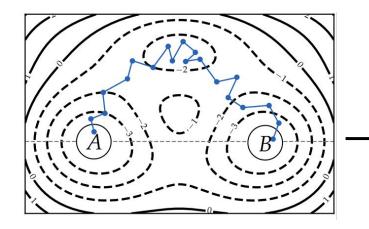
Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling

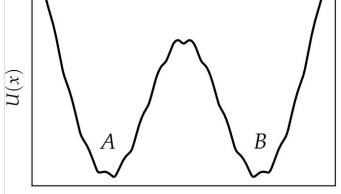
Yuanqi Du*, Michael Plainer*, Rob Brekelmans*, Chenru Duan, Frank Noé, Carla P. Gomes, Alan Aspuru-Guzik, Kirill Neklyudov

Overview

Goal

The goal is to efficiently sample possible transition paths connecting two low-energy states separated by a high-energy barrier.





Transition Path Sampling

We consider the transition dynamics in Brownian systems with Langevin dynamics.

Stochastic Differential Equation (SDE)

$$dx_t = b_t(x_t) \cdot dt + \Xi_t dW_t$$

Reference process (Langevin dynamics)

$$dx_t = -(\gamma M)^{-1} \nabla_x U(x_t) \cdot dt + (\gamma M)^{-\frac{1}{2}} \sqrt{2k_B \mathcal{T}} \cdot dW_t$$

- 10 el .

Variational Formulation of Doob's h-transform

Theorem

The following Lagrangian action function has a unique solution which matches the Doob h-transform

$$\mathcal{S}=\min_{q,v}\int_0^T dt\int dx \,\, q_{t|0,T}(x) \left\langle v_{t|0,T}(x),G_tv_{t|0,T}(x)\right\rangle$$
 such that

$$\begin{split} \frac{\partial q_{t|0,T}(x)}{\partial t} &= -\left\langle \nabla_x, q_{t|0,T}(x) \left(b_t(x) + 2G_t v_{t|0,T}(x) \right) \right\rangle \\ &+ \sum_{ij} \left(G_t \right)_{ij} \frac{\partial^2}{\partial x_i \partial x_j} q_{t|0,T}(x) \end{split}$$
with $q_0(x) &= \delta(x - A)$ $q_T(x) = \delta(x - B)$

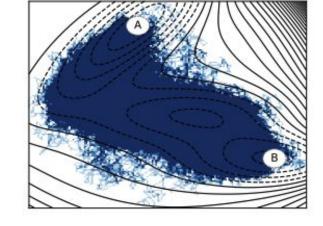
At optimality:

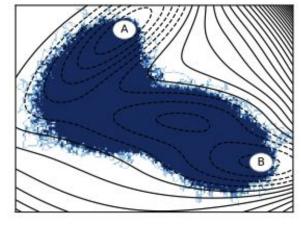
$$q_{t|0,T}^*(x) = \rho_{t|0,T}(x)$$

 $v_{t|0,T}^*(x) = \nabla_x \log h(x,t)$

Computational Approach Tractable Drift

2D Toy Experiments Müller-Brown Potential





(a) MCMC

(b) Ours

Method	$\#$ Evaluations (\downarrow)	Max Energy (↓)	MinMax Energy (↓)
MCMC (variable length)	3.53M	-13.77 ± 16.43	-40.75
MCMC	1.03B	-17.80 ± 14.77	-40.21
Ours	1.28M	-14.81 ± 13.73	-40.56

Mixture of Gaussian Parameterization

We introduce a mixture of Gaussians to capture more complex distributions and more paths.

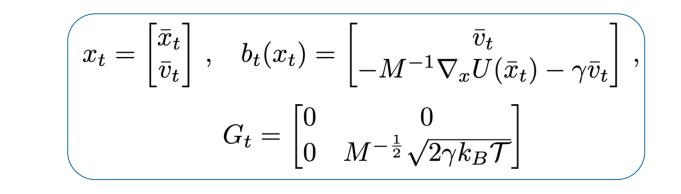
$$q_{t|0,T}(x) = \sum_{k=1}^{K} w^{k} q_{t|0,T}^{k}(x)$$
$$u_{t|0,T}^{(q)}(x) = \sum_{k=1}^{K} \frac{w^{k} q_{t|0,T}^{k}(x)}{\sum_{j=1}^{K} w^{j} q_{t|0,T}^{j}(x)} u_{t|0,T}^{(q,k)}(x)$$

Dual-Channel Double-Well Potential

2nd order

$$d\bar{x}_t = \bar{v}_t \cdot dt$$

$$d\bar{v}_t = \left(-M^{-1} \nabla_x U(\bar{x}_t) - \gamma \bar{v}_t \right) \cdot dt + M^{-\frac{1}{2}} \sqrt{2\gamma k_B \mathcal{T}} \cdot dW_t$$

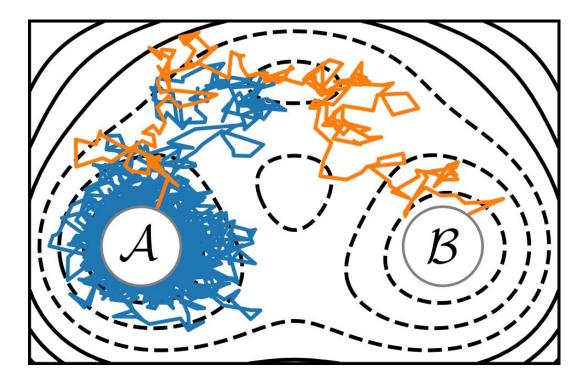


Easy to sample by simulating SDE

 $\rho(x_t = x \mid x_0 = A)$

Difficult to sample when conditioned on endpoint

 $\rho(x_t = x \mid x_0 = A, x_T \in \mathcal{B})$

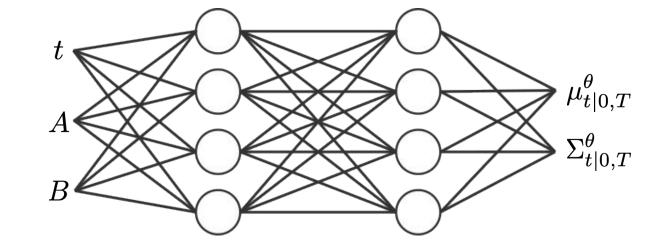


Transition Path Sampling with Doob's h-transform

Design choices

 Every sample matters: our method avoids wasteful forward simulation and importance sampling (simulation-free) We assume $q_{t|0,T}(x)$ to follow a Gaussian and train a neural network to predict the parameters.

$$q_{t|0,T}^{\theta} = \mathcal{N}(\mu_{t|0,T}^{\theta}, \Sigma_{t|0,T}^{\theta})$$



 $\theta^* = \operatorname*{argmin}_{\theta} \mathbb{E}_{x \sim q^{\theta}_{t\mid 0, T}} \left[\mathcal{S}(x, \theta) \right]$

$$\begin{split} \mu_{t|0,T}^{(\theta)} &= (1-t)A + t \ B + t(1-t) \text{NNET}_{\theta}(t,A,B)_{[:D]} \\ \Sigma_{t|0,T}^{(\theta)} &= t(1-t) \text{diag}\big(\text{NNET}_{\theta}(t,A,B)_{[D:]}\big) + \sigma_{\min}^2 \mathbb{I}. \end{split}$$

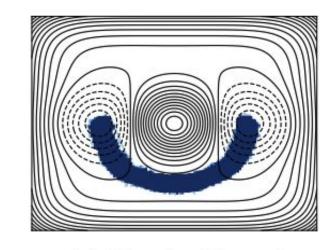
Optimization Want SDE whose evolution follows $q_{t|0,T}(x)$ and is of the form:

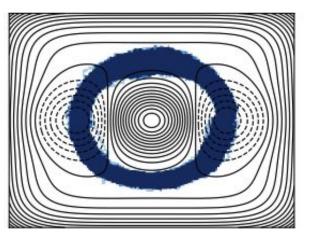
 $dx_{t|0,T} = \underbrace{\left(b_t(x_{t|0,T}) + 2G_t \ v_{t|0,T}(x_{t|0,T})\right)}_{u_{t|0,T}} \cdot dt + \Xi_t \ dW_t$ where $v_{t|0,T}(x_{t|0,T}) \approx \nabla_x \log h(x_{t|0,t}, t)$

Assuming Gaussian $q_{t|0,T}(x)$, we can solve for corresponding

$$u_{t|0,T}^{(q)}(x) \coloneqq \frac{\partial \mu_{t|0,T}}{\partial t} + \left[\frac{1}{2}\frac{\partial \Sigma_{t|0,T}}{\partial t}\Sigma_{t|0,T}^{-1} - G_t \Sigma_{t|0,T}^{-1}\right] \left(x - \mu_{t|0,T}\right)$$
$$v_{t|0,T}^{(q)}(x) = \frac{1}{2}(G_t)^{-1} \left(u_{t|0,T}^{(q)}(x) - b_t(x)\right)$$

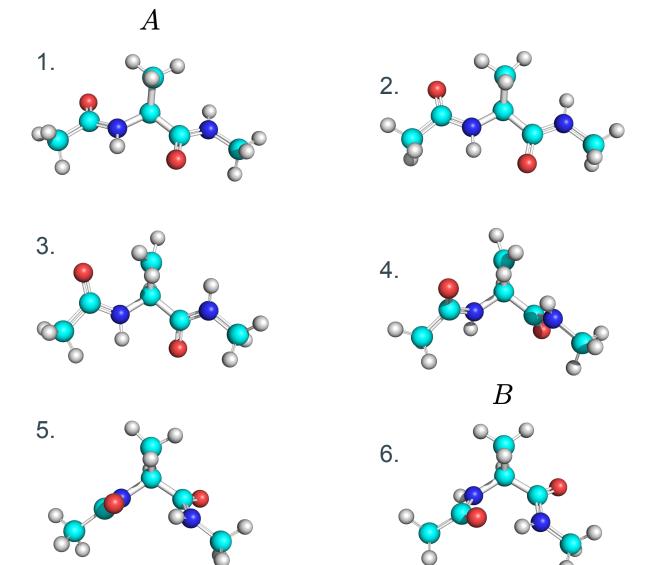
and substitute this vector field into the objective above





(a) Single Gaussian (b) Mixture of Gaussians

Molecular System: Alanine Dipeptide



Method	States	# Evaluations (\downarrow)	Max Energy (↓)	MinMax Energy (↓)
MCMC (variable length)	CV	25.82M	$1,212.81 \pm 19,444.46$	28.67
MCMC*	CV	1.29B	288.46 ± 128.31	60.52
MCMC (variable length)	relaxed	80.23M	269.16 ± 248.51	39.11
MCMC	relaxed	N/A	N/A	N/A
MCMC (variable length)	exact	N/A	N/A	N/A
MCMC	exact	N/A	N/A	N/A
Ours (Cartesian)	exact	38.40M	804.24 ± 0.20	803.62
Ours (Cartesian, 2 Mixtures)	exact	51.20M	828.77 ± 27.34	803.44
Ours (Internal)	exact	51.20M	352.20 ± 0.04	352.08
Ours (Internal, 2 Mixtures)	exact	51.20M	371.16 ± 82.88	239.66

- Optimization over sampling: we optimize over an expressive variational family of approximations through neural networks
- Problem-informed parameterization: we enforce the exact boundary condition, thus reducing the search space

Doob's h-transform

Doob's h-transform allows us to condition the underlying SDE on the event that the state \mathcal{B} is reached at t = T.

Consider the unconditioned reference process $\mathbb{P}_{0:T}^{\mathrm{ref}}$:

 $dx_t = b_t(x_t) \cdot dt + \Xi_t dW_t \qquad \qquad x_0 \sim \rho_0$

With Doob's h-transform, we can condition it on the endpoint by adding an additional drift term to get $\mathbb{P}_{0:T}^*$: where $h(x,t) := \rho(x_T \in \mathcal{B} \mid x_t = x)$ and $G_t := \frac{1}{2} \Xi_t \Xi_t^T$ $dx_{t|0,T} = \left(b_t(x_{t|0,T}) + 2G_t \nabla_x \log h(x_{t|0,T},t)\right) \cdot dt + \Xi_t dW_t$ intractable!

$$\begin{split} \hline \textbf{Algorithm 3 Variational Doob h-Transform (Single Sample with Gaussian Paths)} \\ \hline \textbf{Input: Reference drift } b_t, diffusion matrix $G_t = \Xi_t \Xi_t^T$, conditioning endpoints $x_0 = A, x_T = B$ \\ \textbf{while not converged do} \\ \textbf{Sample } x_t \text{ for } t \sim \mathcal{U}(0,T) \text{ from current } q_{t|0,T}^{(\theta)} \text{ using} \\ x_t = \mu_{t|0,T}^{(\theta)} + \Sigma_{t|0,T}^{(\theta)} \epsilon, \quad \textbf{where} \quad \epsilon \sim \mathcal{N}(0, \mathbb{I}_D), \\ \mu_{t|0,T}^{(\theta)} = (1 - \frac{t}{T})A + \frac{t}{T} B + \frac{t}{T}(1 - \frac{t}{T})\text{NNET}_{\theta}(t, A, B)_{[:D]}, \\ \Sigma_{t|0,T}^{(\theta)} = \frac{t}{T}(1 - \frac{t}{T})\text{diag}\big(\text{NNET}_{\theta}(t, A, B)_{[D:]}\big) + \sigma_{\min}^2 \mathbb{I}. \end{split}$$

Calculate $u_{t|0,T}(x_t)$ using the output of the neural network

$$\begin{split} u_{t|0,T}^{(q,\theta)}(x_t) &= \frac{\partial \mu_{t|0,T}^{(\theta)}}{\partial t} + \left[\frac{1}{2} \frac{\partial \Sigma_{t|0,T}^{(\theta)}}{\partial t} (\Sigma_{t|0,T}^{(\theta)})^{-1} - G_t \; (\Sigma_{t|0,T}^{(\theta)})^{-1} \right] (x_t - \mu_{t|0,T}^{(\theta)}) \\ \text{Calculate } v_{t|0,T}(x_t) \text{ using } u_{t|0,T}^{(q,\theta)}(x_t) \text{ and the base drift } b_t(x_t) \\ v_{t|0,T}^{(q,\theta)}(x_t) &= \frac{1}{2} (G_t)^{-1} \left(u_{t|0,T}^{(q,\theta)}(x_t) - b_t(x_t) \right) \end{split}$$

Calculate \mathcal{S}

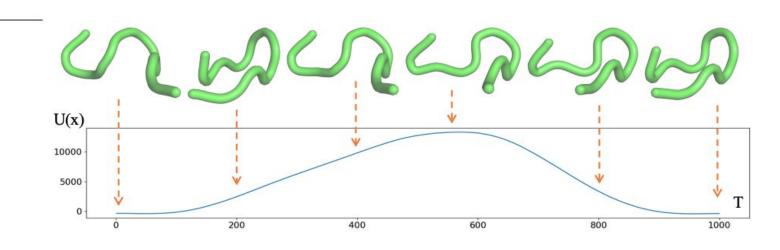
$$\mathcal{S} = \langle v_{t|0,T}^{(q, heta)}(x_t), G_t \; v_{t|0,T}^{(q, heta)}(x_t)
angle$$

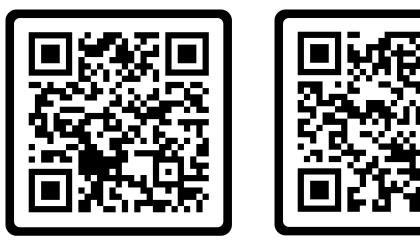
• Note: $x_t \sim q_{t|0,T}^{(\theta)}$ and thus need to backpropagate through $b_t(x_t)$ using reparameterization trick

Update $\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} S)$

end while return

Molecular System – Chignolin





OpenReview

Code