
Published as a conference paper at ICLR 2021

A PROOFS AND DERIVATIONS

We begin by stating the general condition under which an MFN can ultimately be expressed as a
linear combination of the original filter function: the fact that elementwise multiplication of the
bases results in a sum of the same bases with different parameters.

Definition 1. A filter g(x; θ) satisfies the multiplicative sum property if for some θ(1) and θ(2) we
have that

g(x; θ(1)) ◦ g(x; θ(2)) =

N∑
i=1

βig(x; θ̄(i)) (10)

for some alternative set of parameters θ̄(1:N) and coefficients β1:N .

We now state the general theorem that if the filter used in an MFN satisfies the multiplicative sum
property, then the function represented by the MFN can also be expressed as a linear combination
of the filter bases applies to the input.
Theorem 3. Let f by an MFN defined by the recurrence

z(1) = g
(
x; θ(1)

)
z(i+1) =

(
W (i)z(i) + b(i)

)
◦ g
(
x; θ(i+1)

)
, i = 1, . . . , k − 1

f(x) = W (k)z(k) + b(k)

with a filter g that satisfies the multiplicative sum property. Then f can be expressed as

fj(x) =

T∑
t=1

αtg(x; τ
(t)
j ) + c. (11)

where we use the notation g(x; τ
(t)
j ) to denote a scalar-valued application of the filter, specific to

the jth coordinate.

Proof. The proof follows by induction on i. The base case of z(1) follows immediately from the
definition (and in fact without any bias term b). Now suppose that for layer i− 1, for each z(i−1)

j we
have

z
(i−1)
j =

N∑
t=1

αj
tg(x; τ

(t)
j ) (12)

Then we have that

z
(i)
j =

(
di∑
p=1

W
(i)
jp z

(i−1)
p + b(i)

)
g(x; θ

(i)
j ) (13)

=

(
di∑
p=1

W
(i)
jp

T∑
t=1

αp
t g(x; τ (t)

p ) + b
(i)
j

)
g(x; θ

(i)
j ) (14)

=

di∑
p=1

T∑
t=1

W
(i)
jp α

p
t g(x; τ (t)

p )g(x; θ
(i)
j ) + b

(i)
j g(x; θ

(i)
j ) (15)

=

di∑
p=1

T∑
t=1

W
(i)
jp α

p
t

N∑
q=1

βqg(x; τ̄ (t,q)
p )g(x; θ

(i)
j ) + b

(i)
j g(x; θ

(i)
j ) (16)

=

T ′∑
t=1

ᾱtg(x; τ̄
(t)
j ) (17)

where the line (15) to (16) follows from the multiplicative sum instruction. The final output f(x)
is simply a linear function of the final hidden layer z(k), and thus also satisfies the condition of the
theorem.

12



Published as a conference paper at ICLR 2021

We now prove the multiplicative sum property for both the Fourier and Gabor filters. This, together
with the theorem above, proves the results in the main text, stated for the FourierNet and GaborNet
functions explicitly.

A.1 FOURIER NETWORKS

Theorem 4. The Fourier basis function

g(x; θ(i)) = sin(ω(i)x+ φ(i)) (18)

satisfies the multiplicative sum property with β and θ̄(1:2) =
{
ω̄(1:2), φ̄(1:2)

}
given bvy

β1 = β2 =
1

2

ω̄(1) = ω(1) − ω(2)

ω̄(2) = ω(1) + ω(2)

φ̄(1) = φ(1) − φ(2) − π

2

φ̄(2) = φ(1) + φ(2) +
π

2
.

(19)

Proof. This fact follows from simple rules for sum of sinusoidal function, and was also highlighted
in the main text

g(x; θ(1)) ◦ g(x; θ(2)) = sin(ω(1)x+ φ(1)) ◦ sin(ω(2)x+ φ(2))

=
1

2
cos
(

(ω(1) − ω(2))x+ φ(1) − φ(1)
)
−

1

2
cos
(

(ω(1) + ω(2))x+ φ(1) + φ(1)
)

=
1

2
sin
(

(ω(1) − ω(2))x+ φ(1) − φ(1) − π

2

)
+

1

2
sin
(

(ω(1) + ω(2))x+ φ(1) + φ(1) +
π

2

)
= β1g(x; θ̄(1)) + β2g(x; θ̄(2))

(20)

with the parameters defined as in the theorem statement.

An inspection of the two theorems above directly leads to the explicit expansion of the terms in the
sequence as well, which we restate here.

Corollary 2. Let i1, i2, . . . , ik−1 range over all
∏k−1

j=1 dj possible indices of each hidden unit of
each layer of an MFN, and let s2, . . . , sk ∈ {−1,+1} range over all 2k−1 possible binary signs;
then the expansion of z(k)

ik
given is given by all the terms

ᾱ =

{
1

2k−1
W

(k−1)
ik,ik−1

. . .W
(2)
i3,i2

W
(1)
i2,i1

}
ω̄ =

{
skω

(k)
ik

+ . . .+ s2ω
(2)
i2

+ ω
(1)
i1

}
φ̄ =

{
skφ

(k)
ik

+ . . .+ s2φ
(2)
i2

+ φ
(1)
i1

+
π

2

k∑
i=2

sk

}
.

(21)

with a similar form for terms that begin at the i > 1 layer, multiplied by the corresponding b(j)
ij

term.

13



Published as a conference paper at ICLR 2021

A.2 GABOR NETWORKS

We now prove similar properties for the Gabor Network.
Theorem 5. The Gabor basis function

gj(x; θ(i)) = exp

(
−
γ

(i)
j

2

∥∥∥x− µ(i)
j

∥∥∥2

2

)
sin
(
ω

(i)
j x+ φ

(i)
j

)
(22)

satisfies the multiplicative sum property with β and θ̄(1:2) =
{
γ̄(1:2), µ̄(1:2), ω̄(1:2), φ̄(1:2)

}
given by

β1 = β2 =
1

2
exp

(
−γ(1)γ(2)‖µ(1) − µ(2)‖2

2(γ(1) + γ(2))

)
γ̄(1) = γ̄(2) = γ(1) + γ(2)

µ̄(1) = µ̄(2) =
γ(1)µ(1) + γ(2)µ(2)

γ(1) + γ(2)

ω̄(1) = ω(1) − ω(2)

ω̄(2) = ω(1) + ω(2)

φ̄(1) = φ(1) − φ(2) − π

2

φ̄(2) = φ(1) + φ(2) +
π

2
.

(23)

Proof. The sinusoidal terms in the Gabor filter proceed in the exact same manner as for the Fourier
filter. The exponential terms follow from the fact, well known from Gaussian distributions, that

exp

(
−1

2
γ(1)‖x− µ(1)‖22

)
exp

(
−1

2
γ(2)‖x− µ(2)‖22

)
=

exp

(
−γ(1)γ(2)‖µ(1) − µ(2)‖2

2(γ(1) + γ(2)
)

)
exp

(
−1

2
(γ(1) + γ(2))

∥∥∥∥x− γ(1)µ(1) + γ(2)µ(2)

γ(1) + γ(2)

∥∥∥∥2

2

) (24)

The first term is a constant, and so can be folded into the β terms, while the second is the exponential
term of a Gabor filter with the parameters given above.

Finally, just as for the FourierNet, we can also provide precise characterizations of each term in the
final Gabor filter expansion. This corollary follows immediately from the proof above, plus some
algebraic simplification.

Corollary 3. Let i1, i2, . . . , ik−1 range over all
∏k−1

j=1 dj possible indices of each hidden unit of
each layer of an MFN, and let s2, . . . , sk ∈ {−1,+1} range over all 2k−1 possible binary signs;
then the expansion of z(k)

ik
given is given by all the terms

ᾱ =

{
1

2k−1
W

(k−1)
ik,ik−1

. . .W
(2)
i3,i2

W
(1)
i2,i1

exp

(
−
∑k

p=1,q 6=p γ
(q)
iq
γ

(p)
ip
‖µ(p)

ip
− µ(q)

iq
‖22

2
∑k

p=1 γ
(p)
ip

)}

γ̄ =
{
γ

(k)
ik

+ . . .+ γ
(2)
i2

+ γ
(1)
i1

}
µ̄ =

{
γ

(k)
ik
µ

(k)
ik

+ . . .+ γ
(2)
i2
µ

(2)
i2

+ γ
(1)
i1
µ

(1)
i1

γ
(k)
ik

+ . . .+ γ
(2)
i2

+ γ
(1)
i1

}
ω̄ =

{
skω

(k)
ik

+ . . .+ s2ω
(2)
i2

+ ω
(1)
i1

}
φ̄ =

{
skφ

(k)
ik

+ . . .+ s2φ
(2)
i2

+ φ
(1)
i1

+
π

2

k∑
i=2

sk

}
.

(25)

with a similar form for terms that begin at the i > 1 layer, multiplied by the corresponding b(j)
ij

term.

14



Published as a conference paper at ICLR 2021

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 IMAGE REPRESENTATION

Figure 6: Plot of training loss (mean squared error) over time for models in the video representation
task.

In the image representation task, all models used were 3 layers with 256 hidden units per layer, and
were trained for 10000 iterations. All models were trained with the Adam optimizer, with a learning
rate of 10−2 for the two MFNs and a learning rate of 10−4 for all other models. Both MFN models
used an input scaling factor of 256.

The cat video used in the video representation task is available at the following url:

https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808

Models used for video representation were 3 layers with 1024 hidden units per layer, and were
trained for 10000 iterations. We performed an exponentially grid search over learning rates for each
model, testing a learning rate of 10−i for i ∈ {2, 3, 4, 5, 6}, and found the best performance when
using 1e−5 for SIREN and 10−3 for all other models. Both MFN architectures used a scaling factor
γ of 256.

B.2 IMAGE GENERALIZATION

In the image generalization experiments, we use two datasets (Natural and Text datasets); each
contains 16 images with a size of 512 × 512 pixels. We use 25% of the pixels resulting 256 × 256
images to train the models and use the full image size in the evaluation. We construct and train the
models separately for each image. The models are trained to map the input of (x, y) coordinates to
the corresponding RGB values. We train all the models in 2000 epochs. The final result is computed
by averaging the results over the 16 images in each dataset. For each of the MFNs and Fourier
feature networks, we construct a 4 hidden layer network with 256 nodes in each hidden layer.

For both FOURIERNET and GABORNET, we set the input scaling factor to 256, with the value of
α in GABORNET set to 3.0. We use Adam optimizer with learning rate of 3e-3 and no weight
decay. For the Fourier feature models, we use the hyperparameters presented in the code repository
published by the authors. The optimizer used in the Fourier feature models is the Adam optimizer
with learning rate of 1e-3 and no weight decay. All the Fourier feature models use 256 as the
embedding size for the random features. The scaling factor for the Fourier feature networks with
positional encoding is set to 6 for the Natural dataset and 5 for the Text dataset. The scaling factor
for the Fourier feature networks with Gaussian random features is set to 10 for the Natural dataset

15

https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808


Published as a conference paper at ICLR 2021

Figure 7: Image generalization samples from Natural datasets.

and 14 for the Text dataset. As in the code implementation published by (Tancik et al., 2020), we
implement our model in Python using JAX as the deep learning framework.

In addition to the experimental results presented in Section 4.1, we show additional generated im-
ages for Natural dataset in Figure 7 and Text dataset in Figure 8. We can similarly see from the
figure that the quality of generated images by the MFNs are superior to the baselines in Text dataset
and competitive in the Natural dataset. The Fourier feature networks (especially with basic and
positional encoding) failed to generate some parts of the texts in the images. The use of Gaussian
random features improves the generated images, but still fails to generate small portions of the texts.
In contrast, both FOURIERNET and GABORNET correctly generate all parts of the texts. Figure 8
also highlights the parts of the texts that are failed to be generated by the baselines methods. In the
Natural dataset, all of the models except the Fourier feature networks using basic encoding performs
equally well with very similar visual results.

Comparison with the traditional Fourier transform. In addition to the experiments above, we
also run the standard upsampling technique that performs FFT on the 256 × 256 pixels images
and then performs inverse FFT on the extended frequency domains that outputs 512 × 512 pixels
images. We then measure the PSNR on the unseen pixels, similar to the experiments on the MFNs
and Fourier feature networks. This traditional FFT upsampling method performs quite well on both
Natural and Text dataset with 73.80 ± 12.20 and 66.78 ± 8.14 PSNRs respectively. However, the
standard Fourier analysis on the traditional upsampling methods serves a different purpose compared
to the one in the implicit neural representations (the MFNs, SIRENs, and Fourier feature networks).
The standard Fourier analysis does not scale well to higher dimensions, or it does not admit to
backpropagation through more complex loss functions (e.g., in neural rendering fields). The lack
of scalability and non-differentiability hinders the usage of FFT based upsampling methods in an
end-to-end manner and hence adds significant barriers to such methods being employed in generic
tasks. In contrast, the MFNs (and other implicit neural representations) provides generic methods
that apply to generic tasks where we can learn based upon derivatives, as shown in our paper and
the related works (Sitzmann et al., 2020; Tancik et al., 2020; Mildenhall et al., 2020).

16



Published as a conference paper at ICLR 2021

Figure 8: Image generalization samples from Text datasets.

B.3 DIFFERENTIAL EQUATIONS

B.3.1 POISSON EQUATION

For the image reconstruction tasks using the supervision of gradients and Laplacians of the ground
truth, we use 5 layer networks with a hidden size of 256. The networks were trained using Adam
Optimizer. For the image reconstruction task using gradients, the learning rate chosen for FOURIER-
NET and GABORNET was 1e-3, which was chosen by grid search. The batch size was chosen to be
16384, as in SIREN. For SIREN, we used the reference implementation of it, which also uses 5 layer
networks with a hidden size of 256. The same architecture was also used for ReLU MLP. All the
networks were trained for 10000 iterations. For the image reconstruction task using Laplacians, the
learning rates chosen for FOURIERNET and GABORNET were 5e-3 and 3.5e-3 respectively, which
was chosen by grid search. The batch size was chosen to be 16384, same as SIREN. For SIREN, we
used the reference implementation of it. All the networks were trained for 10000 iterations.

B.3.2 HELHMHOLTZ AND WAVE EQUATION

For the single source inversion task corresponding to the Helmholtz equation, we use 5 layer net-
works for both FOURIERNET and GABORNET with a hidden size of 256. The networks pertaining
to SIREN, ReLU MLP, FOURIERNET and GABORNET are trained using randomly sampled points
from a `∞ball ∈ R2 of radius 1. The networks were trained using Adam optimizer. The learning
rates chosen for FOURIERNET and GABORNET were 2.5e-4 and 5e-4 respectively, which was cho-
sen by grid search. The batch size was chosen to be 32, same as SIREN. For SIREN, we used the
reference implementation of it, which also uses 5 layer networks with a hidden size of 256. The
same architecture was also used for ReLU MLP. All the networks were trained for 50000 iterations.
For the wave equation, we use 5 layer networks for both FOURIERNET and GABORNET with a
hidden size of 512. The networks were trained using Adam optimizer. The learning rates is cho-
sen for FOURIERNET and GABORNET were 1e-4 and 2e-4 respectively, which was chosen by grid
search. The batch size was chosen to be 32, same as SIREN. For SIREN, we used the reference
implementation of it, which also uses 5 layer networks with a hidden size of 512. All the networks
were trained for 10000 iterations.

17



Published as a conference paper at ICLR 2021

B.4 SHAPE REPRESENTATION AND SDF FITTING

The 3D room oriented point cloud used in our shape representation is freely available at

http://www.turbosquid.com

The loss function used to train models on this task is identical to the one presented in Sitzmann et al.
(2020); namely, for a model N training on points x ∈ Ω in an oriented point cloud with surface Ω0,
we use

L =
∑
x∈Ω

λ1 ‖1− |∇xN(x)|‖+
∑
x∈Ω0

λ2‖N(x)‖+λ3 (1− 〈∇xN(x), n(x)〉)+
∑
x 6∈Ω0

λ4exp(−α|N(x)|)

(26)

where n(x) is the normal of the SDF f (i.e. n(x) = ∇xf(x), and we use the following prescribed
values for the scaling factors of the various terms: λ1 = 50, λ2 = 3000, λ3 = 100, λ4 = 3000, and
α = 100.

Models used to fit SDFs were 5 layers with 512 hidden units per layer, and were trained for 50
epochs (roughly 175k iterations). We performed a grid search to tune the learning rate for each
model, searching over {a × 10−i | a ∈ {1, 5}, i ∈ {2, 3, 4, 5, 6}}. This revealed best performance
for FOURIERNET at 10−4, GABORNET and ReLU at 5× 10−4, and SIREN at 10−5. Input scaling
factors used for FOURIERNET and GABORNET were 128 and 256, respectively.

Figure 9: Plot of training losses (Equation (26)) over time for SIREN, GaborNet, and FourierNet.

B.5 3D INVERSE RENDERING FOR VIEW SYNTHESIS

In the view synthesis task, we aim to reconstruct 3D representation from the observed 2D pho-
tographs. The input to the models is a 3D coordinate (x, y, z) of a viewpoint. The models need to
predict the corresponding 4D vector (r, g, b, v) where (r, g, b) corresponds to the predicted color in
RGB format, and v corresponds to the volume density. The outputs of the models are then used as
the input for the volumetric rendering procedure, which outputs the final rendered images from the
viewpoint. The loss is computed as the mean squared error between the generated images and the
observed 2D photograph. Since the rendering procedure is fully differentiable, all the training can
be done end-to-end.

The Lego dataset in the “simplified NeRF” task contains 2D photographs from 120 viewpoints down-
sampled to 400 × 400 pixel resolution. We split the datasets into 100 training images, 7 validation

18

http://www.turbosquid.com


Published as a conference paper at ICLR 2021

Figure 10: Additional examples of 2D rendered photographs from the Lego dataset experiment.

Figure 11: Plot of the PSNR over time for the Fourier feature networks, GaborNet, and FourierNet

images, and 13 test images. All the results in Table 4, rendered images in Figure 5b, as well as
additional rendered images in Figure 10 are computed from the test set. In all models, we use a 4
hidden layer network with 256 nodes in each hidden layer. For both FOURIERNET and GABORNET,
we set the input scaling factor to 180, with the value of α in GABORNET set to 1.0. We use Adam
optimizer with learning rate of 1e-3 and no weight decay. For the Fourier feature models, we use
the hyperparameters presented in the code repository published by the authors. The optimizer used
in the Fourier feature models is Adam optimizer with learning rate of 5e-4 and no weight decay. All
the Fourier feature models use 256 as the embedding size for the random features. All models use
2048 batches of rays, except GABORNET that uses 1440 batches of rays due to memory restriction.

19


	Proofs and derivations
	Fourier Networks
	Gabor Networks

	Additional Experimental Details and Results
	Image Representation
	Image Generalization
	Differential Equations
	Poisson Equation
	Helhmholtz and Wave Equation

	Shape Representation and SDF Fitting
	3D Inverse Rendering for View Synthesis


