Design choices

Goal **Overview**

Transition Path Sampling

Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling

• Every sample matters: our method avoids wasteful forward simulation and importance sampling (simulation-free)

- **Optimization over sampling:** we optimize over an expressive variational family of approximations through neural networks
- Problem-informed parameterization: we enforce the exact boundary condition, thus reducing the search space

Transition Path Sampling with Doob's h-transform

Variational Formulation of Doob's h-transform

Yuanqi Du*, Michael Plainer*, Rob Brekelmans*, Chenru Duan, Frank Noé, Carla P. Gomes, Alan Aspuru-Guzik, Kirill Neklyudov

Doob's h-transform allows us to condition the underlying SDE on the event that the state $\mathcal B$ is reached at $t=T$.

Consider the unconditioned reference process $\mathbb{P}_{0:T}^{\text{ref}}$:

 $dx_t = b_t(x_t) \cdot dt + \Xi_t dW_t$ $x_0 \sim \rho_0$

The goal is to efficiently sample possible transition paths connecting two low-energy states separated by a high-energy barrier.

$$
\frac{1}{\sqrt{1-\frac{1}{2}}}
$$

Computational Approach Tractable Drift

Molecular System – Chignolin

Code

Molecular System: Alanine Dipeptide

We consider the transition dynamics in Brownian systems with Langevin dynamics.

> We assume $q_{t|0,T}(x)$ to follow a Gaussian and train a neural network to predict the parameters.

$$
q^\theta_{t|0,T} = \mathcal{N}(\mu^\theta_{t|0,T}, \Sigma^\theta_{t|0,T}
$$

 $\theta^* = \arg\!\min_{\theta} \mathbb{E}_{x \sim q_{t|0,T}^{\theta}} \left[\mathcal{S}(x,\theta) \right]$

$$
\mu_{t|0,T}^{(\theta)} = (1-t)A + tB + t(1-t)\text{NNET}_{\theta}(t, A, B)_{[:D]}
$$

$$
\Sigma_{t|0,T}^{(\theta)} = t(1-t)\text{diag}(\text{NNET}_{\theta}(t, A, B)_{[D:]}) + \sigma_{\min}^2 \mathbb{I}.
$$

Optimization Want SDE whose evolution follows and is of the form: $dx_{t|0,T} = (b_t(x_{t|0,T}) + 2G_t v_{t|0,T}(x_{t|0,T})) dt + \Xi_t dW_t$

 $u_{t|0,T}$ where $v_{t|0,T}(x_{t|0,T}) \approx \nabla_x \log h(x_{t|0,t},t)$

Assuming Gaussian $q_{t|0,T}(x)$, we can solve for corresponding

$$
u_{t|0,T}^{(q)}(x) \coloneqq \frac{\partial \mu_{t|0,T}}{\partial t} + \left[\frac{1}{2} \frac{\partial \Sigma_{t|0,T}}{\partial t} \Sigma_{t|0,T}^{-1} - G_t \Sigma_{t|0,T}^{-1} \right] (x - \mu_{t|0,T})
$$

$$
v_{t|0,T}^{(q)}(x) = \frac{1}{2} (G_t)^{-1} \left(u_{t|0,T}^{(q)}(x) - b_t(x) \right)
$$

Stochastic Differential Equation (SDE)

$$
dx_t = b_t(x_t) \cdot dt + \Xi_t dW_t
$$

Easy to sample by simulating SDE

 $\rho(x_t = x \mid x_0 = A)$

Difficult to sample when conditioned on endpoint

 $\rho(x_t = x \mid x_0 = A, x_T \in \mathcal{B})$

Reference process (Langevin dynamics)

$$
1^{st}\,\text{order}
$$

$$
dx_t = -(\gamma M)^{-1} \nabla_x U(x_t) \cdot dt + (\gamma M)^{-\frac{1}{2}} \sqrt{2k_B \mathcal{T}} \cdot dW_t
$$

Doob's h-transform

2D Toy Experiments Müller-Brown Potential

(a) MCMC

(b) Ours

With Doob's h-transform, we can condition it on the endpoint by adding an additional drift term to get $\mathbb{P}_{0:T}^*$: where $h(x,t) := \rho(x_T \in \mathcal{B} \mid x_t = x)$ and $G_t := \frac{1}{2} \Xi_t \Xi_t^T$ $dx_{t|0,T} = (b_t(x_{t|0,T}) + 2G_t \nabla_x \log h(x_{t|0,T},t)) \cdot dt + \Xi_t dW_t$ intractable!

Algorithm 3 Variational Doob h -Transform (Single Sample with Gaussian Paths) **Input:** Reference drift b_t , diffusion matrix $G_t = \Xi_t \Xi_t^T$, conditioning endpoints $x_0 = A, x_T = B$ while not converged do Sample x_t for $t \sim \mathcal{U}(0,T)$ from current $q_{t|0,T}^{(\theta)}$ using $x_t = \mu_{t|0 T}^{(\theta)} + \Sigma_{t|0 T}^{(\theta)} \epsilon$, where $\epsilon \sim \mathcal{N}(0, \mathbb{I}_D)$, $\mu_{t|0,T}^{(\theta)} = (1 - \frac{t}{T})A + \frac{t}{T}B + \frac{t}{T}(1 - \frac{t}{T})NNET_{\theta}(t, A, B)_{[:D]},$ $\Sigma_{t|0,T}^{(\theta)} = \frac{t}{T}(1-\frac{t}{T})$ diag $(NNET_{\theta}(t, A, B)_{[D:]}) + \sigma_{\min}^2$ I.

Calculate $u_{t|0,T}(x_t)$ using the output of the neural network

$$
u_{t|0,T}^{(q,\theta)}(x_t) = \frac{\partial \mu_{t|0,T}^{(\theta)}}{\partial t} + \left[\frac{1}{2} \frac{\partial \Sigma_{t|0,T}^{(\theta)}}{\partial t} (\Sigma_{t|0,T}^{(\theta)})^{-1} - G_t (\Sigma_{t|0,T}^{(\theta)})^{-1} \right] (x_t - \mu_{t|0,T}^{(\theta)})
$$

Calculate $v_{t|0,T}(x_t)$ using $u_{t|0,T}^{(q,\theta)}(x_t)$ and the base drift $b_t(x_t)$

$$
v_{t|0,T}^{(q,\theta)}(x_t) = \frac{1}{2} (G_t)^{-1} \left(u_{t|0,T}^{(q,\theta)}(x_t) - b_t(x_t) \right)
$$

Calculate S

$$
\mathcal{S} = \langle v_{t|0,T}^{(q,\theta)}(x_t), G_t~ v_{t|0,T}^{(q,\theta)}(x_t) \rangle
$$

• Note: $x_t \sim q_{t|0,T}^{(\theta)}$ and thus need to backpropagate through $b_t(x_t)$ using reparameterization trick

Update $\theta \leftarrow$ optimizer $(\theta, \nabla_{\theta} S)$

end while return

Theorem

The following Lagrangian action function has a unique solution which matches the Doob h-transform

$$
\mathcal{S} = \min_{q,v} \int_0^T dt \int dx \ q_{t|0,T}(x) \left\langle v_{t|0,T}(x), G_t v_{t|0,T}(x) \right\rangle
$$
 such that

$$
\frac{\partial q_{t|0,T}(x)}{\partial t} = -\left\langle \nabla_x, q_{t|0,T}(x) \left(b_t(x) + 2G_t v_{t|0,T}(x) \right) \right\rangle
$$

$$
+ \sum_{ij} \left(G_t \right)_{ij} \frac{\partial^2}{\partial x_i \partial x_j} q_{t|0,T}(x)
$$

$$
q_0(x) = \delta(x - A) \qquad q_T(x) = \delta(x - B)
$$

with

$$
q_{t|0,T}^{*}(x) = \rho_{t|0,T}(x)
$$

$$
v_{t|0,T}^{*}(x) = \nabla_{x} \log h(x,t)
$$

At optimality:

Dual-Channel Double-Well Potential

2nd order

$$
d\bar{x}_t = \bar{v}_t \cdot dt
$$

$$
d\bar{v}_t = \left(-M^{-1} \nabla_x U(\bar{x}_t) - \gamma \bar{v}_t \right) \cdot dt + M^{-\frac{1}{2}} \sqrt{2\gamma k_B \mathcal{T}} \cdot dW_t
$$

$$
x_t = \begin{bmatrix} \bar{x}_t \\ \bar{v}_t \end{bmatrix}, \quad b_t(x_t) = \begin{bmatrix} \bar{v}_t \\ -M^{-1} \nabla_x U(\bar{x}_t) - \gamma \bar{v}_t \end{bmatrix}, \\ G_t = \begin{bmatrix} 0 & 0 \\ 0 & M^{-\frac{1}{2}} \sqrt{2\gamma k_B \mathcal{T}} \end{bmatrix}
$$

We introduce a mixture of Gaussians to capture more complex distributions and more paths.

$$
q_{t|0,T}(x) = \sum_{k} w^k q_{t|0,T}^k(x)
$$

$$
u_{t|0,T}^{(q)}(x) = \sum_{k=1}^K \frac{w^k q_{t|0,T}^k(x)}{\sum_{j=1}^K w^j q_{t|0,T}^j(x)} u_{t|0,T}^{(q,k)}(x)
$$

Mixture of Gaussian Parameterization

and substitute this vector field into the objective above

(b) Mixture of Gaussians (a) Single Gaussian