
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Av
g.

 T
ra

ce
 L

en
gt

h

U

ni
qu

e S
tu

de
nt

s

first:453414,
frame:395674,

untitled: 209956, intro:
164760

grandpafrog:1, wwmap:1,
fishtag: 1, p15weather: 1

powerpuffgirl:2693,
baseballlogos:1726,
mazesurvival: 1618,
yourlogohere: 1014

turtle_color:1,
iceclimer:1,

projectfull: 1,
rainbowloophehehe: 1

Figure 8: Distribution of average student program trace length (left) and number of unique students
(right) for programs in the PENCIL CODE dataset, showing a heavy long tail.

A DATASET STATISTICS

A.1 DATA PROCESSING

Dataset Preparation We received data from the PENCIL CODE team from the years 2015 to 2024.
The raw data consists of HTTP GET requests to the PENCIL CODE server corresponding to code
execution. With permission from the PENCIL CODE team, we only access the timestamp, a random
hash of the user ID, and the current program state code and title, which is included with the request
URL.12 We construct program traces for a particular (username, title) pair by ordering all associated
program code with respect to the recorded timestamp and title.

We assume that the title used by the student reflects their goal and maps onto the program semantics,
as the raw data do not include other metadata about students’ goals (e.g., , the actual assignment they
were solving). In some cases, this title may not provide sufficiently fine-grained information about a
student’s goal. For example, the common untitled, myprogram, and first titles often correspond
to a diverse set of kinds of traces.13

Preprocessing We construct traces from titles, timestamps, and programs as fol-
lows, where variables are bolded: [title]<mask>...<mask><mask><start>CODE 1
(timestamp):\n[program]\n CODE 2 (timestamp):\n[program]\n...<|endoftext|>.14 We
randomly mask 15% of trace titles during training to facilitate experiments where we evaluate
models’ abilities to infer trace titles from code (§4.2). We remove empty program traces and last
programs for the last model. If consecutive programs are identical, we remove all but the last
program. For traces that are longer than GPT-2’s context window of 1024 tokens, we create as many
inputs to cover the trace in chunks of 1024 tokens, with 64 tokens of overlap between each chunk.

Statistics The overall dataset has size 248GB, consisting of 1.3M unique usernames and 3.8M
unique (username, program_name) pairs. There is an average of 2.86 program traces per user, and the
trace titles with the highest and lowest frequencies and average trace length are shown in Figure 8.

Table 1: Dataset Statistics

Split Total

Traces

Unique

Students

Unique

Programs

train 2,941,032 1,110,554 260,428
seen student/seen title 507,221 226,673 62,207
seen student/unseen title 71,799 49,240 41,086
unseen student/seen title 259,345 208,666 20,073
unseen student/unseen title 8,814 6,185 6,558

Table 2: Statistics on the different dataset splits discussed in §3.2.

12This use of the data was classified as exempt by our institution’s IRB.
13We observed that for first traces, users frequently appeared to switch between goals mid-trace, e.g., first

starting with speed 2; pen red, which is the provided PENCIL CODE default.
14There are most 50 tokens for the trace title and mask tokens.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 REMOVING STUDENT PERSONALLY IDENTIFIABLE INFORMATION (PII)

As part of our agreement with the PENCIL CODE team to make student data publicly available, we
take further steps to prevent leakage of PII about school-age children. We first filter out person
names from all data splits using nltk.corpus.names, which consists of 5001 female names and
2943 male names, and replace them with <UNK> tokens. We then hand-examined a random set of
2000 independent log entries that contain either strings or comments with more than 10 characters
total in order to identify other kinds of PII captured in the data. In this sample, we observed 347

names, though note this is a conservative estimate as some examples flagged include cookie and
Times New Roman. We additionally found 112 web links that potentially contained PII, such as
the flag of the student’s home country. We therefore replace all URLs with a special <URL> token.
Furthermore, 2 strings contained a student’s school name, and 2 contained geographic location –
because it is difficult to enumerate all potential locations, we instead chose a conservative approach
and replaced all strings containing only 1 or 2 words with <UNK> tokens (as we observed PII only
included in headers with independent strings for location). We did not observe any additional PII
such as phone numbers or email addresses. Finally, we observed that there were some assignments
(e.g., name) where students were tasked with creating a program that graphically drew their name on
the PencilCode interface. As this is a form of PII, we drop all program traces with assignment titles
containing name (i.e., including myname).

Removing PII from the data naturally affects the model. Therefore, all results reported in the paper
use the original dataset, while we release, both all filtered data and a trace model trained on the
filtered training data split.

A.3 DOWNSAMPLING

To create the downsampled datasets for the trace and synthetic models, we continue pruning the
traces in their respective training datasets until the ratio of [the difference in number of tokens in the
datasets] to [the number of tokens in the last dataset] is less than or equal to 0.001.

B TRAINING DETAILS

We continually train models with a batch size of 32 for a maximum of 3 epochs, with early stopping
based on evaluations every 1000 steps (patience = 20). We use 2% of the training data as validation
data during training. We train with a learning rate of 5e→ 5 with a linear learning rate scheduler and
Adam optimizer. Each model was trained on an A100 GPU on an internal cluster for around 2 weeks.

C OLMo-2 RESULTS

Model
seen student
seen title

unseen student
seen title

seen student
unseen title

last 0.309 0.299 0.036
trace downsampled 0.498 0.485 0.078

Table 3: BLEU score evaluation results for different splits. The best-performing cell for each column
is bolded. We evaluate the best performing checkpoints for each model after up to 1.4 epochs of
training. Results are for 50 randomly sampled titles corresponding to PENCIL CODE assignments.

D METRICS

Successful Execution We measure whether a program successfully executes by using
a headless browser to attempt to execute the student-written code. First, we append
console.log("END_REACHED") to the end of the following HTML template:

<!doctype html>
<html>
<body><script src="https://pencilcode.net/turtlebits.js" crossorigin="anonymous"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

type="text/javascript"></script><script type="text/LANGUAGENAME">

INSERT_CODE_HERE

</script></body></html>

We replace LANGUAGENAME with coffeescript or javascript depending on the language of the
code. We replace INSERT_CODE_HERE with the student’s program.

We first start with CoffeeScript language. Using a headless browser, we open the HTML file and
check if the text END_REACHED is logged to the console, using at most 5 seconds for page navigation
and 5 seconds for execution:

1. If no error occurs and END_REACHED is logged to the console, we consider the program to
have successfully executed. We skip all other steps.

2. If an error is reached, we move to step (4).

3. If the page navigates without an error or END_REACHED being logged, it is unclear whether the
program timed out because of a system delay external to the program causing the execution
to not reach an error that otherwise would have occurred. Therefore, we retry execution with
a longer timeout (adding 100 seconds to both the page navigation and execution timeouts),
unless the code contains any of the following keywords: await, forever (with no stop()),
or prompt. If one of these keywords is present, we do not retry execution, as we expect these
programs to run indefinitely, and move to step (4). If after retrying with longer timeouts,
there is still no error or END_REACHED logged, we move to step (4).

4. We attempt to execute the code in JavaScript instead of CoffeeScript, starting at step (1).

We run programs in both CoffeeScript and JavaScript because students could have written their code
in either language on PENCIL CODE. If both languages do not lead to successful execution, we
consider the execution unsuccessful. If one language leads to successful execution, we consider the
execution successful.

E SAMPLING GENERATIONS

For the core behavioral evaluations in (§4.1), we collect 5 samples from each model for each unique
student ID and title pair. For each metrics, we calculate correlation with the mean value across
samples and teh ground truth, except for Self-BLEU, for which we report the score across the 5
samples.

Because full student program traces often exceed limit of 1024 output tokens, we repeatedly generate
3 times, stopping sooner if an |endoftext| token is generated. If the last program of the generated
text does not contain |endoftext|, we then treat the preceding program as the final state.

F ADAPTING TO NEW STUDENTS

We finetune the trace model for up to 100 epochs with early stopping patience of 10. We use a batch
size of 32 and learning rate of 5e-4 with no masking of program names. We freeze all model weights
except the parameters of the student embedding MLP. We keep the bias terms of the MLP frozen.

We use 5% of the unseen students for hyperparameter selection to determine the optimal number of
training epochs. We first train on the 5% hyperparameter selection set with early stopping, identify
the best epoch, and then train the remaining 95% of students for that number of epochs.

We generate rollouts for a sample of 100 of the students whose traces are finetuned on. We filter
degenerate traces, i.e., those that do not have any matched programs, then evaluate on the intersecting
subset of held out data for all values of k after filtering. At most 0.01% of generated traces are filtered
for any given k.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G PROBING STUDENT EMBEDDINGS

To construct student embeddings, we probe the first layer of the student embedding module (a 2-layer
MLP with embedding dimension = 768 and hidden dimension = 64).

The probe models are MLP regressors with 2 hidden layers, each with size 100. We train the probes
for a maximum of 5,000 iterations with learning rate 0.001, batch size 64, and early stopping.

H PROBING CODE EMBEDDINGS

We present details on our experiments probing code embeddings (§4.2).

Constructing Datasets for Probes Let a trace for student s and assignment a be denoted by
ω = (p0, p1, . . . , pT), where p0 is the initial empty program (containing only the CODE prefix)
and pT is the final program. For each ω , we consider all prefixes up to each time step t, i.e., ,
for t = 0, 1, . . . , T , the prefix ω:t = (p0, p1, . . . , pt). For each prefix ω:t, we construct an input
x = (ω:t, s, a), consisting of the programs in the prefix, the student ID, and the trace title. We then
obtain a code embedding e = ftrace(x) by conditioning the trace model on x and taking the mean of
the token embeddings at the last layer.15 For each property, we construct a dataset D = {(ej , yj)}Nj=1

where ej is the embedding for input xj , and yj is the property to be predicted. We exclude any x
whose tokenized length exceeds GPT-2’s context window.

Filter Probing Datasets We filter the probing datasets to remove confounders in the metrics. For
example, to predict whether the student will deviate from their goal (the final program), we only
include prefixes that do not contain the final program in the trace, i.e., D = {xj : ω j:t ↑= ω j:T }. For
probing trace title, we set D = {xj : ω j:t ↑= ω j:0}, i.e., we only include inputs that contain some code
(excluding the initial empty program). For predicting whether the program is the final program, we do
not filter D (we include all inputs). For all other metrics, we only include inputs that do not contain
the final trace. The reasons are twofold: First, we wish to avoid possible leakage from the final
program (e.g., predicting whether the final program will be correct is not a future-looking metric if
the final program is given in the input). Second, because many of the metrics correlate with whether
the program is the final program (e.g., the edit distance to the final program is 0 if the program is the
final program), a probe may rely on information in the input about whether the program is final and
make its predictions based on this information, rather than making sophisticated inferences about the
metric directly; given that we already have a metric directly predicting whether the program is the
final program, we remove this confounder in probing for other metrics by filtering D to only include
inputs that do not contain the final program in the trace, i.e., {xj : ω j:t ↑= ω j:T }.

Probes We train a single probe on the filtered dataset for each metric. The probes are ridge
regressors and classifiers, implemented using the scikit-learn RidgeCV and RidgeClassifierCV
classes. We perform cross-validation to pick the value of ε, i.e., the regularization parameter, from
the set of values ε ↓ {1, 1e→ 1, 1e→ 2, 1e→ 3, 1e→ 4, 1e→ 5, 1e→ 6, 1e→ 7}.

Embedding Analysis Finally, we take a closer look at the learned embeddings across the trace,
last, and synthetic models to better understand their representational differences. We first measure
similiarity between embeddings across all layers for each pair of modes, and find strongest differences
in the last layer, particularly for the last model trained only on final program states (Figure 9). When
running Principle Component Analysis (with 8 components) on the trace and last model, the first
two principle components explain more variance in the data for the last model, suggesting that the
trace model learns more complex representations. Finally, we observe that the first two principle
components are well aligned with student edit types (e.g., small addition), though conditioning on an
entire trace leads to more complex structure.

15See §H for justification using Centered Kernel Alignment (Kornblith et al., 2019).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

All

All

Synthetic

All

A
ll

Sy
nt

he
tic

La
st

La
st

A. Layer-Wise Central Kernel Alignment Between Model Types B. Principle Component Analysis on Edit Embeddings

PC
 1

PC 2 PC 3

Small Addition

Large Addition

Small Deletion

Large Deletion

Change Color

Change Number Add Comment

Add Function

PC 2 PC 3

PC
 1

All Model (no trace conditioning) All Model (trace conditioning)

Ex
pl

ai
ne

d
V

ar
ia

nc
e

R
at

io

Principle Component

All Model (no trace conditioning)

Last Model

Figure 9: (Left) Running Central Kernel Alignment Kornblith et al. (2019) on on code embeddings
across layers of the trace, synthetic, and last models shows that the three models differ signifi-
cantly in the last embedding layer, with the last model causing asymmetry. (Right) Running PCA
on the differences between two consecutive program states in a trace results shows that embeddings
encode information relevant to the edit type (e.g. small addition).

I MODEL STEERING

We showed in Section §4.5 that we can improve assisted error recovery with the trace model by using
a “strong student embedding” instead of the original. To find this embedding, we sort all students in
our training dataset by the average goal backtracking metric across their program traces. We then
selected the student with the lowest degree of backtracking who had completed more than 20 different
programs. Future work can identify other attributes for model steering via student embeddings, such
as the language used in any text (e.g., Greek), certain colors, or high speeds for interactive programs.

We additionally trained a more complex synthetic-complex model where the synthetic edits can
either add or delete any number of lines from any location in the current program state. Therefore,
any two arbitrary program states can be connected with a sequence of edits. We find that, for error
recovery, the “trace” model still outperforms the synthetic-complex model, which only slightly
outperforms the synthetic model at lower values for time (x-axis, see Figure 7). Results for
synthetic-complex include the following values:

Time (s) Trace % Correct Synthetic % Correct Synthetic-Complex % Correct
0.01 0.64 0.39 0.41

1 0.60 0.39 0.40
60 0.64 0.45 0.40

Table 4: Performance across different time scales.

On a qualitative level, we believe the reason for this poor performance is that the method for creating
synthetic-complex treats all lines equally, and is not able to capture how some aspects of a program
(e.g., a function definition) are more susceptible to incorrect implementations than others, hindering
error recovery.

18

	Introduction
	PencilCode Overview
	Experimental Set-Up
	Models
	Dataset Formats
	Evaluation Methods

	Experiments
	Modeling General Behavior
	Probing Code Representations
	Probing Student Representations
	Adapting to New Students
	Error Recovery and Model Control

	Related Work
	Conclusion and Future Work
	Dataset Statistics
	Data Processing
	Removing Student Personally Identifiable Information (PII)
	Downsampling

	Training Details
	OLMo-2 Results
	Metrics
	Sampling Generations
	Adapting to New Students
	Probing Student Embeddings
	Probing Code Embeddings
	Model Steering

