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ABSTRACT
3D visual grounding is a fundamental yet important task in mul-
timedia understanding, which aims to locate a specific object in a
complicated 3D scene semantically according to a text description.
However, this task requires a large number of annotations of la-
beled text-object pairs for training, so the scarcity of annotated data
has been a key obstacle in this task. To this end, this paper makes
the first attempt to introduce and address a new semi-supervised
setting, where only a few text-object labels are provided during
training. Considering most scene data has no annotation, we ex-
plore a new solution for unlabeled 3D grounding by additionally
training and transferring knowledge from a correlated task, i.e.,
3D captioning. Our main insight is that 3D grounding and cap-
tioning are complementary and can be iteratively trained with
unlabeled data to provide object and text contexts for each other
with pseudo-label learning. Specifically, we propose a novel 3D
Cross-Task Teacher-Student Framework (3D-CTTSF) for joint 3D
grounding and captioning in the semi-supervised setting, where
each branch contains parallel grounding and captioning modules.
We first pre-train the two modules of the teacher branch with lim-
ited labeled data for warm-up. Then, we train the student branch to
mimic the ability of the teacher model and iteratively update both
branches with the unlabeled data. In particular, we transfer the
learned knowledge between the grounding and captioning modules
across two branches to generate and refine the pseudo-labels of un-
labeled data for providing reliable supervision. To further improve
the quality of the pseudo-labels, we design a cross-task pseudo-label
generation scheme, filtering low-quality pseudo-labels at the detec-
tion, captioning, and grounding levels, respectively. Experimental
results on various datasets show competitive performances in both
tasks compared to previous fully- and weakly-supervised methods,
demonstrating the proposed 3D-CTTSF can serve as an effective
solution to overcome the data scarcity issue.

CCS CONCEPTS
• Information systems→ Novelty in information retrieval.

KEYWORDS
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(a) 3D visual grounding task

(c) Cross-task knowledge transfer handling labeled and unlabeled data

Query: the desk with the lamp on 
it. it is to the left of the window 

the desk with the 
lamp on it. it is to the 
left of the window

GT Text
3D Scene

GT Object

the desk with a lamp.
pseudo Text

pseudo Object

Captioning 
Model

Grounding 
Model

replace

replace

(b) Label Number in three settings

Figure 1: We tackle the 3D grounding task in a challenging
semi-supervised setting with limited annotations. We pro-
pose cross-task knowledge transfer to learn the models with
labeled and unlabeled data.

1 INTRODUCTION
3D visual grounding (3DVG) [1, 8] is a fundamental yet important
task in multimedia understanding, which has recently received
increasing attention due to its wide range of applications, such as
robotic navigation and Augmented Reality / Virtual Reality systems.
As shown in Figure 1 (a), 3DVG aims to locate the target object
in a 3D point cloud scene based on a given free-form query text
description. Since 3D scenes generally contain complicated back-
ground objects and spatial relationships, this task needs to not only
model the complex multi-modal interactions among features of the
point cloud and language, but also capture complicated context
information for their semantic reasoning.

Existing methods for the 3DVG task can be generally categorized
into two types based on task settings: fully-supervised [1, 7–9,
20, 22, 45, 49, 51, 52] and weakly-supervised methods [44, 48]. As
shown in Figure 1 (b), under the fully-supervised setting, a large
number of bounding boxes for numerous objects in the 3D point
cloud scenes, along with their descriptive texts, are required to be
annotated as labels to provide reliable supervision. For example, the
widely used ScanRefer dataset [8] contains 806 scenes with 51,583
matched object-text labels. However, manually annotating these
object-text pairs is very time-consuming and labor-intensive. To
alleviate this problem, the weakly-supervised methods [44, 48] are
proposed to only use text labels for grounding without relying on
any object bounding box annotations. Although they slightly reduce
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the annotation cost, tens of thousands of language descriptions still
require significant manual effort for annotation.

Based on the above observation, in this paper, we focus on how
to learn a 3D visual grounding model with as few annotations as
possible. In particular, we introduce a new semi-supervised set-
ting for the 3DVG task, where only a small number of object-text
pair labels (about 10%) in 3D scenes need to be manually annotated
while the vast majority of scenes have no manual annotations. Since
most scene data lack annotations, we explore the idea of cross-task
assistance and knowledge transfer from a related task, i.e., the 3D
captioning task that aims to generate a contextual sentence de-
scription corresponding to a given object within the 3D scene. The
motivation is illustrated in Figure 1 (c), where we observe that both
tasks are complementary to each other as grounding can provide
detected objects for feeding captioning while captioning can gener-
ate reliable sentences to guide the grounding process. However, it
is non-trivial to directly build a collaborative optimization scheme
for these two tasks: (1) Efficient model design. Although directly
employing a pre-trained 3D captioning model to provide guidance
for unlabeled 3D grounding does work, this defeats our purpose
of only using a small number of annotations for training, and in-
troduces large memory costs. How to efficiently and effectively
train both 3D grounding and captioning models from scratch with
annotation-limited grounding data is crucial. (2) Framework for
addressing the semi-supervised setting. In the semi-supervised
setting, the limited annotations cannot provide strong supervision
to generalize our grounding and captioning models. How to de-
sign a framework that can both learn the capability of addressing
the task from the limited annotations and fine-tune the models
for better generalization with the large amount of unlabeled data
is also essential. (3) Cross-task knowledge transfer. Instead of
individually training the grounding and captioning models, it is
important to have them cooperate to provide additional contexts for
each other during the learning. Especially when learning with unla-
beled data, how to explore their task-specific knowledge to provide
rectification on pseudo-labels for each other for better updating the
models is challenging.

To address the above issues, we propose a novel approach, called
3D Cross-Task Teacher-Student Framework (3D-CTTSF), to jointly
learn both 3D grounding and captioning tasks in a single backbone
model with two different task-specific heads. To handle the chal-
lenging semi-supervised learning, 3D-CTTSF designs two branches
sharing the same joint backbone to build a teacher-student frame-
work. Specifically, 3D-CTTSF first pre-trains the two task-specific
heads of the teacher branch with limited labeled data to acquire
a certain level of proficiency in tackling the tasks for warm-up.
Then, it trains the student branch to mimic the ability of the teacher
model and utilizes the pseudo-labels of unlabeled data predicted
by the teacher model for updating the student branch. To make
two task-specific heads cooperate to provide learning guidance
for each other, we transfer the learned knowledge between the
grounding and captioning modules across two branches. This trans-
fer helps rectify and refine the pseudo-labels of unlabeled data for
providing reliable supervision. To further improve the pseudo-label
quality, we design a cross-task pseudo-label generation scheme,
filtering out low-quality pseudo-labels at the detection, captioning,
and grounding levels, respectively. Through pseudo-label training

and knowledge transfer, we address not only the semi-supervised
3D visual grounding task but also the semi-supervised 3D dense
captioning task. During the inference, we directly feed the data into
the student model for prediction.

Our main contributions can be summarized as follows:

• To the best of our knowledge, we are the first to address the
3D visual grounding task in a challenging semi-supervised
setting. To handle the limited annotation, we propose a novel
paradigm that explores cross-task assistance from a comple-
mentary task of 3D captioning.
• To tackle semi-supervised learning, we develop a teacher-
student framework based on a joint grounding and caption-
ing backbone to train with labeled data and update with
pseudo-labels of the unlabeled data. Cross-task knowledge
transfer and pseudo-label filtering modules are further de-
veloped to aid learning from unannotated scenes.
• Extensive experiments are conducted on various datasets of
both grounding and captioning. Results show that our pro-
posed 3D-CTTSF bridges the gap between semi-supervised
learning and fully-supervised methods.

2 RELATEDWORK
3D Visual Grounding. Existing 3D visual grounding methods can
be generally classified into two-stage and one-stage approaches
based on their model designs. Two-stage methods [1, 3, 7, 8, 12,
16, 18, 20, 21, 34, 49, 51, 52] first utilize pre-trained 3D detectors
[17, 33, 54] or segmentors [15] to generate a large number of candi-
date proposals, and then fuse proposal features with textual features
to select the object that best matches the given text. One-stage meth-
ods [22, 29, 45] directly guide object detection using textual cues,
making it easier to locate the object related to the query text. How-
ever, almost all of them are developed in the fully-supervised setting
where a large number of object-text annotations are required. Al-
though a few weakly-supervised methods [44, 48] are proposed to
only use text labels for grounding without relying on any object
bounding box annotations, a large number of language descriptions
still need to be annotated. Different from them, we are the first
to attempt to solve this task with a semi-supervised approach. Al-
though D3net [9] claims applicability in a semi-supervised setting,
they still utilize all ScanRefer data as labeled data and only employ
some unannotated objects from Scannet as unlabeled data. This set-
ting is much simpler than ours but has not demonstrated superior
performance.
3D Dense Captioning. Another focal point in 3D multi-modal
scene understanding is 3D dense captioning [11]. This task aims
to generate natural language descriptions for each object within
a scene. Similar to visual grounding, methodologies in 3D dense
captioning can be classified into two categories: two-stage and one-
stage methods. Two-stage method [11, 24, 43, 50] follow "detect-
then-describe" pipeline. They first detect many proposals and then
generate captions for each of them. The one stage method [10]
directly creates object queries from the scene. The query then be
decoded for detection and captioning.
Semi-Supervised Learning. Semi-Supervised Learning (SSL) has
made significant progress in various tasks, such as image classi-
fication [5, 6, 19, 36], object detection [23, 26, 27, 30, 37, 53] and
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referring expression comprehension [38]. The methods of semi-
supervised learning can be roughly divided into consistency based
methods [5, 6, 23, 36] and pseudo-label based methods [2, 26, 27,
30]. Consistency-based methods utilize consistency regularization,
which forces both the teacher and student models to produce
the same predictions from differently augmented inputs. On the
other hand, pseudo-label based methods supervise the training of
the student model based on pseudo-labels generated by a reliable
teacher model. Many techniques have been proven effective in
semi-supervised learning and have thus been widely applied, such
as EMA [39] update for teacher, asymmetric data augmentation
[35, 46], and pseudo-label filtering [36].

3 THE PROPOSED METHOD
3.1 Overview
Task definition. Semi-supervised 3D grounding and captioning
aim to utilize a single pipeline to jointly locate the text-related
object and generate the object-guided sentence with only a few
annotations. To be specific, the given semi-supervised dataset in-
cludes a small set of labeled data 𝐷𝑙 = {P𝑙𝑖 , L

𝑙
𝑖
,B𝑙
𝑖
}𝑁𝑠

𝑖=1 and a large set
of unlabeled data 𝐷𝑢 = {P𝑢

𝑖
}𝑁𝑢

𝑖=1, where P, L,B denote point cloud of
a 3D scene, language description and localization of objects, respec-
tively. 𝑁𝑠 and 𝑁𝑢 are the numbers of labeled data and unlabeled
data. In practice, they often meet 𝑁𝑠 ≪ 𝑁𝑢 .
Overall pipeline. To address the joint tasks in the challenging
semi-supervised setting, we propose a novel 3D Cross-Task Teacher-
Student Framework (3D-CTTSF). Both the teacher and student
branches share a similar architecture with a detection module and
parallel grounding and captioning modules. As shown in Figure 2,
the overall training process consists of two stages. In the first stage,
we pre-train the grounding and captioning modules of the teacher
model with a few annotated data for warm-up. By doing so, we
obtain a teacher model with a certain capability to perform both
grounding and captioning tasks. Then, we copy the parameters
of the teacher model to the student model in preparation for the
next stage. In the second stage, we train the student branches with
both labeled data and unlabeled data. Unlabeled data is supervised
using pseudo-labels, while labeled data is supervised using the
ground truth. Specifically, we utilize the teacher model to generate
the pseudo object proposals and corresponding pseudo textual de-
scriptions for the unlabeled 3D scenes. To improve the quality of
pseudo-labels, we introduce a cross-task pseudo-label generation
scheme, filtering out low-quality pseudo-labels at the detection, cap-
tioning, and grounding levels, respectively. Then, we apply these
pseudo-labels to train the student model while the teacher model
also updates its parameters from the student model using exponen-
tial moving average (EMA) [39] strategy. During the inference, we
directly feed the test data into the student model for prediction.

3.2 Joint Grounding and Captioning Backbone
Backbone Model.We follow previous work [7] to design our basic
joint grounding and captioning backbone model, which consists of
three main modules: an object detection module O, a grounding
module G, and a captioning module C. In the object detection
module, the input 3D scene point cloud is processed through a

Votenet [33] to obtain initial object proposals. For the captioning
module, it selects the proposal with the maximum Intersection over
Union (IoU) value with the input bbox to generate a caption in
training, and directly generates captions for all proposals in testing.
For the grounding module, it predicts confidence scores for all
proposals based on the input text.
Design of IoU estimation module. To adapt the backbone to
semi-supervised setting, we require the model to handle the pseudo-
labels of unlabeled data. To evaluate the quality of pseudo-labels,
we design an IoU estimation module upon the detection module
to predict the IoU values between each proposal and the ground
truth bounding box. To fully capture the geometric information
of proposals, inspired by BRNet [13], we first sample two repre-
sentative points in each of the six directions (up, down, left, right,
front, back) around the given proposal. These 12 number of rep-
resentative points are evenly distributed along the axes from the
bounding box center to the center of each face. By aggregating
the contextual features of seed points around these representative
points, we obtain and fuse the features of all representative points
to predict the IoU value of the proposal.

3.3 Teacher-Student Framework for
Semi-supervised Setting

After introducing the basic backbone of joint tasks, we then il-
lustrate how we build the detailed framework for addressing the
challenging semi-supervised setting.
How to tackle the semi-supervised learning? In the semi-
supervised setting, we only have access to very few paired object-
query samples while the others are all unlabeled. A general way to
address this setting is to utilize a teacher-student framework. Specif-
ically, the teacher model is initially trained on a limited number
of annotated samples for several epochs to acquire a certain level
of proficiency in the given task. Subsequently, the learned teacher
model is utilized to assign pseudo-labels to the other unlabeled data.
The unlabeled data, now augmented with pseudo-labels, can be
further utilized alongside labeled data to train the student model.
Design of the teacher-student framework. Our teacher-student
framework consists of a teacher model and a student model, which
share the same architecture of the joint task backbone [O, C,G]. For
clarity, variables and modules associated with teacher and student
models are denoted with superscripts "𝑡" and "𝑠", respectively.

The first stage, also called the warm-up stage, is to pre-train
the teacher model with a few annotated samples. Specifically, we
train the teacher model using annotated dataset𝐷𝑙 = {P𝑙𝑖 , L

𝑙
𝑖
,B𝑙
𝑖
}𝑁𝑠

𝑖=1,
while the ground truth labels of text L𝑙 and bounding box B𝑙 pair
are utilized to supervise the training. By denoting the loss function
as L𝑙 (illustrated in Sec.3.6), the parameters of the teacher model
[O𝑡 , C𝑡 ,G𝑡 ] are updated through the following gradient descent:

[O𝑡 , C𝑡 ,G𝑡 ] 𝑗 = [O𝑡 , C𝑡 ,G𝑡 ] 𝑗−1 + 𝛾
𝜕L𝑙

𝜕[O𝑡 , C𝑡 ,G𝑡 ] 𝑗−1
, (1)

where 𝛾 is the learning rate and 𝑗 is the training step index. After
training in warm-up stage for 𝐸1 epochs, we copy the parameters
of the teacher model to the student model and start the training for
the semi-supervised stage for 𝐸2 epochs.
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Figure 2: The pipeline of our proposed method 3D-CTTSF. The 3D-CTTSF consists of two stages. (a) In the first stage, a small
amount of annotated data is used to train the teacher model. (b) In the second stage, the teacher model generates pseudo-labels
for object-query pairs for unlabeled scene point clouds, which are utilized in training the student model.

In the second stage, we update the weights of the student model
by using pseudo-label learning with unannotated samples. To be
specific, the unlabeled dataset 𝐷𝑢 is first fed into the teacher model
to generate the pseudo-labels, and then the pseudo-labels are uti-
lized to train the student model. In particular, we employ a training
strategy of strong data augmentation for the student model and
weak data augmentation for the teacher model. This strategy en-
ables the teacher model to have a performance advantage over
the student model, allowing the student to learn from the teacher.
Specifically, for the input scene point cloud of the teacher model,
we only apply point cloud resampling as weak data augmentation.
For the student model, in addition to resampling, we employ a
combination of random flips along the y-axis, random translations,
random size scaling, and random slight rotations as strong data
augmentation. Note that random flipping may change the relative
positions of objects, so corresponding modifications to the textual
descriptions are required. We did not adopt flipping along the x-axis
due to the relatively complex expression of front-back relationships
in natural language. For flipping along the y-axis, we can simply
swap the words "left" and "right" in the textual description. Af-
ter asymmetric data augmentation, the input point clouds of the
teacher and student models are denoted as P𝑡 and P𝑠 , respectively.

Next, P𝑡 will be input into the teacher model for generating
corresponding pseudo-labels, and the obtained pseudo-labels will
be used for training the student model. The teacher model is also
updated through an EMA strategy illustrated in the latter section.
To obtain high-quality pseudo-labels for better training the whole
teacher-student framework, we design a cross-task pseudo label
generation for supervising different modules in the next section.

3.4 Cross-Task Pseudo Label Generation
Due to the limited number of labeled data and the complexity
of the joint task, the performance of the teacher model does not
guarantee the generation of high-quality pseudo-labels. However,
low-quality pseudo-labels will reduce the learning efficiency and
effectiveness of the student model. This necessitates a filtering
process of the pseudo-labels generated by the teacher model to
provide true-positive labels for learning student model. We consider
improving the quality of pseudo-labels across tasks in three parts:
detection module, captioning module, and grounding module.
Pseudo label of detection module. As shown in Figure 2 (b),
the scene point cloud P𝑡 undergoes weak data augmentation and
is then input into the detection module O𝑡 of the teacher model.
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This module detects 𝐾0 objects and outputs their bounding box b𝑡 ,
objectness score 𝑜𝑡 , classification score c𝑡 , and IoU value 𝑖𝑡 as:

B𝑡 = {b𝑘𝑡 , 𝑜𝑘𝑡 , c𝑘𝑡 , 𝑖𝑘𝑡 }
𝐾0
𝑘=1 = O𝑡 (P𝑡 ). (2)

The features of the objects are represented as P𝑡,0 ∈ R𝐾0×𝐹0 .
Then we use a detection-based filter F𝑑 to filter out bounding

boxes with poor quality based on 𝑜𝑡 ,c𝑡 and 𝑖𝑡 . The filtering process
involves three threshold judgments: using 𝑜𝑡 > 𝜏obj to filter out
proposals that may not be foreground objects; usingmax(ct) > 𝜏cls
to filter out proposals that are difficult to determine the category
of the object; using 𝑖𝑡 > 𝜏iou to filter out proposals that do not
accurately locate the object. We sort the retained objects based on
the global scores 𝑠×max(c)×𝑖 and select the top𝐾1 objects with the
highest product as the high-quality pseudo-labels {B𝑖

𝑡,1}
𝐾1
𝑖=1. The

process of selecting 𝐾1 objects’ features P𝑡,1 and {B𝑖𝑡,1}
𝐾1
𝑖=1 is:

P𝑡,1 = P𝑡,0 [F𝑑 (𝑜𝑡 , c𝑡 , 𝑖𝑡 )],

{B𝑖𝑡,1}
𝐾1
𝑖=1 = B𝑡 [F𝑑 (𝑜𝑡 , c𝑡 , 𝑖𝑡 )] .

(3)

Pseudo label of captioning module. The obtained high-quality
object features P𝑡,1 are then fed into the captioning module C𝑡
of the teacher model to generate pseudo-captions for these 𝐾1
objects {B𝑖

𝑡,1}
𝐾1
𝑖=1. The generated captions are denoted as {L𝑖

𝑡,1}
𝐾1
𝑖=1.

However, many of these generated pseudo-captions are still of poor
quality and cannot be used for cross-task training. Therefore, we
adopt a simple strategy to filter out low-quality texts and only
choose the high-quality text-object pair for later training. First, if
the length of the pseudo-captions len(L𝑖

𝑡,1) < 𝜏cap, the caption is
likely to be several meaningless words and we filter is out. If the
pseudo-captions do not contain any words or phrases describing the
target object category, they should also be filtered out. When the
number of unfiltered pseudo-captions reaches the preset number
𝐾2, the generation process ends. If the remaining number of pseudo-
captions is less than𝐾2, they are padded with empty texts. Note that
these empty texts will not be used for the training of the student
model. After this filtering stage, we obtain 𝐾2 high-quality pseudo-
captions {L𝑖

𝑡,2}
𝐾2
𝑖=1 and their corresponding objects {B𝑖

𝑡,2}
𝐾2
𝑖=1.

Pseudo label of grounding module. Previously obtained 𝐾2
pseudo-captions may not necessarily provide sufficient information
to locate the target object, or may not pinpoint a unique object.
Therefore, we apply the grounding module G𝑡 of the teacher model
to further filter out pseudo-captions that cannot be accurately lo-
calized by the teacher model’s grounding module. Specifically, we
first input the 𝐾2 pseudo-captions {L𝑖𝑡,2}

𝐾2
𝑖=1 and all unmatched 𝐾1

objects detected by the detection module O𝑡 into the grounding
module G𝑡 for matching, resulting in a set of confidence scores.
The confidence score s ∈ R𝐾1 for a certain pseudo-caption L𝑖

𝑡,2
represents its matching score with all 𝐾1 objects. Then, we utilize
the matched objects B𝑖

𝑡,2 of 𝐾2 pseudo-captions as guidance, and
extract scores corresponding to the objects B𝑖

𝑡,2 associated with the
pseudo-description text, which reflects the ability of this pseudo-
caption to localize the correct object. By comparing the scores,
we sort and select the top 𝐾3 pseudo-captions {L𝑖𝑡,3}

𝐾3
𝑖=1 with their

corresponding objects {B𝑖
𝑡,3}

𝐾3
𝑖=1.

Due to the different data augmentations applied to the input
point clouds of the student and teacher, further pre-processing

of the pseudo-labels is required before they can be utilized. Let
T represent the combination of transformations applied to the
student’s input point clouds. Consequently, the pseudo-labels 𝑏
generated by the teacher for object positionsmust undergo the same
transformations 𝑏𝑇 = T (𝑏). Furthermore, if the transformation T
involves flipping along the y-axis, the pseudo-text descriptions
generated by the teacher should also be modified accordingly, with
the words "left" and "right" being interchanged. Following this
processing, the student model can leverage these pseudo-labels for
training.

3.5 Cross-Task Knowledge Transfer
Since the 3D grounding and captioning are complementary, simul-
taneously training these two tasks allows us to perform cross-task
knowledge transfer: during the semi-supervised training stage, we
transfer the learned knowledge between the two tasks with unla-
beled data. Specifically, the predicted text obtained by the teacher
model’s captioning module C𝑡 is first converted into tokens and en-
coded using GloVE [32]. Then, after pseudo-label filtering, this
textual output serves as description text input for the student
model’s grounding module G𝑠 . In this manner, we transfer the
knowledge learned by the captioning module of the teacher model
to the grounding task on unlabeled data. Conversely, we employ the
grounding module G𝑡 of the teacher model to determine whether a
piece of text can accurately locate the target object. This enables
the selection of distinct object-text pairs for training the captioning
module C𝑠 of the student model to generate discriminative captions,
thereby transferring the knowledge learned by grounding module
of teacher model to the captioning task on unlabeled data.

To be specific, we utilize the pseudo-labels of detection module
{B𝑖
𝑡,1}

𝐾1
𝑖=1 and pseudo-label of object-text pair {L𝑖

𝑡,3}
𝐾3
𝑖=1, {B

𝑖
𝑡,3}

𝐾3
𝑖=1

obtained from the teacher model to train the student model. The
scene point cloud P𝑠 is first inputted into the detection module D𝑠
of the student model, yielding 𝐾0 bounding boxes B𝑠 of objects and
their corresponding features P𝑠 via:

B𝑠 , P𝑠 = D𝑠 (P𝑠 ) . (4)

These features P𝑠 are subsequently fed into both the grounding
module G𝑠 and captioning module C𝑠 to accomplish the two tasks.
For the grounding task, we query the object in B𝑠 that matches a
particular textual pseudo-label {L𝑖

𝑡,3}
𝐾3
𝑖=1 best:

s𝑠,𝑖 = G𝑠 (B𝑠 , L𝑖𝑡,3), (5)

where s𝑠,𝑖 ∈ R𝐾0 represents the matching score between the given
text and the 𝐾0 objects B𝑠 . We supervise it using corresponding
object pseudo-labels {B𝑖

𝑡,3}
𝐾3
𝑖=1. For the captioning task, we identify

the object in B𝑠 with the highest IoU with a given object pseudo-
label {B𝑖

𝑡,3}
𝐾3
𝑖=1 and generate a textual description for it:

L𝑠,𝑖 = C𝑠 (B𝑠 ,B𝑖𝑡,3). (6)

We supervise it with the pseudo-label {L𝑖
𝑡,3}

𝐾3
𝑖=1 associated with

that object. Additionally, we also employ detection pseudo-labels
{B𝑖
𝑡,1}

𝐾1
𝑖=1 to supervise the results of object detection B𝑠 in the stu-

dent branch.
2024-04-13 11:30. Page 5 of 1–10.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 1: Cross-Task Teacher-Student Framework

Input: Labeled data 𝐷𝑙 = {P𝑙𝑖 , L
𝑙
𝑖
,B𝑙
𝑖
}𝑁𝑠

𝑖=1, unlabeled data
𝐷𝑢 = {P𝑢

𝑖
}𝑁𝑢

𝑖=1
1 Initialize teacher: [O𝑡 , C𝑡 ,G𝑡 ] ← random parameters;
2 for 𝑗 < 𝐸1 do // Train teacher with labeled data
3 Compute labeled loss L𝑙 by Equation (10);
4 Update [O𝑡 , C𝑡 ,G𝑡 ] by Equation (1);
5 end for
6 share weights from teacher model to student model
[O𝑠 , C𝑠 ,G𝑠 ] ← [O𝑡 , C𝑡 ,G𝑡 ];

7 for 𝑗 < 𝐸2 do // Train student with pseudo-labels

8 Generate pseudo-labels {B𝑖
𝑡,1}

𝐾1
𝑖=1, {L

𝑖
𝑡,3}

𝐾3
𝑖=1, {B

𝑖
𝑡,3}

𝐾3
𝑖=1

following the Sec.3.4;
9 Compute unlabeled loss L𝑢 with pseudo-labels by

Equation (11);
10 Compute overall loss L by Equation (7);
11 Update both teacher and student models [O𝑠 , C𝑠 ,G𝑠 ],

[O𝑡 , C𝑡 ,G𝑡 ] by Equation (8);
12 end for

Output: Student model parameters [O𝑠 , C𝑠 ,G𝑠 ]

The overall loss function can be expressed as:

L = L𝑙 + 𝜆𝑢L𝑢 , (7)

where L𝑙 ,L𝑢 are the loss functions for labeled and unlabeled data
(illustrated in Sec.3.6), and 𝜆𝑢 is the weight coefficient. After ob-
taining the loss function L, the parameters of the student model
[O𝑠 , C𝑠 ,G𝑠 ] are optimized through gradient descent, and the pa-
rameters of the teacher model [O𝑡 , C𝑡 ,G𝑡 ] are optimized through
exponential moving average (EMA) by the following equation:

[O𝑠 , C𝑠 ,G𝑠 ] 𝑗 = [O𝑠 , C𝑠 ,G𝑠 ] 𝑗−1 + 𝛾
𝜕L

𝜕[O𝑠 , C𝑠 ,G𝑠 ] 𝑗−1
,

[O𝑡 , C𝑡 ,G𝑡 ] 𝑗 = 𝛼 [O𝑡 , C𝑡 ,G𝑡 ] 𝑗−1 + (1 − 𝛼) [O𝑠 , C𝑠 ,G𝑠 ] 𝑗 ,
(8)

where 𝛼 is an EMA smoothing coefficient, 𝛾 is the learning rate and
𝑗 is the training step index. The whole semi-supervised training
algorithmic procedure pseudo-code is shown in Algorithm 1.

3.6 Training Losses
Labeled data loss. We utilize ground truth to compute the labeled
loss L𝑙 . Given the integration of both visual grounding and dense
captioning tasks, a combination of multiple loss functions is re-
quired to supervise the training process. The first component of the
loss function is the detection loss 𝐿𝑙,det, which consists of the losses
for objectness score, object category prediction, IoU prediction, and
bounding box prediction, denoted as 𝐿𝑙,obj, 𝐿𝑙,sem, 𝐿𝑙,iou, and 𝐿𝑙,box:

𝐿𝑙,det = 𝜆1𝐿𝑙,obj + 𝜆2𝐿𝑙,sem + 𝜆3𝐿𝑙,iou + 𝜆4𝐿𝑙,box . (9)

The second component of the loss function is the grounding task
loss 𝐿𝑙,grd. Similar to ScanRefer [8], it is obtained by computing
the loss between the confidence score and the one-hot target la-
bel obtained from the ground truth. The third component is the
captioning task loss 𝐿𝑙,cap, representing the cross-entropy loss for

token prediction [41, 47]. The overall loss function for labeled data
is the weighted sum of these three components:

L𝑙 = 𝐿𝑙,det + 𝜆5𝐿𝑙,grd + 𝜆6𝐿𝑙,cap . (10)

Unlabeled data loss.We compute unlabeled data loss L𝑢 using
pseudo-labels generated by the teacher model. The computation
method is generally similar to that of labeled data, but for unlabeled
data, we no longer supervise the prediction of IoU and objectness
score [42], only using them for pseudo-label filtering:

𝐿𝑢,det = 𝜆2𝐿𝑢,sem + 𝜆4𝐿𝑢,box,
L𝑢 = 𝐿𝑢,det + 𝜆5𝐿𝑢,grd + 𝜆6𝐿𝑢,cap .

(11)

4 EXPERIMENTS
4.1 Datasets and Evaluation Metric
For the 3D grounding task, we conducted experiments on widely
used ScanRefer dataset [8] and Nr3D dataset [1]. ScanRefer contains
a total of 51,583 textual descriptions corresponding to the objects
provided in 806 scanned scenes from the ScanNet [14] dataset. We
utilize the metric Acc@kIoU, where "k" represents the minimum
threshold for the IoU between the predicted bounding box and the
ground truth. Following previous works [8, 49], we set "k" to 0.25
and 0.5 for our experiments. To provide a comprehensive analysis,
we presented the results separately for the "unique" and "multiple"
subsets. The "unique" subset refers to scenes where there is only
one object of the same category as the target object, while the
"multiple" subset includes scenes with multiple objects of the same
category. Nr3D [1] provides 41.5K textual descriptions for scenes
in ScanNet. We evaluate the effectiveness of our method on NR3D
using the same metrics. For the 3D captioning task, we followed
the approach of Scan2Cap [11] to handle the description text of the
ScanRefer dataset. Texts exceeding 30 tokens were truncated to 30
tokens, with [SOS] and [EOS] tokens added at the beginning and
end, respectively. To evaluate the performance of the method on
captioning tasks, we adopted the common used m@kIoU as metric,
where m represents captioning metrics CiDEr [40], BLEU-4 [31],
METEOR [4], and ROUGE-L [25]. These metrics jointly measure
the quality of both object detection and text generation.

4.2 Implementation Details
We utilized four NVIDIA RTX3090 GPUs for training. During the
warm-up and pseudo-label learning stages, we trained for 200
epochs (i.e., 𝐸1, 𝐸2 = 200) each with a batch size of 8. For each
stage, we used an AdamW [28] optimizer with a cosine learning
rate decay strategy. The initial learning rate for warm-up stage was
set to 5e-4, while for the pseudo-label learning stage, it was set to
2.5e-4. In our experiments, the thresholds 𝜏obj, 𝜏cls, 𝜏iou, and 𝜏cap
used in the pseudo-label filtering stage were set to 0.5, 0.5, 0.15,
and 5 respectively. The remaining numbers of pseudo-labels after
filtering for each stage 𝐾1, 𝐾2, and 𝐾3, were set to 128, 16, and 8
respectively. As for the loss function, the coefficients 𝜆1, 𝜆2, 𝜆3, 𝜆4,
𝜆5, 𝜆6 and 𝜆𝑢 are set to 0.1, 0.1, 0.5, 20, 0.2, 0.3, 1 respectively. The
EMA smoothing coefficient 𝛼 is set to 0.9995.

2024-04-13 11:30. Page 6 of 1–10.
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Table 1: Comparison on ScanRefer dataset, where our semi-supervised (SS) method performs better than most fully-supervised
(FS) methods and all weakly-supervised (WS) methods. Note that, although WS setting does not rely on bbox labels, it requires
query labels of all scenes. Compared to FS andWS settings, our SS setting is more challenging as we only require limited annotations.

Method Modality Setting Annotation Unique Multiple Overall
query bbox Percent. 0.25 0.5 0.25 0.5 0.25 0.5

ScanRefer [8] 3D+2D FS ✓ ✓ 100% 76.33 53.51 32.73 21.11 41.19 27.40
Referit3D [1] 3D FS ✓ ✓ 100% 53.80 37.50 21.00 12.80 26.40 16.90
TGNN [20] 3D FS ✓ ✓ 100% 68.61 56.80 29.84 23.18 37.37 29.70

InstanceRefer [51] 3D FS ✓ ✓ 100% 77.45 66.83 31.27 24.77 40.23 32.93
SAT [49] 3D+2D FS ✓ ✓ 100% 73.21 50.83 37.64 25.16 44.53 30.14

3DVG-Transformer [52] 3D+2D FS ✓ ✓ 100% 81.93 60.64 39.30 28.42 47.57 34.67
3DJCG [7] 3D+2D FS ✓ ✓ 100% 83.47 64.34 41.39 30.82 49.56 37.33
EDA [45] 3D FS ✓ ✓ 100% 85.76 68.57 49.13 37.64 54.59 42.26

WS-3DVG [44] 3D WS ✓ × 100% - - - - 10.43 6.37
3D-VLA [48] 3D WS ✓ × 100% 72.95 62.17 22.77 17.94 32.51 26.53

Ours 3D SS partial partial 10% 76.75 58.27 38.60 28.98 46.00 34.67
3D+2D SS partial partial 10% 82.87 61.79 39.57 28.89 47.97 35.28

Table 2: Re-implementing all methods trained on solely 10%
labeled data. Experiments are conducted on ScanRefer.

Method Modality Overall
Acc@0.25 Acc@0.5

ScanRefer [8] 3D+2D 29.21 12.07
Referit3D [1] 3D 12.35 9.77
TGNN [20] 3D 9.08 7.64

InstanceRefer [51] 3D 33.37 27.03
SAT [49] 3D+2D 29.51 12.24

3DVG-Transfromer [52] 3D+2D 30.54 13.01
3DJCG [7] 3D+2D 40.88 27.42
EDA [45] 3D 39.53 23.62

Ours 3D 46.00 34.67
3D+2D 47.97 35.28

4.3 Comparison with SOTA Model
3D grounding results. In Table 1, we present a comparison of
our method with previous fully supervised and weakly supervised
approaches for the 3D grounding task on the ScanRefer dataset.
From the table, it can be observed that with only 10% of labeled
data, our method achieves better results than many fully supervised
methods that utilize all labeled data, although slightly inferior to
some state-of-the-art methods. This demonstrates the effectiveness
of our approach. The table also showcases two weakly supervised
methods, which utilize all textual annotations but lack correspond-
ing bounding boxes. Compared to them, our approach solely utilizes
a small amount of fully labeled data along with a large amount of
unlabeled scene point cloud data. Furthermore, the 3D-VLA [48]
method heavily relies on pre-trained models in the 2D domain.
Therefore, directly comparing these weakly-supervised methods
to us is not feasible. However, we still outperforms their perfor-
mance a lot. To fairly compare the existing methods in the same
semi-supervised setting, we also re-implement previous approaches
by using only 10% labeled data. As shown in Table 2, our method
significantly outperforms all previous methods when using the
same amount of labeled data. This clearly validates the ability of
our approach to acquire knowledge for 3D visual grounding from
unannotated scenes through pseudo-label learning and knowledge

Table 3: Results of 3D captioning task on Scan2Cap.
Method label C@0.5 B-4@0.5 M@0.5 R@0.5

VoteNetRetr [33] 100% 10.18 13.38 17.14 33.22
Scan2Cap [11] 100% 39.08 23.32 21.97 44.48
SpaCap3d [43] 100% 42.76 25.38 22.84 45.66
3DJCG [7] 100% 49.48 31.03 24.22 50.80

Ours 10% 33.00 28.37 22.50 48.82

transfer. Performance comparison on more datasets like Nr3D can
be found in our Supplementary files.
3D captioning results.We also compare the performance of our
generated captions with several captioning methods in Table 3.
It can be observed that our approach with only 10% labeled data
achieves comparable results to manymethods utilizing 100% labeled
data. This indicates that our method also gains the ability to learn
captioning task from unlabeled data through knowledge transfer.

4.4 Ablation Study
Ablation study on varying proportions of labeled data. We
conducted experiments under various proportions of labeled data,
as shown in Figure 4. The results indicate that our approach is
capable of learning useful information from a small amount of la-
beled data (e.g., 3%). As the proportion of labeled data increases, our
method is able to generate better pseudo-labels, thereby enhancing
the final experimental outcomes. Furthermore, comparisons with
the baseline method 3DJCG under different annotation proportions
reveal significant and consistent enhancements across different pro-
portions of labeled data, demonstrating the ability of our method
in learning from unlabeled data.
Ablation study on pseudo-label filtering step.We propose three
pseudo-label filtering schemes based on detection, captioning, and
grounding. To assess the effectiveness of these filtering schemes,
we conducted ablation study and presented the results in Table 4.
The first row of the table represents the results of semi-supervised
training using all pseudo-labels generated by the teacher model,
while the last row corresponds to our proposed method. From
the table, we can conclude that our designed filtering schemes at
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Figure 3: Visualization of some results. The first two rows represent the ground truth of object positions and the query text,
respectively. The third row presents the results of 3D visual grounding, while the last row presents the results of 3D captioning.
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Figure 4: Ablation study on proportions of labeled data.

the detection, captioning, and grounding levels all contribute to
improving the results of semi-supervised learning.
Ablation study on the filtering thresholds. We conducted fur-
ther ablation studies on the thresholds used in the pseudo-label
filtering step. The experimental results for the 𝜏obj, 𝜏cls, and 𝜏iou are
shown in Table 5. The table shows that both excessively large or
small thresholds can compromise the effectiveness of the method.
Excessively large thresholds may result in an insufficient number of
pseudo-labels, thus preventing the student model from receiving ad-
equate training. Conversely, excessively small thresholds may lead
to the utilization of some low-quality pseudo-labels for training,
thereby compromising the training results.

More ablation study can be found in our Supplementary files.

4.5 Visualization
In Figure 3, we present visualizations of some output results ob-
tained using our approach with 10% annotated data. It can be ob-
served that our method is capable of performing both 3D visual
grounding and dense captioning tasks with a minimal amount of an-
notated data. It is noteworthy that the generated captions uniquely

Table 4: Ablation study on the pseudo-label filtering schemes.

Pseudo-label filtering Acc@0.25 Acc@0.5Detection Captioning Grounding
× × × 45.70 30.48
✓ × × 45.77 31.04
✓ ✓ × 46.66 33.40
✓ ✓ ✓ 47.97 35.28

Table 5: Ablation study on the threshold.
𝜏obj 𝜏cls 𝜏iou Acc@0.25 Acc@0.5
0.5 0.5 0.15 47.97 35.28
0.1 0.5 0.15 47.25 34.81
0.9 0.5 0.15 47.85 34.96
0.5 0.1 0.15 47.09 34.11
0.5 0.9 0.15 47.31 33.71
0.5 0.5 0.25 47.62 35.63
0.5 0.5 0.5 47.66 35.18

describe the target object based on various features, demonstrating
knowledge transfer from the grounding task.

5 CONCLUSION
In this paper, we propose to address an important yet challenging
task, i.e., semi-supervised 3D grounding. Since most scene data has
no annotation, we explore additionally training a 3D captioning
module to assist the grounding learning. To this end, we develop
a joint 3D grounding and captioning backbone with a teacher-
student framework design to tackle this semi-supervised learn-
ing. Cross-task pseudo-label generation and knowledge transfer
strategies are further introduced to improve pseudo-label learning
and updating. Extensive experiments demonstrate the proposed
framework bridges the gap between semi-supervised learning and
fully-supervised learning on various datasets.
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