1− λ)

240L2
y

β2.5

6
+
µg(1− λ)

240L2
y

β2.5

6
≤ 0, (68)

where β ≤ min{( µg(1−λ)2

1440L2
yL

2
f

)2,
2µg

81L2
f
}, α ≤ µg(1−λ)

240L2
y

β2.5

9L2
f
m τ

6+3τ , r = τ
6+3τ .

With the above conditions, we have

1

T

T∑
t=0

(
E‖xt − 1⊗ x̄t‖2 + E‖x̃t − 1⊗ x̄t‖2 + E‖yt − y∗t ‖2

)
≤ E [p0 − p∗]

T min
{

1−λ
4

1√
β
, ατ6m ,

β1.5

8

µ2
g(1−λ)

240L2
y

} + C̄ ′σ = O(1/T ), (69)

where pt = `(x̄t)+h(x̄t)+
µg(1−λ)

20(8+4α2)L2
y

√
β‖ȳt−y∗t ‖2+β‖ut−1⊗ūt‖2+ 1√

β
‖xt−1⊗x̄t‖2), C̄ ′σ =

3α
2rmC

2
gxy

Cf2y

(
1− µgLg

)2K

min

{
1−λ
4

1√
β
, ατ6m ,

β1.5

8

µ2g(1−λ)

240L2
y

} .

We would like to note that the term C̄ ′σ decays exponentially fast with respect to K. To show the
sample complexity, we note that the number of sample complecomplexity per agent in the outer loops
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can be calculated as: dTq e · n. Also, the number of samples using in the inner loop can be calculated
as TS. Hence, the total sample complexity can be calculated as:

dT
q
en+ T · S ≤ T + q

q
n+ T ·K

√
M = T

√
n+ n+ T ·K

√
n = O(

√
nKε−1 + n).

Thus, the overall SFO complexity is O(
√
nKε−1 + n). This completes the proof.

Proof of Proposition 3

Based on stochastic gradient estimator, we have

Eξ‖
1

m

m∑
i=1

∇f(xi,t,yi,t)− ūt‖2 = Eξ‖
1

m

m∑
i=1

∇f(xi,t,yi,t)−
1

m

m∑
i=1

pi(xi,t,yi,t)‖2

=Eξ‖
1

m

m∑
i=1

∇f(xi,t,yi,t)−
1

m

m∑
i=1

∇̄f(xi,t,yi,t; ξ̄i0)‖2

=
1

m

m∑
i=1

Eξ‖∇f(xi,t,yi,t)− ∇̄f(xi,t,yi,t; ξ̄i0)‖2

=
1

m

m∑
i=1

Eξ‖∇f(xi,t,yi,t)− Eξ[∇̄f(xi,t,yi,t; ξ̄i0)] + Eξ[∇̄f(xi,t,yi,t; ξ̄i0)]− ∇̄f(xi,t,yi,t; ξ̄i0)‖2

(a)

≤ 2

m

m∑
i=1

Eξ‖∇f(xi,t,yi,t)− Eξ[∇̄f(xi,t,yi,t; ξ̄i0)]‖2

+
2

m

m∑
i=1

‖Eξ[∇̄f(xi,t,yi,t; ξ̄i0)]− ∇̄f(xi,t,yi,t; ξ̄i0)‖2

(b)

≤2(
CgxyCfy
µg

(
1− µg

Lg

)K
)2 + 2σ2

f , (70)

where (a) follows from the triangle inequality and (b) is from Assumption 3(b) and Lemma 3.

Besides, with the results from Step 3 and the update rule of pi(xi,t,yi,t), we have

‖xt − 1⊗ x̄t‖2 ≤ (1 + c1)λ2‖xt−1 − 1⊗ x̄t−1‖2 + (1 +
1

c1
)α2‖x̃t−1 − xt−1‖2,

‖ut − 1⊗ ūt‖2 − ‖ut−1 − 1⊗ ūt−1‖2 ≤ ((1 + c2)λ2 − 1)‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)L2

f (‖xt − xt−1‖2 + β2
m∑
i=1

‖vi,t−1‖2)

(a)

≤ ((1 + c2)λ2 − 1)‖ut−1 − 1⊗ ūt−1‖2 + (1 +
1

c2
)L2

f (8‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2
m∑
i=1

‖vi,t−1‖2), (71)

where (a) follows from Eq. (38).

Additionally, we have

Eζ‖∇g(xi,yi)− vi,t‖2 = ‖∇g(xi,yi)− g(xi,yi; ζi0)‖2 = σ2
g . (72)

Thus, combing (42)-(71), we can conclude that

E{`(x̄T+1)−`(x̄0)+h(x̄T+1)−h(x̄0)+
µg(1− λ)

20m(8+4α2)L2
y

√
β
[
‖yT+1−y∗T+1‖2−‖y∗0−y0‖2

]
+

1√
β

[‖xT+1−1⊗ x̄T+1‖2−‖x0 − 1⊗ x̄0‖2]+β[‖uT+1−1⊗ ūT+1‖2−‖u0 − 1⊗ ū0‖2]}
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≤(
αL`
2mr

+
ατ

2rm
)

T∑
t=0

‖xt − 1⊗ x̄t‖2 + (
αr

m
+
ατr

2m
+
α2L`
2m

− ατ

m
)

T∑
t=0

‖x̃t − 1⊗ x̄t‖2

+ L2 3α

2rm

m∑
i=1

T∑
t=0

‖y∗t − yt‖2 +
3α

2rm

T∑
t=0

‖ut − 1⊗ ūt‖2

+
3α

2rm

T∑
t=0

‖ 1

m

m∑
i=1

∇̄f(xt,yt)− ūt‖2 −
µgβ

3/2

4

µg(1− λ)

20m(8 + 4α2)L2
y

T∑
t=0

‖y∗t−yt‖2

+
µg(1− λ)

20m(8 + 4α2)L2
y

√
β[

9β

2µg

T∑
t=0

‖∇yg(xt,yt)− vt‖2 − (1 +
µgβ

4
)
β2

2

T∑
t=0

‖vt‖2

+
5L2

y

µgβ

T∑
t=0

(8‖(xt − 1⊗ x̄t)‖2 + 4α2‖(xt − 1⊗ x̄t)‖2 + 4α2‖(x̃t − 1⊗ x̄t)‖2)]

+
1√
β

((1 + c1)λ2 − 1)

T+1∑
t=1

E‖xt−1 − 1⊗ x̄t−1‖2 +
1√
β

(1 +
1

c1
)α2

T+1∑
t=1

E‖x̃t−1 − xt−1‖2

+ β((1 + c2)λ2 − 1)

T+1∑
t=1

E‖ut−1 − 1⊗ ūt−1‖2

+ (1 +
1

c2
)βL2

f

T+1∑
t=1

(8E‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4α2E‖(xt−1 − 1⊗ x̄t−1)‖2 + 4α2E‖(x̃t−1 − 1⊗ x̄t−1)‖2 + β2E‖vt−1‖2). (73)

Choosing c1 = c2 = 1
λ − 1, we have

E{`(x̄T+1)− `(x̄0) + h(x̄T+1)− h(x̄0)

+
µg(1− λ)

20m(8 + 4α2)L2
y

√
β
[
‖ȳT+1 − y∗T+1‖2 − ‖y∗0 − ȳ0‖2

]
+

1√
β

[‖xT+1 − 1⊗ x̄T+1‖2

− ‖x0 − 1⊗ x̄0‖2] + β[‖uT+1 − 1⊗ ūT+1‖2 − ‖u0 − 1⊗ ū0‖2]}

≤C1

T∑
t=0

E‖xt − 1⊗ x̄t‖2 + C2

T∑
t=0

E‖x̃t − 1⊗ x̄t‖2 + C3

T∑
t=0

E‖yt − y∗t ‖2

+ C4

T∑
t=0

E‖ut − 1⊗ ūt‖2 + C5

T∑
t=0

E‖vt‖2

+ [
3α

2rm
(2(

CgxyCfy
µg

(
1− µg

Lg

)K
)2 + 2σ2

f ) +
9β

2µg

µg(1− λ)

20m(8 + 4α2)L2
y

√
βσ2

g ] · T. (74)

where the constants are

C1 = (
αL`
2mr

+
ατ

2rm
) + (8 + 4α2)[

5L2
y

√
β

µgβ

µg(1− λ)

20m(8 + 4α2)L2
y

+
1

1− λ
L2
fβ] + (λ− 1)

1√
β
,

(75)

C2 =(
αr

m
+
ατr

2m
+
α2L`
2m
−ατ
m

)

+4α2[
5L2

y

µgβ

µg(1− λ)

20m(8 + 4α2)L2
y

√
β +

1

1− λ
L2
fβ] +

1

1− λ
α2 1√

β
, (76)

C3 = L2 3α

2rm
− µgβ

4

µg(1− λ)

20m(8 + 4α2)L2
y

√
β, (77)

C4 =
3α

2rm
+ (λ− 1)β, (78)
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C5 = − µg(1− λ)

20m(8 + 4α2)L2
y

√
β(1 +

µgβ

4
)
β2

2
+ β3 1

1− λ
L2
f . (79)

To ensure C1 ≤ 1−λ
4 , we have

C1 = (
αL`
2mr

+
ατ

2rm
) + (8 + 4α2)[

5L2
y

√
β

µgβ

µg(1− λ)

20m(8 + 4α2)L2
y

+
1

1− λ
L2
fβ] + (λ− 1)

1√
β

=(
αL`
2mr

+
ατ

2rm
)

+ (8 + 4α2)[
5L2

y

√
β

µgβ

µg(1− λ)

20m(8 + 4α2)L2
y

] + (8 + 4α2)[
1

1− λ
L2
fβ] + (λ− 1)

1√
β

≤[
1− λ
4
√
β

+
1− λ
4
√
βm

+ (
1− λ

8β
+

1− λ
16β

) + (λ− 1)
1√
β

]

≤[
1− λ
4
√
β

+
1− λ
4
√
β

+ (
1− λ
8
√
β

+
1− λ
8
√
β

) + (λ− 1)
1√
β

] = −1− λ
4

1√
β

(80)

where α ≤ min{ (1−λ)m

2
√
β(L`+τ)

τ
6+3τ ,

1−λ
8βLf

}, β ≤ 1−λ
8Lf

, r = τ
6+3τ .

To ensure C2 ≤ 0, we have

C2 = (
αr

m
+
ατr

2m
+
α2L`
2m
−ατ
m

)

+4α2[
5L2

y

µgβ

µg(1− λ)

20m(8 + 4α2)L2
y

√
β +

1

1− λ
L2
fβ] +

1

1− λ
α2 1√

β

≤ (
αr

m
+
ατr

2m
+
α2L`
2m
−ατ
m

)+α2[
1√
β

(1− λ)

12m
+

4

1− λ
L2
fβ] +

1

1− λ
α2 1√

β

≤ ατ

12m
+

ατ

12m
+
ατ

6m
− ατ

m
+ (

ατ

72m
+

ατ

12m
) +

ατ

6m
≤ − ατ

3m
, (81)

where α ≤ min{ τ
3L`

, τ
√
β

6(1−λ) ,
τ(1−λ)
48mL2

fβ
}, r = τ

6+3τ .

To ensure C3 ≤ 0, we have

C3 = L2 3α

2rm
− µgβ

4

µg(1− λ)

20m(8 + 4α2)L2
y

√
β

≤
µ2
gβ

8

(1− λ)

240L2
y

√
β − µgβ

4

µg(1− λ)

20m(8 + 4α2)L2
y

√
β

≤ µgβ

8

µg(1− λ)

20(8 + 4α2)L2
y

√
β − µgβ

4

µg(1− λ)

20m(8 + 4α2)L2
y

√
β

≤ −µgβ
8

µg(1− λ)

20m(8 + 4α2)L2
y

√
β ≤ −β

1.5

8

µ2
g(1− λ)

240mL2
y

< 0, (82)

where α ≤ µ2
gβ

1.5

8
(1−λ)

2880L2
yL

2 ,

To ensure C4 ≤ 0, we have

C4 =
3α

2rm
+ (λ− 1)β ≤ 0, (83)

where α ≤ (1− λ)β 2rm
3 .

To ensure C5 ≤ 0, we have

C5 =− µg(1− λ)

20m(8 + 4α2)L2
y

√
β(1 +

µgβ

4
)
β2

2
+ β3 1

1− λ
L2
f
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≤− µg(1− λ)

240mL2
y

√
β
β2

2
+ β3 1

1− λ
L2
f ≤ 0, (84)

where β ≤ (1−λ)4µ2
g

4802mL2
yL

2
f

.

With the above conditions, we have

1

T

T∑
t=0

(
E‖xt − 1⊗ x̄t‖2 + E‖x̃t − 1⊗ x̄t‖2

)
≤ E [p0 − p∗] + Cσ · T

T min
{

1−λ
4

1√
β
, ατ3m

} , (85)

where pt = `(x̄t)+h(x̄t)+
µg(1−λ)

20m(8+4α2)L2
y

√
β‖ȳt−y∗t ‖2+β‖ut−1⊗ūt‖2+ 1√

β
‖xt−1⊗x̄t‖2, Cσ =

[ 3α
2rm (2(

CgxyCfy
µg

(
1− µg

Lg

)K
)2 + 2σ2

f ) + 9β1.5(1−λ)
40m(8+4α2)L2

y
σ2
g ].

Let α = O(T−
1
2 ), α ≤ (1−λ)m

4

√
βτ, β = O(T−

1
3 ), r = τ

6+3τ

Thus, we have

C ′σ =

3α
rm ((

CgxyCfy
µg

(
1− µg

Lg

)K
)2 + σ2

f ) + 9β1.5(1−λ)
40m(8+4α2)L2

y
σ2
g

min
{

1−λ
4

1√
β
, ατ3m

}
=

3α
rm ((

CgxyCfy
µg

(
1− µg

Lg

)K
)2 + σ2

f ) + 9β1.5(1−λ)
40m(8+4α2)L2

y
σ2
g

ατ
3m

=
9(6 + 3τ)

τ2
((
CgxyCfy
µg

(1− µg
Lg

)K)2 + σ2
f ) +

27(1− λ)

40(8 + 4α2)L2
y

β1.5

ατ
σ2
g . (86)

Then, we can conclude that:

1

T

T∑
t=0

(
E‖xt − 1⊗ x̄t‖2 + E‖x̃t − 1⊗ x̄t‖2

)
≤ E [p0 − p∗] + Cσ · T

T · ατ3m

= O(1/
√
T ) + C ′σ.

(87)

C SUPPORTING LEMMAS

C.1 PROOF OF LEMMA 1

∥∥∇f ( x1,y; ξ̄
)
−∇f

(
x2,y; ξ̄

)∥∥2

(a)

≤ 2
∥∥∇xf

(
x1,y; ξ0

i

)
−∇xf

(
x2,y; ξ0

i

)∥∥2
+ 2‖∇2

xyg
(
x1,y; ζ0

i

) [ 1

Lg
Hi,K

]
∇yf

(
x1,y; ξ0

i

)
−∇2

xyg
(
x2,y; ζ0

i

) [ 1

Lg
Hi,K

]
∇yf

(
x2,y; ξ0

i

)
‖2

(b)

≤ 2L2
fx ‖x1 − x2‖2 + 2‖∇2

xyg
(
x1,y; ζ0

i

) [ 1

Lg
Hi,K

]
∇yf

(
x1,y; ξ0

i

)
−∇2

xyg
(
x2,y; ζ0

i

) [ 1

Lg
Hi,K

]
∇yf

(
x2,y; ξ0

i

)
‖2, (88)

where (a) follows from triangle inequality and the definition of∇f
(
x,y; ξ̄

)
, (b) follows from the

gradient Liptichz assumption.

For the last term, we have

‖∇2
xygi

(
x1,y; ζ0

i

) [ 1

Lg
Hi,K

]
∇yf

(
x1,y; ξ0

i

)
−∇2

xygi
(
x1,y; ζ0

i
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Lg
Hi,K
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∇yf

(
x1,y; ξ0

i

)
‖2
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(a)

≤ 3C2
gxy
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where (a) and (d) follow from Assumption 1-2 and the triangle inequality and the Lemma A.1 in
(Khanduri et al., 2021), and (b) follows from Lfy -Lipschitz continuity assumption and expanding j to
k, (c) is because of the triangle inequality, and (d) follows from Lgyy -Liptichz continuity assumption.

On both sides taking expectation w.r.t k, we have
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Thus, we have
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Further, Ek
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C.2 PROOF OF LEMMA 3

‖∇f(x,y)− E[∇̄f(x,y; ξ̄)]‖

=‖∇f(x,y)− E[∇xf(xi,t,yi,t; ξ
0
i )− 1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

)
Hi,k∇yf(xi,t,yi,t; ξ

0
i )]‖

=‖∇f(x,y)− E∇xf(xi,t,yi,t; ξ
0
i )

− E[
1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) k(K)∑
j′=1

j′∏
p=1

(
I−
∇2

yyg (xi,t,yi,t; ζ
p
i )

Lg

)
∇yf(xi,t,yi,t; ξ

0
i )]‖

=‖∇f(x,y)− E∇xf(xi,t,yi,t; ξ
0
i )

− [
1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) k(K)∑
j′=1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)j′
∇yf(xi,t,yi,t; ξ

0
i )]‖

=‖∇f(x,y)− E∇xf(xi,t,yi,t; ξ
0
i )

− [
1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) ∞∑
j′=1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)j′
∇yf(xi,t,yi,t; ξ

0
i )]

+ [
1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) ∞∑
j′=k(K)+1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)j′
∇yf(xi,t,yi,t; ξ

0
i )]‖

=‖∇f(x,y)− E∇xf(xi,t,yi,t; ξ
0
i )

− [
1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) ∞∑
j′=1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)j′
∇yf(xi,t,yi,t; ξ

0
i )]

+ [
1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) ∞∑
j′=k(K)+1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)j′
∇yf(xi,t,yi,t; ξ

0
i )]‖

=‖[ 1

Lg
∇2

xyg
(
xi,t,yi,t; ζ

0
i

) ∞∑
i′=k(K)+1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)j′
∇yf(xi,t,yi,t; ξ

0
i )]‖

≤‖∇yf(x,y; ξ)‖ ·
∥∥∇2

xyg(x,y; ζ)
∥∥ · ‖ ∞∑

i′=k(K)+1

(
I−
∇2

yyg (xi,t,yi,t)

Lg

)K
‖

≤CgxyCfy
1

µg
(1− µg

Lg
)K . (92)

This completes the proof.

C.3 PROOF OF LEMMA 4

Similar to Eqs. (88)–(89), and with the conventional stochastic gradient estima-
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Since we are aiming at finding a constant Lconv which satisfied the Liptichz inequality for all k,

Eq. (93) needs to hold with the maximum value of k(K)2
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.

Thus, we have
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Thus, we can conclude that L2
conv ≥ Lf .

Further, Ek
∥∥∇f ( x,y1; ξ̄

)
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)∥∥2 ≤ Lconv‖y1 − y2‖2 follows the same procesure.
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Figure 4: Network topology.
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Figure 5: Network probability comparison.

D FURTHER EXPERIMENTS AND ADDITIONAL RESULTS

D.1 TOPOLOGY SETTING

We test three different topologies on a 10-agent system. The datasize for each agent is n = 100. We
set the constant learning rate α = 0.5, β = 0.5 and mini-batch size q = d

√
ne = 10, pre-defined

parameter K = 10. As shown in Fig. 5, we can observe that Prometheus is insensitive to the network
topology, but the convergence metric M slightly increases as pc decreases.

D.2 LEARNING RATE SETTING

We use a 10-agent system with a generated topology as shown in Fig. 4. In this experiment, the
dataset size for each agent is n = 100, mini-batch size q = d

√
ne = 10, pre-defined parameter

K = 10. Fig. 7 illustrates the convergence metric M of Prometheus with different learning rates α
and β. We fix a relatively small learning rate β = 0.5 while comparing α; and set α = 0.5 while
comparing β. In this experiment, we observe that methods with a smaller learning rate have a smaller
slope in the figure, which implies a slower convergence.

D.3 ADDITIONAL EXPERIMENTS ON OUR NEW STOCHATIC ESTIMATOR

Recall that the conventional estimator to estimate the A−1 can be denoted as Ã−1
conv = K

∏k(K)
p=1 (I−

As), while the new estimator can be denoted as Ã−1 =
∑k(K)
j′=1

∏j′

p=1(I−As). Here we consider a
4-dimension matrix example A = 0.25 ∗ I4 and 10-dimension matrix example A = 0.1 ∗ I10. Let
As be a random matrix obtained from A plus Gaussian noise. We use Ã−1

conv and Ã−1 to estimate
A−1, respectively. We run 10000 independent trials and the results are shown in Fig. 6. We can see
from Fig. 6 that the new Hessian inverse estimator has a much smaller variance than the conventional
one.

D.4 ADDITIONAL EXPERIMENTS ON DECENTRALIZED HYPER-PARAMETER

Next, we compare Prometheus with other baseline algorithms using the logistic regression prob-
lem (Grazzi et al., 2020; Ji et al., 2021) with the same formulation as in (1), where fi(x,y∗i (x)) =

1
|Dval,i|

∑
(aj ,cj)∈Dval,i

Q(aTj y
∗
i , cj), gi(x,yi) = 1

|Dtr,i|
∑

(aj ,cj)∈Dtr,i
Q(aTj yi, cj) + 1

q1p

∑q1
k=1∑p

r=1 exp(xr)y
2
irk. Dtr,i denotes the the training dataset and Dval,i is the validation dataset for

agent i, respectively, Q indicates the cross-entropy loss, q1 denotes the number of classes, and p is the
number of features. We use the “a9a" dataset from LIBSVM repository, which is publicly available
at (Chang & Lin, 2011). We divide the a9a dataset into training, validation, and testing sets, which
contain 40%, 40%, and 20% samples, respectively. We compare the proposed Prometheus algorithm
in terms of test accuracy and loss, using ten-agent communication networks, with the network con-
nection probability pc = 0.5, step sizes α = β = 0.01. As shown in Fig. 9, Prometheus performs
better than all other algorithms in terms of the total number of communication rounds.
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Figure 6: Variance comparisons on varying K.
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Figure 7: MNIST dataset.
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Figure 8: CIFAR-10 dataset.

Figure 9: Hyper-parameter experiment on a ten-agent network.
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