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This supplementary material contains the following elements.

• Appendix A provides the industrial motivation behind the setting described in Section 2.1,
namely, within the banking industry, a market share expansion for loans.

• Appendix B contains the proof of Theorem 1, i.e., the regret bound in case of a known
distribution ν, except for a lemma on learning the parameter of logistic bandits, provided in
Appendix C.

• Appendix C states and proves the indicated lemma; both the statement and the proof are
mere adaptations of Faury et al. [2020, Lemmas 1 and 2].

• Appendix D contains the proof of Theorem 2, i.e., explains how to adapt the proof of
Appendix B to the case of an unknown distribution ν.

• Appendix E details the claims of Section 6, i.e., the extension of the techniques introduced
to the setting of linear CBwK.

• Appendix F reports a simulation study based on realistic data.

We also discuss below the potential negative societal impacts of our article.

Potential Negative Societal Impacts

This article is mainly theoretical and provides a stochastic-bandit framework and tools that can be
applied in questionable ways or, on the contrary, for the benefits of important societal issues (typically,
clinical trials)—put differently, we provide a general-purpose methodology, for which ethical impacts
are always difficult to assess. That being said, here, the main risk in our eyes would be that if a
company sells products that have a potential negative social impact, it may use the policies proposed
by this paper to boost the sales by being able to offer personalized discounts.
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A Industrial Motivation: Market Share Expansion for Loans

We describe the industrial problem we faced and which led to the setting described in Section 2.1.

Incentives and discounts are common practices in many industries to achieve some business objectives;
however, there is usually a limit on the number or/and total volume of discounts that can be granted,
so companies need to select carefully who should receive them. We consider, for instance, the banking
industry, with a business objective of market share expansion: achieving the highest possible volume
of loan subscription (total subscribed amount). Note that in practice, all loan applications need to go
first through a risk-assessment process, and offers are only made if the bank considers that the loan
will not put the customer’s solvability at risk. We assume that all the clients concerned here have
already gone through this process and are eligible for getting a loan from a given bank. We formulate
the problem in a sequential manner as follows.

At each round t ⩾ 1, a client asks for a credit product. Her/his characteristics are denoted by xt ∈ Rn,
and encompass the socio-demographic profile, the loan request (amount xam,t, duration xdur,t), etc. It
is reasonable to model these characteristics as independent draws from a common (possibly unknown)
distribution ν. Based on xt, the bank will suggest some standard interest rate ir(xt) based on its
pricing rules; the detail of the rules is not relevant and we assume that the underlying function ir is
given. If client t accepts the offered rate ir(xt) and subscribes to the loan, an event which we denote
by yt = 1 and call a conversion, the bank gets a sales performance (gain on volume) xam,t. Otherwise,
the client declines the offer, which we denote by yt = 0 and the bank gets a null reward.

Actually, to improve the chances of a conversion, the bank may also offer a discount at ∈ (0, 1],
or lack of discount at = 0, on the interest rate. If it offers a discount at > 0 and yt = 1, the bank
will suffer a loss of earnings, equal to at ir(xt) out(xt), where out(xt) denotes the total outstanding
amounts. This loss of earnings is considered a promotion cost. These promotion costs are summed
up to previous such costs and should usually not exceed a fixed-in-advance budget B2 > 0. Also,
there is usually a fixed-in-advance limit B1 > 0 on the total number of clients who can subscribe
with a discount.

Given that the customers’ characteristics are i.i.d., it is indeed reasonable to assume that yt follows
some Bernoulli distribution with unknown probability P (at,xt). Of course, the higher the discount,
the higher the probability of a conversion.

We summarize the setting with the notation of Section 2.1. We assume that discounts are picked in
a finite grid D =

{
j/D : j ∈ {0, . . . , D}

}
, so that the action set equals A = D ∪ {anull}. At each

round t ⩾ 1, given the customer’s characteristics xt and the discount at ∈ [0, 1] picked by the bank,
the latter receives the following reward and suffers the following costs:

r(at,xt) yt , where r : (a,x) 7→ xam ,

and c(at,xt) yt , where c : (a,x) 7→
(
1{a̸=0}, a ir(xt) out(xt)

)
.

The first component of the cumulative cost vector measures the total number subscriptions with
discounts, and the second component reports the total promotion costs. The bank wants to enforce

T∑
t=1

c(at,xt) yt =

T∑
t=1

(
1{at ̸=0}, at ir(xt) out(xt)

)
yt ⩽ (B1, B2)

while maximizing the sum of the achieved rewards.

Normalizations in [0, 1] both for rewards and cost components may be achieved by considering the
maximal amount Mam and outstanding Mout that the bank would allow, and by considering

r : (a,x) 7→ xam/Mam and c : (a,x) 7→
(
1{a ̸=0}, a ir(xt) out(xt)/Mout

)
with the alternative budget (B1, B2/Mout). A single budget parameter B = min

{
B1, B2/Mout

}
may be considered by a final normalization: by dividing the first cost component by B1/B > 1 if
B1 > B, or the second cost component by (B2/Mout)/B > 1 if B2/Mout > B, respectively.
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B Detailed Proof of the Regret Bound in Case of a Known Distribution ν:
Proof of Theorem 1

The proof is divided into four steps.

B.1 First Step: Defining Confidence Intervals on the Probabilities P (a,x)

The keystone of this step is the following lemma, adapted from Faury et al. [2020]: it provides
guarantees for the adapted version of Logistic-UCB1 defined in Phase 1 of the adaptive policy studied
in this article. The lemma actually holds for any sampling strategy of the arms, not just the one used
in Phase 2 of the adaptive policy.

The reasons of the adaptations, lying in different settings being considered, as well as a detailed proof,
are provided in Appendix C. We recall that we denote

κ = sup

{
1

η̇
(
φ(a,x)T θ

) : x ∈ X , a ∈ A \ {anull}, θ ∈ Θ

}
,

and that since η̇ = η(1− η) ∈ [0, 1/4], we always have κ ⩾ 4. We also recall the notation for the
maximal Euclidean norm of an element in Θ:

∥Θ∥ = max
θ∈Θ

∥θ∥ .

Lemma 1 (combination of Lemmas 1 and 2 of Faury et al. [2020] with minor adjustments, detailed
in Appendix C). Assume that κ < +∞. Fix any sampling strategy and consider the version of
Logistic-UCB1 given by (3)–(5). For all δ ∈ (0, 1), there exists an event Eprob,δ with probability at
least 1− δ and such that over Eprob,δ:

∀t ⩾ 1, ∀a ∈ A \ {anull}, ∀x ∈ X ,
∣∣P̂t(a,x)− P (a,x)

∣∣ ⩽
γt,λ,δ

√
κ
(
∥Θ∥ + 1/2)

wwφ(a,x)ww
V −1
t

,

where γt,λ,δ =
√
λ
(
∥Θ∥ + 1/2

)
+

2√
λ
ln

(
2m

δ

(
1 +

t

4mλ

)m/2
)

and Vt =

t∑
s=1

φ(as,xs)φ(as,xs)
T 1{as ̸=anull} + κλ Im .

Associated confidence intervals for the P (a,x). Thanks to this lemma, we consider the upper-
confidence bonuses

εt(a,x) = γt,λ,δ

√
κ
(
∥Θ∥ + 1/2)

wwφ(a,x)ww
V −1
t

. (9)

On the event Eprob,δ of Lemma 1, we have, for all t ⩾ 1, all a ∈ A \ {anull}, and all x ∈ X : on the
one hand,

Ut(a,x) = min
{
P̂t(a,x) + εt(a,x), 1

}
⩾ min

{
P (a,x), 1

}
= P (a,x) (10)

and on the other hand,

Ut(a,x) = min
{
P̂t(a,x) + εt(a,x), 1

}
⩽ P̂t(a,x) + εt(a,x) ⩽ P (a,x) + 2εt(a,x) . (11)

Control of the sum of upper-confidence bonuses. According to the proof sketch of Section 4, it
only remains to control the sum of the upper-confidence bonuses at observed contexts xt and played
actions at. Note that at rounds t ⩾ 2, we use the bonuses εt−1(a,x). We prove that

2

T∑
t=2

εt−1(at,xt)1{at ̸=anull} ⩽ γT,λ,δ

√
κ
(
4∥Θ∥ + 2

)√
2mT max

{
1,

1

κλ

}
ln

(
1 +

T

κλm

)
︸ ︷︷ ︸

def
=ET

.

(12)
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To that end, we first note that γt−1,λ,δ ⩽ γT,λ,δ:

2

T∑
t=2

εt−1(at,xt)1{at ̸=anull} ⩽ γT,λ,δ

√
κ
(
4∥Θ∥ + 2

) T∑
t=2

wwφ(at,xt)
ww

V −1
t−1

1{at ̸=anull} .

Given that ∥φ∥ ⩽ 1 by assumption, a direct application of Lemma 2 below (a classical result of basic
algebra for linear bandits) ensures that

T∑
t=1

wwφ(at,xt)
ww2

V −1
t−1

1{at ̸=anull} ⩽ 2mmax

{
1,

1

κλ

}
ln

(
1 +

∑T
t=1 1{at ̸=anull}

κλm

)
.

A Cauchy-Schwarz inequality thus entails

T∑
t=1

wwφ(at,xt)
ww

V −1
t−1

1{at ̸=anull} ⩽

√√√√ T∑
t=1

1{at ̸=anull}

√
2mmax

{
1,

1

κλ

}
ln

(
1 +

∑T
t=1 1{at ̸=anull}

κλm

)

⩽
√
T

√
2mmax

{
1,

1

κλ

}
ln

(
1 +

T

κλm

)
,

which concludes this step.

Lemma 2 (Elliptic potential and determinant-trace inequality, cf. Lemmas 10 and 11 of Abbasi-Yad-
kori et al. [2011], Lemmas 15 and 16 of Faury et al. [2020]). For all λ > 0 and all sequences
u1,u2, . . . of vectors in Rm with ∥us∥ ⩽ 1, defining U0 = λ Im and for t ⩾ 1,

Ut = λ Im +

t∑
s=1

ut(ut)
T ,

we have, for all τ ⩾ 1:

τ∑
t=1

∥ut∥2U−1
t−1

⩽ 2mmax

{
1,

1

λ

}
ln

(
1 +

τ

λm

)
.

B.2 Second Step: Dual Formulation of the Sampling Phase (Phase 2) and Consequences

In this step, we consider a round t ⩾ 2 for which the cost constraints of Phase 0 of the adaptive policy
are not violated and the optimization problem OPT(ν, Ut−1, Bt,T ) is to be solved; its solution is the
policy pt(ht−1, · ) used to sample at according to pt(ht−1,xt).

We first rewrite in its dual form the optimization problem OPT(ν, Ut−1, Bt,T ) and show that strong
duality holds. As a consequence, there exists a vector βbudg,⋆

t ∈ Rd such that pt(ht−1, · ) may be
identified as

argmax
π:X→P(A)

EX∼ν

[
T
∑
a∈A

(
r(a,X)−

(
βbudg,⋆
t

)T
c(a,X)

)
Ut−1(a,X)πa(X) +

∑
x∈X

∑
a∈A

βp-pos,⋆
x,a πa(x)

]
.

By exploiting the KKT conditions, we are able to get rid of the double sum above and finally get a
X–pointwise characterization of pt(ht−1, · ): for all x ∈ X ,

pt(ht−1,x) ∈ argmax
q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) qa ,

where, with no impact, we may replace the r(a,x)−
(
βbudg,⋆
t

)T
c(a,x) by their non-negative parts.

The distributions pt(ht−1,x) may therefore be interpreted as maximizing some upper-confidence
bound on penalized gains (rewards minus some scalarized costs).

We also prove OPT(ν, Ut−1, BT ) ⩾ BT (β
budg,⋆
t )T 1 based on the KKT conditions.
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Primal form of the optimization problem OPT(ν, Ut−1, BT ). Since X is a finite set (this is
actually the key place where we need this assumption), the optimization problem OPT(ν, Ut−1, BT )
may be stated as the opposite of

min
(πa(x))∈RA×X

− T EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X)πa(X)

]

under T EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X)πa(X)

]
⩽ BT1 ,

∀a ∈ A, ∀x ∈ X , πa(x) ⩾ 0 ,

∀x ∈ X ,
∑
a∈A

πa(x) = 1 .

Thanks to the no-op action anull ∈ A, which is used to model abstention and results in null rewards
and costs, i.e., r(anull,x) = 0 and c(anull,x) = 0 for all x ∈ X , we may relax the third constraint
into

∀x ∈ X ,
∑
a∈A

πa(x) ⩽ 1 .

Indeed, any vector
(
πa(x)

)
∈ RA×X satisfying the constraint with ⩽ 1 can be transformed into a

vector
(
π′
a(x)

)
∈ RA×X for which the expected reward and the first and second constraints remain

identical while the third constraint is satisfied with = 1: by adding the necessary probability mass to
the components πanull(x).

In the sequel, we consider this primal problem with the ⩽ 1 constraint:

−OPT(ν, Ut−1, BT ) = min
(πa(x))∈RA×X

− T EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X)πa(X)

]

under T EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X)πa(X)

]
⩽ BT1 ,

∀a ∈ A, ∀x ∈ X , πa(x) ⩾ 0 ,

∀x ∈ X ,
∑
a∈A

πa(x) ⩽ 1 .

(13)

It forms a convex optimization problem, as its objective and its constraints are all affine (Boyd and
Vandenberghe [2004, Section 4.2.1]).

Lagrangian (dual) form of the optimization problem. Denote by βbudg, βp-pos, βp-sum the vector
dual variables associated with the constraints on budget [budg], non-negative probability [p-pos], and
sum of probabilities [p-sum], respectively. The vectors βp-pos and βp-sum have components βp-sum

x and
βp-pos
x,a indexed by x ∈ X and a ∈ A.

We define the Lagrangian associated with our primal problem:

Lt

((
πa(x)

)
a,x

, βbudg,βp-sum,βp-pos
)

=− T EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X)πa(X)

]

+
(
βbudg

)T

(
T EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X)πa(X)

]
−BT1

)

+
∑
x∈X

βp-sum
x

(∑
a∈A

πa(x)− 1

)
−
∑
x∈X

∑
a∈A

βp-pos
x,a πa(x) .

(14)

The dual problem consists of maximizing

inf
(πa(x))∈RA×X

Lt

((
πa(x)

)
a,x

,βbudg,βp-sum,βp-pos
)
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under the constraints that all components of the βbudg,βp-sum,βp-pos are non-negative, which we denote
in a vector-wise manner by

βbudg ⩾ 0 , βp-sum ⩾ 0 , βp-pos ⩾ 0 .

Strong duality and consequences. We explain why the so-called Slater’s condition (Boyd and
Vandenberghe, 2004, Section 5.2.3) holds; it entails that the value −OPT

(
ν, Ut−1, BT

)
of the primal

problem equals the value of the Lagrangian dual problem. The primal problem is convex, all its
constraints are affine, with domain RA×X : Slater’s condition therefore reduces to feasibility. And
feasibility of the constraints is clear by taking Dirac masses on anull, i.e., πa(x) = δanull for all
x ∈ X . Since the values of the primal and dual problems are clearly larger than −T > −∞, Slater’s
condition also implies that the dual optimal value is achieved at a dual feasible set of parameters, i.e.,
that the the constrained supremum and the infimum defining the dual problem are a minimum and
a maximum, respectively. We may therefore summarize the consequences of Slater’s condition as
follows:

−OPT(ν, Ut−1, BT ) = max
βbudg,βp-sum,βp-pos

min
(πa(x))∈RA×X

Lt

((
πa(x)

)
a,x

,βbudg,βp-sum,βp-pos
)

under βbudg ⩾ 0 , βp-sum ⩾ 0 , βp-pos ⩾ 0 .

Because of strong duality and the existence of a dual feasible set of parameters, the max-min above
equals its min-max counterpart (Boyd and Vandenberghe [2004, Sections 5.4.1 and 5.4.2]):

−OPT(ν, Ut−1, BT ) = min
(πa(x))∈RA×X

max
βbudg⩾0,βp-sum⩾0,βp-pos⩾0

Lt

((
πa(x)

)
a,x

,βbudg,βp-sum,βp-pos
)
.

We let βbudg,⋆
t ⩾ 0, βp-sum,⋆

t ⩾ 0, and βp-pos,⋆
t ⩾ 0 be an optimal dual solution and recall that

pt(ht−1, · ) denote an optimal primal solution, which, with no loss of generality, may be assumed
satisfying the ⩽ 1 constraints with equality. From Boyd and Vandenberghe [2004, Section 5.4.2], this
pair of solutions forms a saddle-point for the Lagrangian; in particular,

−OPT(ν, Ut−1, BT ) = Lt

(
pt(ht−1, · ),βbudg,⋆

t ,βp-sum,⋆
t ,βp-pos,⋆

t

)
(15)

= min
(πa(x))∈RA×X

Lt

((
πa(x)

)
,βbudg,⋆

t ,βp-sum,⋆
t ,βp-pos,⋆

t

)
= min

π:X→P(A)
Lt(π,β

budg,⋆
t ,βp-sum,⋆

t ,βp-pos,⋆
t ) .

The distribution pt(ht−1, · ) played thus appears as the argument of the minimum above.

Substituting the definition (14) of Lt into the characterization (15), rearranging the first two terms of
Lt, noting that the third term of Lt is null, and discarding the constant term BT

(
βbudg,⋆
t

)T
1, we get:

pt(ht−1, · ) ∈ (16)

argmin
π:X→P(A)

EX∼ν

[
−T

∑
a∈A

(
r(a,X) +

(
βbudg,⋆
t

)T
c(a,X)

)
Ut−1(a,X)πa(X)−

∑
x∈X

∑
a∈A

βp-pos,⋆
x,a πa(x)

]

= argmax
π:X→P(A)

EX∼ν

[
T
∑
a∈A

(
r(a,X)−

(
βbudg,⋆
t

)T
c(a,X)

)
Ut−1(a,X)πa(X) +

∑
x∈X

∑
a∈A

βp-pos,⋆
x,a πa(x)

]
.

We further simplify this alternative definition by showing that the sums of the βp-pos
x,a πa(x) may be

omitted. We do so by exploiting the KKT conditions.

KKT conditions: statement. The Karush–Kuhn–Tucker (KKT) conditions (Boyd and Vanden-
berghe [2004, Section 5.5.3]) for the primal optimal pt(ht−1, · ) : X → P(A) and the dual optimal
βbudg,⋆
t ⩾ 0, βp-sum,⋆

t ⩾ 0, and βp-pos,⋆
t ⩾ 0 imply the following conditions: first, complementary

slackness, which reads

∀a ∈ A, ∀x ∈ X , βp-pos,⋆
t,x,a pt,a(ht−1,x) = 0 (17)

and (
βbudg,⋆
t

)T EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
=

BT

T

(
βbudg,⋆
t

)T
1 ; (18)
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second, a stationary condition, based on the fact that the gradient of the Lagrangian function (14)
with respect to the πa(x) vanishes. Denoting by ν(x) the probability mass put by ν on x, we have:

∀a ∈ A, ∀x ∈ X , T r(a,x)Ut−1(a,x) ν(x)

=
(
βbudg,⋆
t

)T (
T c(a,x)Ut−1(a,x) ν(x)

)
+ βp-sum,⋆

t,x − βp-pos,⋆
t,x,a . (19)

KKT conditions: first consequence—final characterization of pt(ht−1, · ). For now, we only
exploit (17): this equality and the fact that βp-pos,⋆

t,x,a πa(x) is always non-negative show that, as
announced, the characterization (16) may be further simplified into

pt(ht−1, · ) ∈ argmax
π:X→P(A)

EX∼ν

[
T
∑
a∈A

(
r(a,X)−

(
βbudg,⋆
t

)T
c(a,X)

)
Ut−1(a,X)πa(X)

]

= argmax
π:X→P(A)

EX∼ν

[∑
a∈A

(
r(a,X)−

(
βbudg,⋆
t

)T
c(a,X)

)
Ut−1(a,X)πa(X)

]
.

(20)

In the characterization (20), as we got rid of the cross terms, the maximization may be carried out in a
X–pointwise manner, i.e., by separately computing each probability distribution pt(ht−1,x) ∈ P(A).
More formally, for each x ∈ X ,

pt(ht−1,x) ∈ argmax
q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) qa . (21)

In this characterization, r(a,x)−
(
βbudg,⋆
t

)T
c(a,x) appears as a penalized gain in case a client with

characteristics x converts, and pt(ht−1,x) is obtained by combining an upper-confidence-bound
estimation Ut−1(a,x) of the conversion rate P (a,x) with this penalized gain.

Denote by (z)+ = max{z, 0} the non-negative part of z ∈ R and fix x ∈ X . Given that the no-op
action anull is such that r(anull,x) −

(
βbudg,⋆
t

)T
c(anull,x) = 0 and Ut−1(a,x) ⩾ 0 for all a ∈ A, in

view of the objective, any distribution q should move the probability mass qa on an action a ∈ A
with r(a,x)− (βbudg,⋆

t )T c(a,x) < 0 to anull. As a consequence,

max
q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) qa(x)

= max
q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
+
Ut−1(a,x) qa(x) (22)

and
pt(ht−1,x) ∈ argmax

q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
+
Ut−1(a,x) qa . (23)

KKT conditions: a second consequence. We first exploit the stationary condition (19). Multi-
plying both sides of this equality by pt,a(ht−1,x), summing over x ∈ X and a ∈ A, we obtain an
equality between expectations with respect to X ∼ ν:

T EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]

=
(
βbudg,⋆
t

)T (
T EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) pt,a(ht−1,X)

])
+
∑
x∈X

βp-sum,⋆
t,x

∑
a∈A

pt,a(ht−1,x)︸ ︷︷ ︸
=1

−
∑
x∈X

∑
a∈A

βp-pos,⋆
t,x,a pt,a(ht−1,x)︸ ︷︷ ︸

=0

,

(24)
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where the equality to 0 indicated in the right-hand side correspond to (17). We now substitute (18)
into (24) and obtain

T EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
= BT (β

budg,⋆
t )T 1+

∑
x∈X

βp-sum,⋆
t,x .

The left-hand side equals OPT(ν, Ut−1, BT ) since pt(ht−1, · ) is the solution of the primal problem.
Thus, the equality above entails, by βp-sum,⋆

t ⩾ 0, that

OPT(ν, Ut−1, BT ) ⩾ BT (β
budg,⋆
t )T 1 . (25)

B.3 Third Step: Various High-Probability Controls

We prove below that on the intersection between the event Eprob,δ of Lemma 1 and another event
EHAz,δ , also of probability at least 1− δ, we have simultaneously that for all rounds t ⩾ 2, the policy
pt(ht−1, · ) is obtained by Phase 2, i.e., by solving OPT(ν, Ut−1, BT ), and that

T∑
t=1

r(at,xt) yt ⩾
T∑

t=2

OPT(ν, Ut−1, BT )

T
−
√
2T ln

4

δ
− ET (26)

and
T∑

t=1

c(at,xt) yt ⩽

(
BT + 1 +

√
2T ln

4d

δ

)
1 = (B − 1)1 ,

where the bound ET was defined in (12) and where we used the definition of BT , namely,

BT = B − 2−
√
2T ln

4d

δ
. (27)

This definition requires that

B > c

(
2 +

√
2T ln

4d

δ

)
(28)

for c = 1, but we will rather assume that the inequality holds with c = 2.

Applications of the Hoeffding-Azuma inequality to handle the conversions yt. We recall that
we defined h0 as the empty vector and ht = (xs, as, ys)s⩽t for t ⩾ 1. We introduce the filtration
F = (Ft)t⩾0, with F0 = σ(a1,x1) and for t ⩾ 1,

Ft = σ
(
ht, at+1, xt+1

)
.

Then, for all t ⩾ 1, the variables r(at,xt) yt and c(at,xt) yt are Ft–measurable, with conditional
expectations with respect to Ft−1 equal to

E
[
r(at,xt) yt

∣∣Ft−1

]
= r(at,xt)P (at,xt)

and E
[
c(at,xt) yt

∣∣Ft−1

]
= c(at,xt)P (at,xt) .

Indeed, the conditioning by Ft−1 fixes at and xt, but not yt, and exactly means, when at ̸= anull,
integrating over yt ∼ P (at,xt). When at = anull, all equalities above remain valid thanks to the
abuse of notation discussed in Section 2.1. Given that r takes values in [0, 1] and c in [0, 1]d, we may
apply d+ 1 times the Hoeffding-Azuma inequality (once for r and each component of c) together
with a union bound: there exist two events Er,P,δ and Ec,P,δ, each of probability at least 1 − δ/4,
such that

on Er,P,δ,

T∑
t=1

r(at,xt) yt ⩾
T∑

t=1

r(at,xt)P (at,xt)−
√

T

2
ln

4

δ

and on Ec,P,δ,

T∑
t=1

c(at,xt) yt ⩽

√
T

2
ln

4d

δ
1+

T∑
t=1

c(at,xt)P (at,xt) .
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Applications of the Hoeffding-Azuma inequality to use the properties of the pt(ht−1, · ). For
this sub-step, we rather condition directly by ht−1 (instead of Ft−1 as in the previous step), where
t ⩾ 2. Conditioning by ht−1 amounts to integrating first over at ∼ pt(ht−1,xt) and then over
xt ∼ ν: this is because of the definition of the random draw of at according to pt(ht−1,xt)
independently from everything else, and because xt is drawn independent from the past according
to ν. More precisely, for each t ⩾ 2, given that Ut−1 is ht−1–measurable, we thus have the following
equalities:

E
[
r(at,xt)Ut−1(at,xt)

∣∣ht−1

]
= E

[∑
a∈A

r(a,xt)Ut−1(a,xt) pt,a(ht−1,xt)

∣∣∣∣ht−1

]

= EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]

and E
[
c(at,xt)Ut−1(at,xt)

∣∣ht−1

]
= E

[∑
a∈A

c(a,xt)Ut−1(a,xt) pt,a(ht−1,xt)

∣∣∣∣ht−1

]

= EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
,

where we recall that EX∼ν denotes an integration solely over X ∼ ν.

By definition of pt(ht−1, · ), whenever the adaptive policy reaches Phase 2 at a given round t ⩾ 2:

EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
=

OPT(ν, Ut−1, BT )

T

and EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
⩽

BT

T
1 .

Otherwise, the adaptive policy is stuck in Phase 0, because at least one cost constraint is larger than
B − 1; in this case, pt(ht−1,x) = δanull for all x ∈ X and both expectations above are null. We may
summarize all cases by introducing the indicator function that all cost constraints are smaller than
B − 1,

1{Ct−1⩽(B−1)1} , where Ct−1 =

t−1∑
s=1

c(as,xs) ys ,

and stating that

EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
⩾ 1{Ct−1⩽(B−1)1}

OPT(ν, Ut−1, BT )

T

and EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
⩽

BT

T
1 .

Therefore, a second series of applications of the Hoeffding-Azuma inequality (at times 2 ⩽ t ⩽ T ,
i.e., excluding the first round) entails the existence of two events Er,U,δ and Ec,U,δ , each of probability
at least 1− δ/4, such that

on Er,U,δ,

T∑
t=2

r(at,xt)Ut−1(at,xt) ⩾
T∑

t=2

1{Ct−1⩽(B−1)1}
OPT(ν, Ut−1, BT )

T
−
√

T

2
ln

4

δ

and on Ec,U,δ,

T∑
t=2

c(at,xt)Ut−1(at,xt) ⩽

(
BT +

√
T

2
ln

4d

δ

)
1 .

Appeal to results of Appendix B.1. The inequalities (10) and (11) state that on the event Eprob,δ of
Lemma 1, we have

∀t ⩾ 1, ∀a ∈ A \ {anull}, ∀x ∈ X , P (a,x) ⩽ Ut(a,x) ⩽ P (a,x) + 2εt(a,x) .
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Thus, on Eprob,δ ,

T∑
t=1

r(at,xt)P (at,xt) ⩾
T∑

t=2

r(at,xt)Ut−1(at,xt)− 2

T∑
t=2

εt−1(at,xt)1{at ̸=anull}

⩾
T∑

t=2

r(at,xt)Ut−1(at,xt)− ET

and
T∑

t=1

c(at,xt)P (at,xt) ⩽ 1+

T∑
t=2

c(at,xt)Ut−1(at,xt) ,

where we recall that the bound ET was defined in (12).

Conclusion of this step. We define

EHAz,δ = Er,P,δ ∩ Ec,P,δ ∩ Er,U,δ ∩ Ec,U,δ ,

which is an event of probability at least 1− δ. On the intersection of EHAz,δ and Eprob,δ , by collecting
all bounds together, we have

T∑
t=1

c(at,xt) yt ⩽

(
BT + 1 +

√
2T ln

4d

δ

)
1 = (B − 1)1 .

This shows that on the intersection of EHAz,δ and Eprob,δ, the indicator functions 1{Ct−1⩽(B−1)1} all
equal 1, and that the policies pt(ht−1, · ) are always obtained by solving the optimization problems
of Phase 2. We conclude this step by collecting the obtained bounds for rewards and by legitimately
replacing the indicator functions therein by 1.

B.4 Fourth Step: Conclusion

In this step, we merely combine the bounds exhibited in the first three steps to obtain the closed-form
expression of the regret bound. We then propose suitable orders of magnitude for the parameters.

Collecting all bounds to get a closed-form regret bound. By considering q = π⋆(x) for each
x ∈ X in (23), where we recall that π⋆ is the optimal static policy, and by the equality (22), we note
that, for all t ⩾ 2,

∀x ∈ X ,
∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) pt,a(ht−1,x)

⩾
∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
+
Ut−1(a,x)π

⋆
a(x) .

On the event Eprob,δ of Lemma 1, the inequality (10) states that Ut−1(a,x) ⩾ P (a,x), which we may
substitute in the inequality above (thanks to the non-negative part in the right-hand side) to get

∀x ∈ X ,
∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) pt,a(ht−1,x)

⩾
∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
+
P (a,x)π⋆

a(x)

⩾
∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
P (a,x)π⋆

a(x) .
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We replace the individual x by a random variable X ∼ ν and integrate over X: on Eprob,δ ,

EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
(29)

−
(
βbudg,⋆
t

)T EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) pt,a(ht−1,X)

]

⩾ EX∼ν

[∑
a∈A

r(a,X)P (a,X)π⋆
a(X)

]
︸ ︷︷ ︸

=OPT(ν,P,B)/T

−
(
βbudg,⋆
t

)T EX∼ν

[∑
a∈A

c(a,X)P (a,X)π⋆
a(X)

]
︸ ︷︷ ︸

⩽(B/T )1

.

The equality to OPT(ν, P,B)/T and the inequality ⩽ (B/T )1 above come from the very definition
of π⋆ as the static policy solving OPT(ν, P,B). Similarly, Appendix B.3 shows that on the event
EHAz,δ, for all 2 ⩽ t ⩽ T , the policies pt,a(ht−1, · ) are obtained by solving OPT(ν, Ut−1, BT ), so
that, by definition,

EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
=

OPT(ν, Ut−1, BT )

T
.

Substituting this equality and the KKT condition (18) into (29) and rearranging, we see that we
proved so far that on the intersection of Eprob,δ and EHAz,δ ,

∀ 2 ⩽ t ⩽ T, OPT(ν, P,B)− OPT(ν, Ut−1, BT ) ⩽ (B −BT )
(
βbudg,⋆
t

)T
1 .

We may also substitute (25), i.e., (βbudg,⋆
t )T 1 ⩽ OPT(ν, Ut−1, BT )/BT and finally get that on the

intersection of Eprob,δ and EHAz,δ ,

∀ 2 ⩽ t ⩽ T, OPT(ν, P,B)− OPT(ν, Ut−1, BT ) ⩽

(
B

BT
− 1

)
OPT(ν, Ut−1, BT ) .

Summing over 2 ⩽ t ⩽ T and using that OPT(ν, P,B)/T ⩽ 1 by definition and by the fact that r
takes values in [0, 1], we obtain

OPT(ν, P,B)−
T∑

t=2

OPT(ν, Ut−1, BT )

T
⩽ 1 +

T∑
t=2

OPT(ν, P,B)− OPT(ν, Ut−1, BT )

T

⩽ 1 +

(
B

BT
− 1

) T∑
t=2

OPT(ν, Ut−1, BT )

T
. (30)

Distinguishing the cases

OPT(ν, P,B)−
T∑

t=2

OPT(ν, Ut−1, BT )

T
⩽ 0 and OPT(ν, P,B)−

T∑
t=2

OPT(ν, Ut−1, BT )

T
⩾ 0 ,

we see, based on (30), that in both cases

OPT(ν, P,B)−
T∑

t=2

OPT(ν, Ut−1, BT )

T
⩽ 1 +

(
B

BT
− 1

)
OPT(ν, P,B) .

We finally substitute (26) and have proved, as claimed, that on the intersection of Eprob,δ and EHAz,δ ,

OPT(ν, P,B)−
T∑

t=1

r(at,xt) yt ⩽ 1 +

(
B

BT
− 1

)
OPT(ν, P,B) + ET +

√
2T ln

4

δ
, (31)

where we recall that ET was defined in (12).
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Improving readability and setting λ. As indicated, we require (28) with c = 2. By the defini-
tion (27) of BT and the inequality 1/(1− u) ⩽ 1 + 2u for u ∈ (0, 1/2), we have

B

BT
− 1 ⩽

2
(
2 +

√
2T ln(4d/δ)

)
B

, (32)

which we may substitute in (31). It only remains to deal with a bound on ET to conclude the proof of
Theorem 1.

We set below a value of λ larger than 1. Recalling that κ ⩾ 4, we may already bound ET as

ET ⩽ γT,λ,δ

√
κ
(
4∥Θ∥ + 2

)√
2mT ln

(
1 +

T

4m

)
= 2γT,λ,δ

√
κ
(
2∥Θ∥ + 1

)√
mT ln

(
1 +

T

4m

)
,

(33)
where γT,λ,δ , defined in the statement of Lemma 1, may itself be bounded by

γT,λ,δ ⩽
√
λ
(
∥Θ∥ + 1/2

)
+

2√
λ
ln

(
2m

δ

(
1 +

T

4m

)m/2
)
.

For the sake of simplicity, we set the value of λ by only optimizing the orders of magnitude in m and
T of (this upper bound on) γT,λ,δ , i.e., by considering

√
λ+

m√
λ
lnT .

We take λ = m ln(1+T/m), which is indeed larger than 1 given that T ⩾ 2m and ln(1+T/m) ⩾ 1.
We have

2√
λ
ln

1

δ
⩽ ln

1

δ
and

2√
λ
ln 2m ⩽ (2 ln 2)

√
m ⩽ 2

√
m,

as well as

2√
λ
ln

((
1 +

T

4m

)m/2
)

⩽

√
m√

ln(1 + T/m)
ln

(
1 +

T

4m

)
⩽

√
m ln

(
1 +

T

4m

)
.

All in all,

γT,λ,δ ⩽
(√

m+ ∥Θ∥ + 1/2
)√

ln

(
1 +

T

m

)
+ 2

√
m+ ln

1

δ
. (34)

Combining (33) and (34), we showed:

ET ⩽ 2
√
κ
(
2∥Θ∥ + 1

)√
mT ln

(
1 +

T

4m

)((√
m+ ∥Θ∥ + 1/2

)√
ln

(
1 +

T

m

)
+ 2

√
m+ ln

1

δ

)
.

(35)
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C Adaptation of the Logistic-UCB1 Strategy of Faury et al. [2020]:
Proof of Lemma 1

The proof is copied from the proof of Faury et al. [2020, Lemmas 1 and 2], with minor adjustments.
We mostly provide it for the sake of self-completeness.

The adjustments are required because the setting of Faury et al. [2020] is slightly different: their
action set is a subset X ⊆ Rn, and when the learner picks an action xt ∈ X at round t, the obtained
reward rt ∈ {0, 1} is drawn independently at random according to a Bernoulli distribution with
parameter η

(
xT
tθ⋆

)
, where θ⋆ ∈ Rn is unknown. The learner then only observes rt and not what

would have been obtained with a different choice of action.

Therefore, the xt and rt of Faury et al. [2020] correspond to φ(at,xt) and yt in our setting. The
main difference is that while the learner has a full control over the choice of xt ∈ X in the setting of
Faury et al. [2020], in our setting, xt ∈ X is drawn by the environment and the learner only picks
at ∈ A; the learner therefore does not have a full control over φ(at,xt). This is why we carefully
check in the present appendix that the results by Faury et al. [2020] (namely, their Lemmas 1 and 2)
extend to our setting.

Reminder — A tail inequality for self-normalized martingales. Theorem 1 of Faury et al. [2020]
reads as follows. Let F = (Ft)t⩾0 be a filtration, (Ut)t⩾1 an F–adapted stochastic vector process in
Rm such that ∥Ut∥ ⩽ 1 a.s. for all t ⩾ 1, and (∆t)t⩾1 an F–martingale difference sequence with
|∆t| ⩽ 1 a.s. for all t ⩾ 1; i.e., for all t ⩾ 1, the random variable ∆t is Ft–measurable and

E[∆t | Ft−1] = 0 a.s.

Denote σ2
t = E

[
∆2

t | Ft−1

]
, let λ > 0, and define, for t ⩾ 1:

St =

t∑
s=1

∆sUs and Mt = λ Im +

t∑
s=1

σ2
sUsU

T
s .

Then, for all δ ∈ (0, 1), with probability at least 1− δ:

∀t ⩾ 1, ∥St∥M−1
t

⩽

√
λ

2
+

2√
λ
ln

(
2mdet(Mt)

1/2λ−m/2

δ

)
. (36)

The result above is proved by Faury et al. [2020] based on Laplace’s method on supermartingales,
which is a standard argument to provide confidence bounds on self-normalized sums of conditionally
centered random vectors and was previously introduced, in the context of linear contextual bandits,
by Abbasi-Yadkori et al. [2011, Theorem 2]; see also the monograph by Lattimore and Szepesvári
[2020, Theorem 20.2].

Step 1 — A martingale control. We apply (36) to the following elements. We take as filtration
F = (Ft)t⩾0, with F0 = σ(a1,x1) and for t ⩾ 1,

Ft = σ
(
ht, at+1, xt+1

)
,

where we recall ht = (xs, as, ys)s⩽t. We set Ut = φ(at,xt), which is indeed Ft–measurable and
with Euclidean norm smaller than 1 (thanks to the normalization assumed in Section 2.1). Finally, we
set, for t ⩾ 1,

∆t =

{
0 if at = anull,

yt − η
(
φ(at,xt)

T θ⋆

)
if at ̸= anull,

which we rewrite, by the abuses of notation indicated in Section 2.1,

∆t =
(
yt − η

(
φ(at,xt)

T θ⋆

))
1{at ̸=anull} =

(
yt − P (at,xt)

)
1{at ̸=anull} .

The conditioning by Ft−1 fixes at and xt, but not yt, and exactly means, when at ̸= anull, integrating
over yt ∼ P (at,xt). We therefore have that ∆t is Ft–measurable, with

E[∆t | Ft−1

]
= 0 a.s.;
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that is, (∆t)t⩾1 appears as an F–martingale difference sequence, satisfying the boundedness-by-1
constraint. We may therefore apply the result (36). To do so, we first compute the conditional
variances of the ∆t: for t ⩾ 1,

E
[
∆2

t | Ft−1

]
= E

[(
yt − η

(
φ(at,xt)

T θ⋆

))2 ∣∣∣Ft−1

]
1{at ̸=anull}

= η
(
φ(at,xt)

T θ⋆

) (
1− η

(
φ(at,xt)

T θ⋆

))
1{at ̸=anull} = η̇

(
φ(at,xt)

T θ⋆

)
1{at ̸=anull} ,

where we used the fact that η(1− η) = η̇. We rewrite

St =

t∑
s=1

∆t φ(as,xs) =

t∑
s=1

(
ys − η

(
φ(at,xt)

T θ⋆

))
φ(as,xs)1{as ̸=anull}

and note that Mt = Wt(θ) with the definition (5). The control (36) may be rewritten as follows: for
all δ ∈ (0, 1), with probability at least 1− δ,

∀t ⩾ 1, ∥St∥Wt(θ⋆)−1 ⩽

√
λ

2
+

2√
λ

ln

(
2mdet

(
Wt(θ⋆)

)1/2
λ−m/2

δ

)
.

As η̇ = η(1 − η) ∈ [0, 1/4] and as ∥φ∥ ⩽ 1, we have, by a standard trace-determinant inequality
(see, e.g., Abbasi-Yadkori et al. [2011, Lemma 10]),

det
(
Wt(θ⋆)

)
⩽

(
λ+

1

m

t∑
s=1

η̇
(
φ(as,xs)

T θ⋆

)wwφ(as,xs)
ww2

1{as ̸=anull}

)m

⩽

(
λ+

1

4m

t∑
s=1

1{as ̸=anull}

)m

⩽

(
λ+

t

4m

)m
.

Combining the two inequalities, we have proved that for all δ ∈ (0, 1), with probability at least 1− δ,

∀t ⩾ 1, ∥St∥Wt(θ⋆)−1 ⩽ γt,λ,δ −
√
λ∥Θ∥ , (37)

where γt,λ,δ was defined in Lemma 1.

Step 2 — Application of the martingale control. The martingale control (37) is applied as follows.
We show below that the definition (3) of θ̃t entails that

St − λθ⋆ = Ψt

(
θ̃t

)
−Ψt(θ⋆) , (38)

where Ψt was defined in (4). Taking the ∥ · ∥Wt(θ⋆)−1 norms of both sides, together with a triangle
inequality (keeping in mind the boundedness of Θ) and noting that

∥θ∥Wt(θ⋆)−1 ⩽ ∥θ∥(λ Im)−1 = ∥θ∥/
√
λ ,

finally yields that for all δ ∈ (0, 1), with probability at least 1− δ,

∀t ⩾ 1,
wwwΨt

(
θ̃t

)
−Ψt(θ⋆)

www
Wt(θ⋆)−1

⩽ ∥St∥Wt(θ⋆)−1 +
√
λ∥θ∥ ⩽ γt,λ,δ . (39)

We now show (38). The gradient of the continuously differentiable function

θ ∈ Rm 7−→
t∑

s=1

1{as ̸=anull}

(
ys ln η

(
φ(as,xs)

T θ
)
+ (1− ys) ln

(
1− η

(
φ(as,xs)

T θ
)))

− λ

2
∥θ∥

vanishes at the point θ̃t where it achieves its maximum, i.e., θ̃t defined in (3) satisfies
t∑

s=1

(
η
(
φ(as,xs)

T θ̃t

)
− ys

)
φ(as,xs)1{as ̸=anull}

=

t∑
s=1

(
ys

η̇
(
φ(as,xs)

T θ̃t

)
φ(as,xs)

η
(
φ(as,xs)T θ̃t

) + (1− ys)
η̇
(
φ(as,xs)

T θ̃t

)
φ(as,xs)

1− η
(
φ(as,xs)T θ̃t

) )
1{as ̸=anull} = λ θ̃t ,

where we used η̇ = η(1− η) to get the first equality. In particular,

Ψt

(
θ̃t

)
=

t∑
s=1

η
(
φ(as,xs)

T θ̃t

)
φ(as,xs)1{as ̸=anull} + λ θ̃t =

t∑
s=1

ys φ(as,xs)1{as ̸=anull} ,

hence the stated rewriting (38).
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Step 3 — Bound on prediction error. We now proceed to bounding, for all a ∈ A \ {anull} and x:∣∣P (a,x)− P̂t(a,x)
∣∣ = ∣∣∣η(φ(a,x)T θ⋆

)
− η
(
φ(a,x)T θ̂t

)∣∣∣ .
As η is 1/4–Lipschitz (given η̇ = η(1− η) ∈ [0, 1/4]),∣∣P̂t(a,x)− P (a,x)

∣∣ ⩽ 1

4

∣∣∣φ(a,x)T (θ⋆ − θ̂t)
∣∣∣ . (40)

For two m × m symmetric definite positive matrices M and M ′, we write M ⪰ M ′ whenever
∥v∥M ⩾ ∥v∥M ′ for all v ∈ Rm. This inequality entails (M ′)−1 ⪰ M−1. We introduce below a
symmetric definite positive matrix Gt such that

Gt ⪰ κ−1Vt , Gt ⪰
(
1 + 2∥Θ∥

)−1
Wt

(
θ̂t

)
, Gt ⪰

(
1 + 2∥Θ∥

)−1
Wt(θ⋆) (41)

and
Ψt

(
θ̂t

)
−Ψt

(
θ⋆

)
= Gt

(
θ̂t − θ⋆

)
. (42)

Based on all these properties, we get, by a Cauchy-Schwarz inequality in the norms ∥ · ∥Gt
and

∥ · ∥G−1
t

:∣∣∣φ(a,x)T (θ⋆ − θ̂t)
∣∣∣

⩽
∥∥φ(a,x)∥∥

G−1
t

∥∥θ⋆ − θ̃t

∥∥
Gt

=
∥∥φ(a,x)∥∥

G−1
t

∥∥∥Gt

(
θ⋆ − θ̃t

)∥∥∥
G−1

t

=
∥∥φ(a,x)∥∥

G−1
t

∥∥∥Ψ(θ̂t

)
−Ψ

(
θ⋆

)∥∥∥
G−1

t

⩽
√
κ
∥∥φ(a,x)∥∥

V −1
t

∥∥∥Ψ(θ̂t

)
−Ψ

(
θ⋆

)∥∥∥
G−1

t

.

A triangle inequality for the first inequality, followed by applying (41) for the second inequality, and
applying the definition of (4) as a projection for the third inequality, shows that∥∥∥Ψ(θ̂t

)
−Ψ

(
θ⋆

)∥∥∥
G−1

t

⩽
∥∥∥Ψ(θ̂t

)
−Ψ

(
θ̃t

)∥∥∥
G−1

t

+
∥∥∥Ψ(θ⋆

)
−Ψ

(
θ̃t

)∥∥∥
G−1

t

⩽
√

1 + 2∥Θ∥
(∥∥∥Ψ(θ̂t

)
−Ψ

(
θ̃t

)∥∥∥
Wt(θ̂t)−1

+
∥∥∥Ψ(θ⋆)−Ψ

(
θ̃t

)∥∥∥
Wt(θ⋆)−1

)
⩽ 2
√
1 + 2∥Θ∥

∥∥∥Ψ(θ⋆)−Ψ
(
θ̃t

)∥∥∥
Wt(θ⋆)−1

.

Substituting the martingale control (39) and collecting all bounds together finally yields∣∣P̂t(a,x)− P (a,x)
∣∣ ⩽ √

κ

2

∥∥φ(a,x)∥∥
V −1
t

√
1 + 2∥Θ∥ γt,λ,δ ,

as desired.

Note in particular that (39) holds for all t ⩾ 1 with probability 1− δ, and that we took care of the
dependencies on a and x through the

∥∥φ(a,x)∥∥
V −1
t

term. This explains why the result of Lemma 1
holds with probability 1− δ for all t ⩾ 1, all a ∈ A \ {anull} and all x ∈ X .

Step 4 — Construction of the matrix Gt. It only remains to show that there exists a symmetric
definite positive matrix Gt such that (41) and (42) hold. We define

Gt =

∫
[0,1]

Wt

(
v θ̂t + (1− v)θ⋆

)
dv

= λ Im +

t∑
s=1

(∫
[0,1]

η̇
(
vφ(as,xs)

T θ̂t + (1− v)φ(as,xs)
T θ⋆

)
dv

)
φ(as,xs)φ(as,xs)

T 1{as ̸=anull} .

The thus defined matrix Gt is indeed symmetric definite positive matrix. By definition of κ and the
fact that Θ is convex, we have, for all v ∈ [0, 1],

η̇
(
vφ(as,xs)

T θ̂t + (1− v)φ(as,xs)
T θ⋆

)
= η̇

(
φ(as,xs)

T
(
vθ̂t + (1− v)θ⋆

))
⩾ κ−1 ,
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which also immediately entails the first inequality of (41). To prove (42), we introduce, for s ⩾ 1
such that as ̸= anull, the continuously differentiable function

fs,t : v ∈ [0, 1] 7−→ fs,t(v) = η
(
vφ(as,xs)

T θ̂t + (1− v)φ(as,xs)
T θ⋆

)
,

with derivative

ḟs,t(v) = η̇
(
vφ(as,xs)

T θ̂t + (1− v)φ(as,xs)
T θ⋆

)
φ(as,xs)

T
(
θ̂t − θ⋆

)
,

and we have

η
(
φ(as,xs)

T θ̂t

)
− η
(
φ(as,xs)

T θ⋆

)
= fs,t(1)− fs,t(0) =

∫
[0,1]

ḟs,t(v) dv ,

These facts, combined with the definition of Gt, immediately entail (42).

It only remains to prove the third inequality of (41), namely,

Gt ⪰
(
1 + 2∥Θ∥

)−1
Wt(θ⋆) ,

as the second one is obtained by symmetry from there, by exchanging the roles of θ⋆ and θ̂t. To do
so, we rely on the following inequality: for all z1, z2 ∈ R,∫

[0,1]

η̇
(
z1 + v(z2 − z1)

)
dv ⩾

η̇(z1)

1 + |z1 − z2|
. (43)

This inequality is proved, in the case z1 ̸= z2, by noting that the second-order derivative of η equals

η̈(x) =
e−x − 1

1 + ex
η̇(x) , where

e−x − 1

1 + ex
∈ [−1, 1] ,

so that for all z, z′ ∈ R,

ln η̇(z′)− ln η̇(z) =

∫ z′

z

η̈(τ)

η̇(τ)
dτ ⩾ −|z′ − z| , i.e., η̇(z′) ⩾ η̇(z) e−|z′−z| .

Therefore,∫
[0,1]

η̇
(
z1 + v(z2 − z1)

)
dv ⩾

∫
[0,1]

η̇(z1) e
−v|z1−z2| dv = η̇(z1)

1− e−|z1−z2|

|z1 − z2|
⩾

η̇(z1)

1 + |z1 − z2|
,

where we applied the inequality (1− e−x)/x ⩾ 1/(1 + x), which holds for all x ⩾ 0.

We go back to proving the third inequality of (41). With (43) for the first inequality, followed by an
application of the Cauchy-Schwarz inequality for the second inequality, and the fact that θ⋆, θ̂t ∈ Θ
have Euclidean norms smaller than ∥Θ∥, together with ∥φ∥ ⩽ 1, we have, for all s ⩾ 1 with
as ̸= anull,∫

[0,1]

η̇
(
vφ(as,xs)

T θ̂t + (1− v)φ(as,xs)
T θ⋆

)
dv

⩾ η̇
(
φ(as,xs)

T θ⋆

)(
1 +

φ(as,xs)
T (θ⋆ − θ̂t)

)−1

⩾ η̇
(
φ(as,xs)

T θ⋆

)(
1 +

wwφ(as,xs)
ww wwθ⋆ − θ̂t

ww)−1

⩾ η̇
(
φ(as,xs)

T θ⋆

)(
1 + 2∥Θ∥

)−1
.

As
(
1 + 2 ∥Θ∥

)−1
⩽ 1, we can then conclude, from the definition of Gt, that

Gt ⪰ (1 + 2 ∥Θ∥)−1

(
λ Im +

t∑
s=1

η̇
(
φ(as,xs)

T θ⋆

)
φ(as,xs)φ(as,xs)

T 1{as ̸=anull}

)
= (1 + 2 ∥Θ∥)−1 Wt(θ⋆) ,

as announced. This concludes the proof.
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D Proof of the Regret Bound in Case of an Unknown Distribution ν:
Proof of Theorem 2

We rather explain the differences to and modifications with respect to the proof of Appendix B.

To best do so, we usêsuperscripts to index various quantities defined based on the estimations ν̂t,
even though these quantities are not themselves estimators. In particular, the budget parameter is
denoted by B̂T ; we refer to the policies computed at rounds t ⩾ 2 by p̂t(ht−1, · ), and by Êδ the
event of Lemma 1 for the sampling strategy pulling actions at ∼ p̂t(xt), which is exactly the strategy
that we are analyzing here; and finally, the optimal dual variables linked to the budget are denoted by
β̂

budg,⋆

t .

D.1 Key New Building Block: Uniform Deviation Inequality

Throughout this appendix, we will need to relate quantities defined based on ν̂t to the target quantities
defined based on ν. All these quantities will be of the form: for 1 ⩽ t ⩽ T and for various functions
f : X → [0, 1],

EX∼ν̂t

[
f(X)

]
and EX∼ν̂t

[
f(X)

]
.

A simple (but probably slightly suboptimal) way to do so is to apply T |X | times the Hoeffding-Azuma
inequality together with a union bound. We get that on an event Êunif,δ of probability at least 1− δ,

∀ 1 ⩽ t ⩽ T, ∀x ∈ X ,
∣∣ν̂t(x)− ν(x)

∣∣ ⩽√ 1

2t
ln

2T |X |
δ

.

In particular, with probability at least 1− δ, for all functions f : X → [0, 1] and all 1 ⩽ t ⩽ T ,∣∣∣EX∼ν̂t

[
f(X)

]
− EX∼ν̂t

[
f(X)

]∣∣∣ ⩽ ∑
x∈X

∣∣ν̂t(x)− ν(x)
∣∣ ⩽ |X |

√
1

2t
ln

2T |X |
δ

. (44)

We now explain the adaptations required (or not required) for each of the four steps of the proof
provided in Appendix B.

D.2 First and Second Steps: No Adaptation Required

These two steps do not require any adaptation; we merely re-state the useful results extracted therein,
with the corresponding adapted notation.

The first step (Appendix B.1) held for any sampling strategy. Therefore, the same upper-confidence
bonuses (9) and Lemma 1 entail that on an event Êδ of probability at least 1 − δ, for all t ⩾ 1, all
a ∈ A \ {anull}, and all x ∈ X :

P (a,x) ⩽ Ut(a,x) ⩽ P (a,x) + 2εt(a,x) . (45)

The bound (12) also still holds, as it was obtained in a deterministic manner not using any specific
feature of the sampling strategy; namely,

2

T∑
t=2

εt−1(at,xt)1{at ̸=anull} ⩽ ET . (46)

Similarly, the second step (Appendix B.2) actually yielded general results between the primal and
the dual formulations of the OPT problems considered. The equality (18), the characterizations (22)
and (23), as well as the inequality (25) may be instantiated with ν̂t (in lieu of ν) and B̂T (in lieu of
BT ) as follows. For each t ⩾ 2 such that the cost constraints of Phase 0 of the adaptive policy are
not violated and the optimization problem OPT

(
ν̂t, Ut−1, B̂T

)
is to be solved, there exists a vector

β̂
budg,⋆

t ⩾ 0 such that first,

(
β̂

budg,⋆

t

)T EX∼ν̂t

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(X)

]
=

B̂T

T

(
β̂

budg,⋆

t

)T
1 . (47)
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Second, for all x ∈ X ,

max
q∈P(A)

∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
Ut−1(a,x) qa(x)

= max
q∈P(A)

∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
Ut−1(a,x) qa(x) (48)

and
p̂t(ht−1,x) ∈ argmax

q∈P(A)

∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
Ut−1(a,x) qa . (49)

Third,
OPT

(
ν̂t, Ut−1, B̂T

)
⩾ B̂T

(
β̂

budg,⋆

t

)T
1 . (50)

D.3 Third Step: Most of the Adaptations Lie Here

We show below that on the intersection between the events Êprob,δ and Êunif,δ, introduced above, and
another event ÊHAz,δ , also of probability at least 1− δ, we have that

T∑
t=1

c(at,xt) yt ⩽ (B − 1)1 .

Therefore, on this intersection of three events, for all rounds t ⩾ 2, the policy p̂t(ht−1, · ) is obtained
by Phase 2, i.e., by solving OPT

(
νt, Ut−1, BT

)
.

Similarly, we then prove below that on Êprob,δ ∩ ÊHAz,δ ∩ Êunif,δ ,

T∑
t=1

r(at,xt) yt ⩾
T∑

t=2

=OPT(ν̂t,Ut−1,B̂T )/T︷ ︸︸ ︷
EX∼ν̂t

[∑
a∈A

r(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]

−

(
ET +

√
2T ln

4d

δ
+ |X |

√
2T ln

2T |X |
δ

)
. (51)

The inequalities that may be extracted from Appendix B.3. Several applications of the Hoeffding-
Azuma inequality, together with a union bound, show that there exist an event ÊHAz,δ of probability at
least 1− δ such that, simultaneously:

T∑
t=1

r(at,xt) yt ⩾
T∑

t=1

r(at,xt)P (at,xt)−
√

T

2
ln

4

δ
, (52)

T∑
t=1

c(at,xt) yt ⩽
T∑

t=1

c(at,xt)P (at,xt) +

√
T

2
ln

4d

δ
1 , (53)

T∑
t=2

r(at,xt)Ut−1(at,xt) ⩾
T∑

t=2

EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]
−
√

T

2
ln

4

δ
,

(54)
T∑

t=2

c(at,xt)Ut−1(at,xt) ⩽
T∑

t=2

EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]
+

√
T

2
ln

4d

δ
1 .

(55)

Dealing with the cost constraints. Now, for each t ⩾ 2, the definition of p̂t(ht−1, · ), no matter
whether it is provided by Phase 0 or Phase 2 of the adaptive policy, ensures that

EX∼ν̂t

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]
⩽

B̂T

T
1 .
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By (44) and the fact that the sums at stake below lie in [0, 1], we have, on Êunif,δ , that for all t ⩾ 2,

EX∼ν

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]

⩽ EX∼ν̂t

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]
+ |X |

√
1

2t
ln

2T |X |
δ

1 .

Combining the two inequalities above with (53) and (55), as well as with the bounds P ⩽ Ut−1

of (45), we proved so far that

on Êprob,δ∩ÊHAz,δ∩Êunif,δ ,

T∑
t=1

c(at,xt) yt ⩽

(
B̂T + 1 +

√
2T ln

4d

δ
+

T∑
t=2

|X |
√

1

2t
ln

2T |X |
δ

)
1 .

Since
∑
t⩽T

1/
√
t ⩽ 2

√
T and by the definition of B̂T (see the statement of Theorem 2), we proved that

on Êprob,δ ∩ ÊHAz,δ ∩ Êunif,δ ,

T∑
t=1

c(at,xt) yt ⩽ (B − 1)1 ,

as claimed. Therefore, on Êprob,δ ∩ ÊHAz,δ ∩ Êunif,δ, the adaptive policy of Box B of Section 3 never
stays in Phase 0 and instead solves, at each round t ⩾ 2, the Phase-2 problem OPT

(
ν̂t, Ut−1, B̂T

)
.

Dealing with the rewards. By (52) and (54), by the bound Ut−1 ⩽ P +2εt−1 of (45) together with
the bound ET of (46), and by the uniform control (44), we have similarly that on Êprob,δ∩ÊHAz,δ∩Êunif,δ ,

T∑
t=1

r(at,xt) yt ⩾
T∑

t=2

EX∼ν̂t

[∑
a∈A

r(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]

−

(
ET +

√
2T ln

4d

δ
+ |X |

√
2T ln

2T |X |
δ

)
.

Given that on the intersection of events considered, the adaptive policy solves OPT
(
ν̂t, Ut−1, B̂T

)
for

all t ⩾ 2, we have

EX∼ν̂t

[∑
a∈A

r(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]
=

OPT
(
ν̂t, Ut−1, B̂T

)
T

. (56)

This concludes the proof of (51), and hence, the adaptation of the third step.

D.4 Fourth Step: Some Adaptations are Also Required

In this final step, we collect the bounds from the previous three steps. Some (rather minor) adaptations
are required, e.g., we would like to integrate (48) and (49) over ν̂t in the left-hand sides and ν in the
right-hand sides.

Main modification. We consider some t ⩾ 2. For each x ∈ X , we apply (48) and (49) with
q = π⋆(x) and get∑

a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
Ut−1(a,x) p̂t,a(ht−1,x)

⩾
∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
Ut−1(a,x)π

⋆
a(x) .
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The bound Ut−1 ⩾ P of (45) and the non-negative parts taken in the right-hand side then entail that

on Êprob,δ, ∀x ∈ X ,
∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
Ut−1(a,x) p̂t,a(ht−1,x)

⩾
∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
P (a,x)π⋆

a(x) .

We replace the individual x by a random variable X ∼ ν̂t and take expectations with respect to X:

on Êprob,δ, EX∼ν̂t

[∑
a∈A

(
r(a,X)−

(
β̂

budg,⋆

t

)T
c(a,X)

)
Ut−1(a,X) p̂t,a(ht−1,X)

]

⩾ EX∼ν̂t

[∑
a∈A

(
r(a,X)−

(
β̂

budg,⋆

t

)T
c(a,X)

)
+
P (a,X)π⋆

a(X)

]
.

Thanks to the non-negative parts in the right-hand side, we identify some function f(X) where f
takes values in [0, 1], so that we may apply the uniform control (44) and get

on Êunif,δ, EX∼ν̂t

[∑
a∈A

(
r(a,X)−

(
β̂

budg,⋆

t

)T
c(a,X)

)
+
P (a,X)π⋆

a(X)

]

⩾ EX∼ν

[∑
a∈A

(
r(a,X)−

(
β̂

budg,⋆

t

)T
c(a,X)

)
+
P (a,X)π⋆

a(X)

]
− |X |

√
1

2t
ln

2T |X |
δ

⩾ EX∼ν

[∑
a∈A

(
r(a,X)−

(
β̂

budg,⋆

t

)T
c(a,X)

)
P (a,X)π⋆

a(X)

]
− |X |

√
1

2t
ln

2T |X |
δ

,

where for the second inequality, we simply dropped the non-negative parts.

The rest of the proof for this final step is basically unchanged. Combining all the bounds
exhibited so far in this updated fourth step, we have, for each t ⩾ 2,

on Êprob,δ ∩ Êunif,δ,

=OPT(ν̂t,Ut−1,B̂T )/T︷ ︸︸ ︷
EX∼ν̂t

[∑
a∈A

r(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]

−
(
β̂

budg,⋆

t

)T EX∼ν̂t

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(ht−1,X)

]

⩾

=OPT(ν,P,B)/T︷ ︸︸ ︷
EX∼ν

[∑
a∈A

r(a,X)P (a,X)π⋆
a(X)

]

−
(
β̂

budg,⋆

t

)T EX∼ν

[∑
a∈A

c(a,X)P (a,X)π⋆
a(X)

]
︸ ︷︷ ︸

⩽(B/T )1

−|X |
√

1

2t
ln

2T |X |
δ

,

where we substituted the inequalities stemming from the definition of π⋆ as well as the rewriting (56).
Rearranging the inequality above and substituting (47), we get that on Êprob,δ ∩ Êunif,δ ,

OPT(ν, P,B)

T
−

OPT
(
ν̂t, Ut−1, B̂T

)
T

⩽
B
(
β̂

budg,⋆

t

)T
1

T
−
(
β̂

budg,⋆

t

)T EX∼ν̂t

[∑
a∈A

c(a,X)Ut−1(a,X) p̂t,a(X)

]
+ |X |

√
1

2t
ln

2T |X |
δ

=
B − B̂T

T

(
β̂

budg,⋆

t

)T
1+ |X |

√
1

2t
ln

2T |X |
δ

. (57)
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Summing this bound over 2 ⩽ t ⩽ T and combining it with (50), we obtain that on Êprob,δ ∩ Êunif,δ ,

OPT(ν, P,B)−
T∑

t=2

OPT
(
ν̂t, Ut−1, B̂T

)
T

⩽ 1+
B − B̂T

B̂T

T∑
t=2

OPT
(
ν̂t, Ut−1, B̂T

)
T

+|X |
√

2T ln
2T |X |

δ
.

By distinguishing the cases

OPT(ν, P,B)−
T∑

t=2

OPT
(
ν̂t, Ut−1, B̂T

)
T

⩽ 0 and OPT(ν, P,B)−
T∑

t=2

OPT
(
ν̂t, Ut−1, B̂T

)
T

⩾ 0 ,

the inequality above entails that on Êprob,δ ∩ Êunif,δ ,

OPT(ν, P,B)−
T∑

t=2

OPT
(
ν̂t, Ut−1, B̂T

)
T

⩽
B − B̂T

B̂T

OPT(ν, P,B) + |X |
√

2T ln
2T |X |

δ
+ 1 .

Substituting this upper bound into (51), we finally obtain that on Êprob,δ ∩ ÊHAz,δ ∩ Êunif,δ ,

OPT(ν, P,B)−
T∑

t=1

r(at,xt) yt ⩽
B − B̂T

B̂T

OPT(ν, P,B)

+ ET +

√
2T ln

4d

δ
+ 2|X |

√
2T ln

2T |X |
δ

+ 1︸ ︷︷ ︸
⩽2bT

.

We conclude the proof by the same modifications to improve readability as at the end of the proof
of Theorem 1: namely, since the definition of ET did not change, the bound (35) is still applicable,
while

B − B̂T

B̂T

⩽
2bT
B

=
1

B

(
4 + 2

√
2T ln

4d

δ
+ 2|X |

√
2T ln

2T |X |
δ

)
is obtained with the same techniques and similar conditions as for (32).
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E Details for the Material of Section 6

In this section, we first recall (Appendix E.1) the setting of linear CBwK introduced by Agrawal
and Devanur [2016]—and actually, slightly generalize it to match the setting of CBwK for a logistic-
regression conversion model. We then state the adaptive policy considered (Appendix E.2), which
relies on upper-confidence estimates of the rewards and lower-confidence estimates of the cost vectors.
We also state the corresponding estimation guarantees in a key lemma (Lemma 3). The heart of this
section is to state, discuss (Appendix E.3) and prove (Appendix E.4) a regret bound, matching the one
of Agrawal and Devanur [2016, Theorem 3], with a slight improvement consisting of a relaxation of
the budget constraints. For the sake of completeness, we finally recall (Appendix E.5) the statement
of the adaptive policy of Agrawal and Devanur [2016].

E.1 Setting

The setting is the following. We consider a finite action set A including a no-op action anull, a finite
context set X ⊆ Rn, a number T of rounds and a total budget constraint B > 0. All these parameters
are known. Contexts x1,x2, . . . ,xT are drawn i.i.d. according to some distribution ν. At round
t ⩾ 1, the learner observes the context xt, picks an action at and, conditionally to xt and at, when
at ̸= anull, obtains a reward rt ∈ [0, 1] drawn independently at random according to a distribution
with expectation r(at,xt), where

∀a ∈ A \ {anull}, ∀x ∈ X , r(a,x) = φ(a,x)T µ⋆ ,

and suffers a vector cost ct ∈ [0, 1]d drawn independently at random according to a distribution with
vector of expectations c(at,xt), where each component ci of c, for i ∈ {1, . . . , d}, is given by

∀a ∈ A \ {anull}, ∀x ∈ X , ci(a,x) = φ(a,x)T θ⋆,i .

In the definitions above, φ : A \ {anull} × X → Rm is a known transfer function, with ∥φ∥ ⩽ 1, and
µ⋆ and the θ⋆,i are unknown parameters in Rm. We assume that these unknown parameters lie in
some bounded set Θ, with maximal norm still denoted by ∥Θ∥. When at = anull, the obtained reward
and suffered costs are null: rt = 0 and ct = 0.

Comparison to the canonical setting of linear CBwK. Note that in the original formulation of
Agrawal and Devanur [2016], we have (where xa also denote vectors):

x =
(
xa

)
a∈A\{anull}

and φ(a,x) = xa .

Benchmark and regret. The goal is still to maximize the accumulated rewards while controlling
the costs:

maximize
∑
t⩽T

rt while controlling
∑
t⩽T

ct ⩽ B1 .

The goal can be equivalently defined as the minimization of the regret while controlling the costs,
where the regret equals

RT = OPT(ν, r, c, B)−
∑
t⩽T

rt

for the benchmark given by the static policy π⋆ achieving the largest expected cumulative rewards
under the condition that its cumulative vector costs abide by the budget constraints in expectation,
i.e.,

OPT(ν, r, c, B) = max
π:X→P(A)

T EX∼ν

[∑
a∈A

r(a,X)πa(X)

]

under T EX∼ν

[∑
a∈A

c(a,x)πa(X)

]
⩽ B1 .

(58)

In the sequel, we will use the definition (58) of OPT with different quadruplets of parameters; see, for
instance, the definition of the adaptive policy of Box C.
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E.2 Statement of an Adaptive Policy

The considered adaptive policy is stated in Box C. It is adapted from the adaptive policy of Section 3.
The (almost only) changes lie in Phase 1, which depends heavily of the model. Here, we resort (as
Agrawal and Devanur [2016]) to a LinUCB-type estimation of the parameters of the stochastic linear
bandits yielding rewards and costs. Based on these estimated parameters, we are able to issue, at each
round t ⩾ 2, an upper-confidence expected reward function Ut−1 and a lower-confidence expected
vector-cost function Lt−1. We also use the empirical estimate of the context distribution. In Phase 2,
we solve the OPT problem on these estimates and with the conservative budget B̂T .

The adaptive policy of Box C bears links, and actually generalizes, the one by Xu and Truong [2019].
The setting of the latter reference is more limited as more information is provided to the learner, such
as the costs for taking each action and the distribution ν of contexts (clients in their case).

For the sake of completeness, we state in Appendix E.5 the adaptive policy introduced by Agrawal
and Devanur [2016].

The main additional ingredient in the analysis of the policy of Box C, compared to the analyses of the
adaptive policy of Section 3, is a guarantee on the outcomes of Phase 1. We recall that we assumed
that the parameters µ⋆ and θ⋆,i lie in a bounded set Θ with maximal norm denoted by ∥Θ∥.

Lemma 3 (direct adaptation from Abbasi-Yadkori et al. [2011, Theorem 2]). Fix any sampling
strategy and consider the version of LinUCB given by Phase 1 of Box C. For all δ ∈ (0, 1), there
exists an event Êlin,δ with probability at least 1− δ and such that over Êlin,δ:

∀t ⩾ 1, ∀a ∈ A \ {anull}, ∀x ∈ X ,
∣∣r̂t(a,x)− r(a,x)

∣∣ ⩽ γt,λ,δ
wwφ(a,x)ww

X−1
t

and
∣∣ĉt(a,x)− c(a,x)

∣∣ ⩽ γt,λ,δ
wwφ(a,x)ww

X−1
t

1 ,

where

γt,λ,δ =
1

4

√
m ln

1 + t/(λm)

δ/(d+ 1)
+

√
λ∥Θ∥.

Proof sketch. We explain why the bound for r holds with probability at least 1− δ/(d+ 1). The
lemma follows by repeating the argument for the components of c and resorting to a union bound.

Given that rewards lie in [0, 1] and are thus 1/4–sub-Gaussian, the martingale analysis by Abbasi-
Yadkori et al. [2011, Theorem 2], with the same adaptations as the ones carried out in Appendix C to
take into account the rounds when at = anull, shows that with probability at least 1− δ/(d+ 1),

∀t ⩾ 1,
wwµt − µ⋆

ww
Xt

⩽
1

4

√
m ln

1 + t/(λm)

δ/(d+ 1)
+
√
λ∥Θ∥ = γt,λ,δ .

We then proceed similarly to the Cauchy-Schwarz inequalities following (42): for all a ∈ A \ {anull}
and x ∈ X ,∣∣r̂t(a,x)− r(a,x)

∣∣ = ∣∣∣φ(a,x)T (µt−1 − µ⋆

)∣∣∣ ⩽ wwφ(a,x)ww
X−1

t

wwµt − µ⋆

ww
Xt

.

This concludes the proof.

As a consequence, we set, when defining the adaptive policy of Box C,

εs(a,x) = γt,λ,δ
wwφ(a,x)ww

X−1
s

for all s ⩾ 1, and denote by Êlin,δ the event of Lemma 3 for the sampling policy of Box C. This event
is of probability at least 1− δ. We have:

on Êlin,δ, ∀t ⩾ 1, ∀a ∈ A \ {anull}, ∀x ∈ X ,

r(a,x) ⩽ Ut(a,x) ⩽ r(a,x) + 2εt(a,x) (59)
and Lt(a,x) ⩽ c(a,x) ⩽ Lt(a,x) + 2εt(a,x)1 . (60)
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BOX C: LINUCB FOR DIRECT SOLUTIONS TO OPT PROBLEMS

Parameters: regularization parameter λ > 0; conservative-budget parameter B̂T ; upper-
confidence bonuses εs(a,x) > 0, for s ⩾ 1 and (a,x) ∈

(
A \ {anull}

)
×X .

Round t = 1: play an arbitrary action a1 ∈ A \ {anull}
At rounds t ⩾ 2:

Phase 0 If
∑

s⩽t−1

cs ⩽ (B − 1)1 is violated, then p̂t(ht−1,x) = δanull for all x

Phase 1 Otherwise, estimate the parameters by

µt−1 = X−1
t−1

t−1∑
s=1

1{as ̸=anull}φ(as,xs) rs

and θ̂t−1,i = X−1
t−1

t−1∑
s=1

1{as ̸=anull}φ(as,xs) cs,i

where Xt =

t∑
s=1

1{as ̸=anull}φ(as,xs)φ(as,xs)
T + λ Im

Define the expected reward function r̂ and cost function ĉt−1 =
(
ĉt−1,i

)
1⩽i⩽d

as

∀a ∈ A \ {anull}, ∀x ∈ X , r̂t−1(a,x) = φ(a,x)T µt−1

and ∀1 ⩽ i ⩽ d, ĉt−1,i = φ(a,x)T θt−1,i

Build the upper-confidence expected reward function Ut−1 and the lower-confidence
expected vector-cost function Lt−1 as

∀a ∈ A \ {anull}, ∀x ∈ X ,

Ut−1(a,x) = max
{
min

{
r̂t−1(a,x) + εt−1(a,x), 1

}
, 0
}

Lt−1(a,x) = max
{
min

{
ĉt−1 − εt−1(a,x)1, 1

}
, 0
}

where the maximum and minimum are taken pointwise in the definition of Lt−1

Set Ut−1(anull,x) = 0 and Lt−1(anull,x) = 0 for all x ∈ X

Also estimate the context distribution by ν̂t =
1

t

t∑
s=1

δxs

Phase 2 Compute the solution p̂t(ht−1, · ) of

OPT
(
ν̂t, Ut−1,Lt−1, BT

)
= max

π:X→P(A)
T EX∼ν̂t

[∑
a∈A

Ut−1(a,X)πa(X)

]

under T EX∼ν̂t

[∑
a∈A

Lt−1(a,X)πa(X)

]
⩽ BT1

Draw an arm at ∼ p̂t(ht−1,xt)
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E.3 Regret Bound

We sketch in Appendix E.4 below the proof of the following result. We use the εs(a,x) indicated by
Lemma 3.
Theorem 3. In the setting of Appendix E.1, we consider the adaptive policy of Box C of Appendix E.2.
We set a confidence level 1− δ ∈ (0, 1) and use parameters λ = m ln(1 + T/m), a working budget
of B̂T = B − bT , where

bT = 2 +m
(
2
√
2∥Θ∥+ 1

)√
T ln

1 + T/m

δ/(d+ 1)
+

√
2T ln

4d

δ
+ |X |

√
2T ln

2T |X |
δ

,

and εt(a,x) = γt,λ,δ
wwφ(a,x)ww

X−1
t

. Then, provided that T ⩾ 2m and B > 2bT , we have, with
probability at least 1− 3δ,

OPT(ν, r, c, B)−
T∑

t=1

rt ⩽ 2bT

(
1 +

OPT(ν, r, c, B)

B

)
.

The order of magnitude of the regret bound, in terms of T , m, and B is

OPT(ν, r, c, B)

B
m
√
T lnT .

This matches the regret bound achieved by Agrawal and Devanur [2016, Theorem 3], except that the
latter reference required a budget B of order T 3/4 up to logarithmic terms, while we relax the budget
amount to B ⩾ 2bT , i.e., B of order

√
T up to logarithmic terms.

Also, and more importantly, we provide a natural strategy in Box C, whose parameters are easy to
tune, while the fully adaptive algorithm underlying Agrawal and Devanur [2016, Theorem 3] has
to estimate a critical parameter Z to trade off rewards and costs (the equivalent of our β̂

budg,⋆

t dual
optimal variable). This Z should be of order OPT(ν, r, c, B)/B and

√
T initial rounds of the strategy

underlying Agrawal and Devanur [2016, Theorem 3] are devoted to computing a suitable value of Z.

We also provide, in the analysis of Appendix E.4, a rigorous treatment of the use of the no-op action
anull.

However, the main advantage of Agrawal and Devanur [2016, Theorem 3] over Theorem 3 above lies
in the absence of finiteness restriction on the context set X , which we have to (somewhat artificially)
introduce to ensure that the linear program of Phase 2 of the adaptive policy of Box C is tractable.

E.4 Proof Sketch of Theorem 3

We use the samêconventions as in Appendix D. The main (but rather minor) changes with respect
to the proofs of Appendices B and D are specifically underlined below. The reason why it is handy to
consider instead a lower-confidence bound on the vector costs is to be found in Step 4 below.

Step 1. The first step corresponds to Lemma 3 above, together with the introduction of the bound
ET . Given that we pick λ = m ln(1 + T/m) ⩾ 1 ⩾ 1, we get the following counterpart of (12), by
replacing κ by 1:

2

T∑
t=2

εt−1(at,xt)1{at ̸=anull} ⩽ 2γT,λ,δ

√
2mT ln

(
1 +

T

λm

)
def
= ET .

Substituting the value of λ and upper bounding γT,λ,δ by

γT,λ,δ ⩽

(
∥Θ∥+ 1

4

)√
m ln

1 + T/m

δ/(d+ 1)
,

we get

ET ⩽ m
(
2
√
2∥Θ∥+ 1

)√
T ln

1 + T/m

δ/(d+ 1)
.
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Step 2. There are three main outcomes of Step 2 (see the summary in Appendix D.2). Up to
considering the new Ut(a,x) and Lt(a,x) in lieu of the r(a,x)Ut(a,x) and c(a,x)Ut(a,x),
respectively, we have the following counterparts to (18), (20) and (25). For each t ⩾ 2 such that the
cost constraints of Phase 0 of the adaptive policy of Box C are not violated and the optimization
problem OPT

(
ν̂t, Ut−1,Lt−1, B̂T

)
is to be solved, there exists a vector β̂

budg,⋆

t ⩾ 0 such that the
complementary slackness condition of KKT reads(

β̂
budg,⋆

t

)T EX∼ν̂t

[∑
a∈A

Lt−1(a,X) p̂t,a(ht−1,X)

]
=

B̂T

T

(
β̂

budg,⋆

t

)T
1 , (61)

the policy p̂t(ht−1, · ) satisfies

p̂t(ht−1,x) ∈ argmax
q∈P(A)

∑
a∈A

(
Ut−1(a,x)−

(
β̂

budg,⋆

t

)T
Lt−1(a,x)

)
qa , (62)

and the value of the optimization problem is larger than

OPT
(
ν̂t, Ut−1,Lt−1, B̂T

)
⩾ B̂T

(
β̂

budg,⋆

t

)T
1 . (63)

Step 3. The uniform deviation argument (8), formulated equivalently as (44), still holds, on an event
referred to as Êunif,δ . Also, we assumed that rewards rt and cost vectors ct are bounded in [0, 1] and
[0, 1]d, respectively. Several applications of the Hoeffding-Azuma inequality, together with a union
bound, show that there exist an event ÊHAz,δ of probability at least 1− δ such that, simultaneously,
various high-probability controls similar to (52)–(55) hold. We do not rewrite them explicitly.

On the intersection ÊHAz,δ ∩ Êlin,δ ∩ Êunif,δ , we have

T∑
t=1

ct

⩽
T∑

t=1

c(at,xt)1{at ̸=anull} +

√
T

2
ln

4d

δ
1

⩽ 1 +

T∑
t=2

Lt−1(at,xt)1{at ̸=anull} +

(
ET +

√
T

2
ln

4d

δ

)
1

⩽ 1 +

T∑
t=2

EX∼ν

[∑
a∈A

Lt−1(a,X) p̂t,a(ht−1,X)

]
+

(
ET +

√
2T ln

4d

δ

)
1

⩽ 1 +

T∑
t=2

EX∼ν̂t

[∑
a∈A

Lt−1(a,X) p̂t,a(ht−1,X)

]

+

(
ET +

√
2T ln

4d

δ
+ |X |

√
2T ln

2T |X |
δ

)
1 ,

where, among others, we used (60) and the definition of ET for the second inequality. Note that the
ET term was not necessary in Appendices B and D as we were then using an upper-confidence bound
on the vector costs, obtained thanks to an upper-confidence bound on the conversion rate. At each
round t ⩾ 2, whether the strategy picks p̂t,a(ht−1, · ) in Phase 0 (in which case the left-hand side in
the display below equals 0) or Phase 2 (in which case we have an equality in the display below), it
holds that

EX∼ν̂t

[∑
a∈A

Lt−1(a,X) p̂t,a(ht−1,X)

]
⩽

B̂T

T
1 .

Substituting the value of B̂T , we proved that on ÊHAz,δ ∩Êlin,δ ∩Êunif,δ , which is an event of probability
at least 1− 3δ,

T∑
t=1

ct ⩽ (B − 1)1 .
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This shows that on this intersection of events, the adaptive policy of Box C always resorts to Phase 2.
We will consider this event for the rest of the proof, so that the results of Step 2 may be applied.

We may proceed similarly for rewards, based on (59): on ÊHAz,δ ∩ Êlin,δ ∩ Êunif,δ

T∑
t=1

rt

⩾
T∑

t=1

r(at,xt)1{at ̸=anull} −
√

T

2
ln

4

δ

⩾
T∑

t=2

Ut−1(at,xt)1{at ̸=anull} −

(
ET +

√
T

2
ln

4

δ

)

⩾
T∑

t=2

EX∼ν

[∑
a∈A

Ut−1(a,X) p̂t,a(ht−1,X)

]
−

(
ET +

√
2T ln

4

δ

)

⩾
T∑

t=2

EX∼ν̂t

[∑
a∈A

Ut−1(a,X) p̂t,a(ht−1,X)

]
︸ ︷︷ ︸

=OPT(ν̂t,Ut−1,Lt−1,B̂T )/T

−

(
ET +

√
2T ln

4

δ
+ |X |

√
2T ln

2T |X |
δ︸ ︷︷ ︸

⩽bT

)
,

(64)

where the indicated equality to OPT
(
ν̂t, Ut−1,Lt−1, B̂T

)
follows from the fact that on the considered

intersection of events, the adaptive policy always resorts to Phase 2. We also used the piece of
notation bT introduced in the statement of Lemma 3.

Step 4. We build on (62) as follows. By the existence of anull, the maximum in (62) can be taken
with non-negative parts. We also substitute the upper confidence control (59) and the lower confidence
control (60)—this piece of the proof is the very reason why such upper and lower confidence estimates
were picked. We get: on ÊHAz,δ ∩ Êlin,δ ∩ Êunif,δ , for all t ⩾ 2, for all x ∈ X ,∑

a∈A

(
Ut−1(a,x)−

(
β̂

budg,⋆

t

)T
Lt−1(a,x)

)
p̂t,a(ht−1,x)

=
∑
a∈A

(
Ut−1(a,x)−

(
β̂

budg,⋆

t

)T
Lt−1(a,x)

)
+
p̂t,a(ht−1,x)

⩾
∑
a∈A

(
Ut−1(a,x)−

(
β̂

budg,⋆

t

)T
Lt−1(a,x)

)
+
π⋆
a(x)

⩾
∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
π⋆
a(x) .

The rest of the proof follows the exact same logic as in Appendices B and D. By replacing the x by a
random variable X ∼ ν̂t and integrating, we have, on ÊHAz,δ ∩ Êlin,δ ∩ Êunif,δ , that for all t ⩾ 2,

EX∼ν̂t

[∑
a∈A

(
Ut−1(a,x)−

(
β̂

budg,⋆

t

)T
Lt−1(a,x)

)
p̂t,a(ht−1,x)

]

⩾ EX∼ν̂t

[∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
π⋆
a(x)

]

⩾ EX∼ν

[∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
π⋆
a(x)

]
− |X |

√
t

2
ln

2T |X |
δ

,

where the second inequality follows by (44), which is legitimately applied thanks the fact that the
sum over a in the right-hand side takes values in [0, 1], given the non-negative parts and the fact that
r(a,x) ⩽ 1 by definition. Now, with (61) and the definition of π⋆: on ÊHAz,δ ∩ Êlin,δ ∩ Êunif,δ, for all
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t ⩾ 2,

OPT(ν̂t, Ut−1,Lt−1, B̂T )

T
− B̂T

T

(
β̂

budg,⋆

t

)T
1

= EX∼ν̂t

[∑
a∈A

(
Ut−1(a,x)−

(
β̂

budg,⋆

t

)T
Lt−1(a,x)

)
p̂t,a(ht−1,x)

]

⩾ EX∼ν

[∑
a∈A

(
r(a,x)−

(
β̂

budg,⋆

t

)T
c(a,x)

)
+
π⋆
a(x)

]
− |X |

√
t

2
ln

2T |X |
δ

⩾
OPT(ν, r, c, B)

T
− B

T

(
β̂

budg,⋆

t

)T
1− |X |

√
t

2
ln

2T |X |
δ

.

Based on these inequalities, we have

OPT(ν, r, c, B)−
T∑

t=2

OPT(ν̂t, Ut−1,Lt−1, B̂T )

T

⩽ |X |
√
2T ln

2T |X |
δ

+ 1 +

T∑
t=2

B − B̂T

T

(
β̂

budg,⋆

t

)T
1

⩽ |X |
√
2T ln

2T |X |
δ

+ 1 +
B − B̂T

B̂T

T∑
t=2

OPT(ν̂t, Ut−1,Lt−1, B̂T )

T
,

where we substituted (63) for the second inequality. By a case analysis, we finally proved that on
ÊHAz,δ ∩ Êlin,δ ∩ Êunif,δ ,

OPT(ν, r, c, B)−
T∑

t=2

OPT(ν̂t, Ut−1,Lt−1, B̂T )

T

⩽

(
B

B̂T

− 1

)
OPT(ν, r, c, B) + 1 + |X |

√
2T ln

2T |X |
δ︸ ︷︷ ︸

⩽bT

.

The proof is concluded by combining the inequality above with the bound (64) on cumulative rewards:

OPT(ν, r, c, B)−
T∑

t=1

rt ⩽ 2bT +

(
B

B̂T

− 1︸ ︷︷ ︸
⩽2bT

)
OPT(ν, r, c, B) ,

where the bound on B/B̂T − 1 is obtained with the same techniques and similar conditions as
for (32).

E.5 Reminder: Algorithm 1 from Agrawal and Devanur [2016]

We recall (and actually slightly adapt to our setting) the adaptive policy of Agrawal and Devanur
[2016] titled Algorithm 1 therein. We describe it in Box D. One of the adaptations is to state it
with general upper-confidence bonuses εs(a,x) > 0. As in Agrawal and Devanur [2016], who
proceed as in the proof of Lemma 3, we will use the same values for εs(a,x) as in Theorem 3. The
same comment applies to λ. Another adaptation is that we specified the online convex optimization
algorithm to be used and picked a simple strategy (instead of other possible choices discussed in
Agrawal and Devanur [2016]), namely, the projected gradient descent introduced by Zinkevich [2003].
The latter relies on a learning rate η > 0. The drawback of the projected gradient descent is however
that its dependency in the ambient dimension is suboptimal.

The final parameter of the adaptive policy of Box D is a parameter Z to trade off between rewards
and costs. A recommended choice is, for instance, Z = OPT(ν, r, c, B)/B, the issue being that, of
course, the latter value is unknown. In the simulation study of Appendix F, we will provide a good
value of Z to the adaptive policy, even though Agrawal and Devanur [2016] introduce a variant with
a preliminary exploration phase meant to provide in an automatic way such a good value for Z.
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BOX D: ADAPTATION OF ALGORITHM 1 FROM AGRAWAL AND DEVANUR [2016]

Parameters: regularization parameter λ > 0; trade-off parameter Z between reward and
costs; upper-confidence bonuses εs(a,x) > 0, for s ⩾ 1 and (a,x) ∈

(
A \ {anull}

)
× X ;

learning rate η > 0.

Round t = 1: play an arbitrary action a1 ∈ A \ {anull}; pick ζ1 = 0

At rounds t ⩾ 2:

Phase 0 If
∑

s⩽t−1

cs ⩽ (B − 1)1 is violated, then at = anull

Phase 1 Otherwise, estimate the parameters by

µt−1 = X−1
t−1

t−1∑
s=1

φ(as,xs) rs

and θ̂t−1,i = X−1
t−1

t−1∑
s=1

φ(as,xs) cs,i

where Xt =

t∑
s=1

φ(as,xs)φ(as,xs)
T + λ Im

Define the expected reward function r̂ and cost function ĉt−1 =
(
ĉt−1,i

)
1⩽i⩽d

as

∀a ∈ A \ {anull}, ∀x ∈ X , r̂t−1(a,x) = φ(a,x)T µt−1

and ∀1 ⩽ i ⩽ d, ĉt−1,i = φ(a,x)T θt−1,i

Build the upper-confidence expected reward function Ut−1 and the lower-confidence
expected vector-cost function Lt−1 as

∀a ∈ A \ {anull}, ∀x ∈ X ,

Ut−1(a,x) = r̂t−1(a,x) + εt−1(a,x)

Lt−1(a,x) = ĉt−1 − εt−1(a,x)1

Phase 2 Play

at ∈ argmax
a∈A\{anull}

Ut−1(a,x)− Z
(
ζT
t−1Lt−1(a,x)

)
Compute

ζt = Πunit

(
ζt−1 + η

(
ct−1 − (B/T )1

))
where Πunit denotes the Euclidean projection onto the unit ℓ1–ball{

ζ ∈ Rd : ζ ⩾ 0 and ζ1 + . . .+ ζd ⩽ 1
}
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F Simulation Study

This appendix reports numerical simulations performed on partially simulated but realistic data
(Appendix F.1), for the sake of illustration only. We describe (Appendix F.2) the specific experimental
setting of CBwK for a conversion model considered—i.e., the features available, the parameters of the
logistic regression, the reward and cost functions. A key point is that continuous variables are used to
define rewards, costs, and even the conversion rate, while the adaptive policy of Box C must discretize
these variables to solve its Phase 2 linear program. Though the experimental setting introduced is not
a setting of linear CBwK, we may still apply the Box D adaptive policy (Appendix F.3), with the
underlying idea that it provides linear approximations to non-linear reward and cost functions. We
carefully explain how the hyper-parameters picked (Appendix F.4) before providing and discussing
the outcomes of the simulations (Appendix F.5). The main outcome is that, as expected, the ad
hoc adaptive policy of Box C outperforms the adaptive policy of Box D, which essentially linearly
approximates non-linear rewards and costs. We end with a note (Appendix F.6) on the computation
environment and time.

F.1 Data Preparation and Available Contexts

The underlying dataset for the simulations is the standard “default of credit card clients” dataset
of UCI [2016], initially provided by Yeh and Lien [2009]. (It may be used under a Creative Commons
Attribution 4.0 International [CC BY 4.0] license.) This dataset is originally for comparing algorithms
predicting default probability of credit card clients. It includes some socio-demographic data, debt
level, and payment/default history of the clients. It also includes a target measuring whether the client
will default in the future (1-month ahead). We transform it to match our motivating application of
market share expansion for loans, described in Appendix A. To do so, we consider each line of the
dataset as a loan application. We then discard some variables (e.g., the target) and create new ones
(requested amount, standard interest rate offered, risk score). Below, we begin with describing the
variables that we keep as they are and explain next how we created the additional variables, based on
existing ones.

Variables retrieved. The variable Age provides the age of a given client at the time of the loan
application, in years. We discretize it into 5 levels with similar numbers of loan requests in each level.
The cutoffs for each level are 27, 31, 37, and 43, respectively. This gives rise to a variable referred to
as Age–discrete.

The variable Education reports the education level of a client; in the data there are 4 levels: “others”
(level 1, representing 2% of clients), “high school” (level 2, with a share of 16%), “university degree”
(level 3, with 47%), and “graduate school degree” (level 4, with 35%).

Finally, the variable Marital status provides the marital status of a client: “others” (level 1, accounting
for 1.3% of clients), “single” (level 2, for 53.3% of clients), and “married” (level 3, for 45.4%).

Variables created based on existing ones. We create a variable Requested amount, in dollars ($),
based on a variable provided in the data set that measures the current debt level, in dollars, of the
clients: we do so by multiplying the debt level by 0.2. We cap the value of Requested amount to
100K$. We then discretize Requested amount into 5 levels with similar numbers of loan requests in
each level; the obtained variable is referred to as Requested amount–discrete. The cutoffs for each
level are 10K$, 20K$, 36K$, and 54K$, respectively.

For the final two variables, Standard interest rate and Risk score, we first build a probability-of-default
model with the variables from the raw database as predictors and the occurrence of a default within the
next month as a target. This probability-of-default model is based on XGBoost (Chen and Guestrin
[2016]), run with no penalization, depth 3, learning rate 0.01, subsample parameter 0.8, min child
weight 10, and number of trees 1,176. We only set the number of trees by cross validation, while the
rest of the hyper-parameters were set arbitrarily. As the default target is on a credit card, the predicted
default rate seems high compared to what we deem as typical default rates on loans. We therefore
divide the predicted probability of default by factor of 4 and cap this probability to 20%. This gives
us a working variable called PD, for probability of default.
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We build a Risk score rating the risk of a client’s default, with 5 levels, coded from A (level 1) to
E (level 5), where E represents the highest risk. It is created based on the 20% - 40% - 60% - 80%
quantiles of PD.

We finally set the Standard interest rate variable as 0.9 times the PD, with a maximal value of 18%
and a minimum one of 1%. This constitutes an oversimplification of risk-based pricing, since we do
not take into account any loss given default; but we do not have enough information in the dataset
to do so, which is why we basically assume that the loss given default is constant. Then, theory
has it that the Standard interest rate can be considered proportional to PD, and we carefully picked
the factor 0.9 to get realistic values. In the dataset, the thus created Standard interest rate variable
exhibits an average of 4.9%, with median 3.3%. An important note is that this variable is continuous
and does not take finitely many values, while the setting described in Section 2.1 imposes such a
restriction (the linear setting of Section 6 does not require it). We discuss below how we take this fact
into account: by only using this variable for the conversion model (i.e., in Phase 1 of the adaptive
policy of Box C), but not to pick actions (i.e., not in Phase 2 of the adaptive policy of Box C).

Lastly, we filter the database to remove the outliers: the lines for which Standard interest rate times
Requested amount is larger than 10K, which happens for 133 clients. Our final database contains
29,867 loan applications, out of which we will bootstrap T = 50,000 applications.

Additional comments. Note that for Requested amount and Age, the discretizations performed aim
to get five balanced classes; however, as some requests are with some specific boundary values, we
do not get exact equal distributions over the classes.

All the parameters, constants, and cutoff/filter thresholds used in this data preparation step were
decided arbitrarily and were not based on any real information. The context variables here were also
selected somewhat arbitrarily (based on their availability), and solely for illustration purposes. In
reality, the variables that can be used for commercial discounts need to comply with relevant laws,
regulations and company’s internal compliance rules.

Summary. The context x for a given client thus contains the following variables: Age, Age-discrete,
Education, Marital status, Requested amount, Requested amount–discrete, Risk score, and Standard
interest rate. Categorical variables are hot-one encoded via binary variables.

F.2 Specific Setting of CBwK for Logistic Conversions

We recall that our aim is to provide simulations matching the motivating example of market share
expansion for loans described in Appendix A. We take as action set, i.e., as possible discount rates,
A = {anull, 0.1, 0.2, 0.35, 0.55, 0.8}.

Features. The feature vectors φconv(a,x) used are composed of only some of the variables defining
the context x, namely, Age-discrete, Education, Marital status, Requested amount–discrete, Risk
score, and Standard interest rate (we recall that this variable is not discrete but will not use it in the
linear program of Phase 2), with the addition of a new variable called Final interest rate equal to the
discounted standard interest rate offered, i.e., Final interest rate = Standard interest rate ×(1− a).

Reward and vector cost functions. We use the following (normalized) reward and cost functions,
inspired from Appendix A. We set a common duration for all loans, say, 2 years, so that the requested
amount equals the outstanding. For all a ∈ A \ {anull} and x,

r(a,x) = xam/Mam and c(a,x) =
(
a/Mdisc, xirxam/Mir,am

)
(65)

where xam and xir denote the components of the context x containing the Requested amount and
Standard interest rate, respectively, and the normalization factors equal Mam = 105, Mdisc = 7, and
Mir,am = 9,996.

Note that the definition of the first cost here is different from that in Appendix A: we use a/Mdisc

here instead of 1{a̸=0} there. We do so not to disfavor the Box D policy, see details in Appendix F.3
below.

Conversion rate function P . We model the conversion rate function P with the logistic-regression
model stated in (1), with φ = φconv, and only need to provide the numerical value of θ⋆, which we do
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Table 1: Coefficients picked for the logistic-regression model of P .

Intercept 0.8177

Continuous variable Single coefficient
Final interest rate −13.1101

Discrete variables Coefficients for each level
Level 1 Level 2 Level 3 Level 4 Level 5

Risk score −0.3045 −0.0383 0.0515 0.1261 0.1636
Requested amount–discrete 0.7093 0.4703 0.1113 −0.2748 −1.0179
Age–discrete −0.1837 −0.1392 −0.0476 0.1096 0.2592
Education 0.1836 0.0126 −0.0896 −0.1084
Marital status 0.0799 0.0102 −0.0918

in Table 1. This model, as well as the Phase 1 learning of θ⋆ described by (3)–(5) in Section 3, holds
for possibly non-discrete contexts.

The numerical values picked for θ⋆ were so in some arbitrary way, to get somewhat realistic outcomes
with a simple model structure. We imposed monotonicity constraints, as these are most natural:
for instance, the conversion rate increases with the level of Risk score and Age–discrete increase,
and decreases with the level of Education, Requested amount–discrete, and Final interest rate. The
coefficients for Marital status indicates that conversions are more likely for clients that are single
than for married clients.

The average conversion rate in the case a = 0 of no discount (i.e, by replacing Final interest rate by
Standard interest rate) is around 50%.

Adaptive policy: based only on the discrete variables. As indicated above, the logistic-regression
model and the learning of its parameters apply to continuous variables. The restriction that the
context set X should be finite only came from Phase 2 of the Box C adaptive policy, i.e., the linear
program—in particular, for it to be computationally tractable. Here, we thus restrict our attention to
policies that map the discrete variables in x to distributions over A: policies that ignore the variables
Age, Requested amount, and Standard interest rate. For the first two variables, they may use their
discretized versions Age–discrete and Requested amount–discrete. For Standard interest rate, given
how it was constructed, Risk Score appears as its discretized version.

The aim of these simulations is to show, among others, that using discretizations only in Phase 2 is
relevant and efficient.

Note that, on the theoretical side, the proof sketches provided in Sections 4 and 5 reveal that the errors
εt(a,x) for learning θ⋆ and P , obtained as outcomes of the first step of the analyses, are carried
over in the subsequent steps, where the optimization part is evaluated. Using discretizations only in
Phase 2 does therefore not come at the price of loosing theoretical guarantees.

F.3 Consideration of the Box D Adaptive Policy for Linear CBwK

In these experiments, we also consider the Box D adaptive policy of Appendix E.5, which was
introduced by Agrawal and Devanur [2016] in a different setting. To be as fair as possible to this
adaptive policy, we do so with the extended features φlin(a,x) consisting of the features φconv(a,x)
described above and three additional components: the discount a, the Requested amount xam, and
the product xirxam of the Requested amount by the Standard interest rate. Actually, to ensure that
φlin(a,x) ∈ [0, 1]m, the last two components added are normalized: we rather use xam/Mam and
xirxam/Mir,am. The reward and vector cost functions introduced in (65) are linear in φlin(a,x). Even
better, each component of r(a,x) and c(a,x) is given directly by a component of φlin(a,x)—an
extremely simple linear dependency on φlin(a,x).

However, the expected reward and cost functions

r(a,x) = r(a,x)P (a,x) and c(a,x) = c(a, x)P (a,x) ,
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which are the ones that should be linear in φlin(a,x) according to the setting described in Ap-
pendix E.1, are not linear in these features. This is due to the P (a,x) terms, which are given by
logistic regressions.

The Box D adaptive policy is therefore disadvantaged. This is even more true as it models rewards
and costs independently, while they are coupled through conversions. We nonetheless consider this
linear-modeling policy because a typical justification for linear approximations is that they offer a
typical and efficient first-stage approach to possibly complex problems. Another reason was the
desire to have some competitor to our policy in the simulations, and Box D adaptive policy was an
easy-to-implement strategy—unlike the policies by Badanidiyuru et al. [2014] and Agrawal et al.
[2016], which rely on considering finitely many benchmark policies.

All in all, we report the performance of the Box D policy as well in our experiments, though, as
expected, the ad-hoc Box C policy outperforms it.

F.4 Hyper-parameters Picked

We actually set the hyper-parameters based on the budget B, and therefore, first explain how we set
its possible values. It turns out that setting B ⩾ 3,650 is equivalent to not imposing any constraint,
while setting B ⩾ 2,900 is equivalent to no second budget constraint. To get meaningful results, we
therefore picked B = 1,600 and B = 2,200 as the two possible values for B. We now describe how
we tune each of the two adaptive policies considered.

Hyper-parameters common to the two adaptive policies. We take T = 50,000 clients in the
experiments, by bootstrapping them from the enriched dataset prepared in Appendix F.1. We set
initial 50 rounds as a warm start for the sequential logistic regression and sequential linear regression
carried out in Phase 1 of the adaptive policies.

Both adaptive policies use upper-confidence bonuses εs(a,x), which are roughly of the form (con-
sidering λ as a constant)

C
(
1 + ln s

)wwφ(a,x)ww
X−1

s
,

where the matrix Xs was defined in Box C; for simplicity, we set κ = 1, so that the matrices Vs

of Lemma 1 and Xs are equal, which explains the common form of the upper-confidence bonuses
εs(a,x). The hyper-parameter C controls the exploration: the higher C, the more exploration. We
report in the simulations the results achieved for C in the range {0.025, 0.1, 0.3}. That range was set
so that at round s = 51, which is the first round after the warm start, the ε51(a,x) take values around
0.05, 0.3, and 0.9, respectively.

For simplicity, we set BT = B as a working budget.

Hyper-parameters for the Box C adaptive policy. We feed this adaptive policy with a good value
of λ, namely, λ = 0.0129. We obtained it by cross-validation on an independent T–sample of data,
using the Phase 1 estimation. In the T–sample for estimating λ, at each round s, we take action from
the optimal static policy and use the associated conversion ys as target for estimation. We omit the
projection step in Phase 1 by considering that a large enough set Θ was picked.

Hyper-parameters for the Box D adaptive policy. As discussed in Appendix E.5, we set Z =
OPT(ν, P,B)/B, that is, Z = 5.16 for B = 1,600 and Z = 3.87 for B = 2,200. We also set
λ = 0.2452 for B = 1,600 and λ = 0.2765 for B = 2,200. These values were obtained as weighted
averages: the sum of 0.5 times the optimal λ for rewards and 0.25 times the optimal λ for each of the
two cost components. These optimal λs for rewards and cost components were set by cross validation
on an independent T–sample; with actions as taken at each round s from the optimal static policy
and associated rewards rs and costs cs as targets.

Finally, the learning parameter η was selected in the range {0.005, 0.01, 0.05, 0.1, 0.2}. We did so
given the other choices, by picking in hindsight the η with best performance; this of course, just
like the clever choice of Z, should give an advantage to the Box D adaptive policy. Namely, when
B = 1,600, for C equal 0.025, 0.1, and 0.3, we selected η equal to 0.05, 0.01, and 0.1, respectively;
and when B = 2,200, we selected η equal to 0.01, 0.01, and 0.05, respectively. When performing
these retrospective choices, we however noted that the performance was not significantly impacted by
the choice of η.
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F.5 Outcomes of the Simulations

We were limited by the computational power (see Appendix F.6) and could only perform 10 simula-
tions for each pair of B ∈ {1,600, 2,200} and C ∈ {0.025, 0.1, 0.3}. We report averages (strong
lines) as well as ±2 times the standard errors (shaded areas).

Figure 1 reports, in the first line of graphs, the regret achieved with respect to what achieves the
optimal static policy, i.e.,

t 7−→ t

T
OPT(ν, P,B)−

t∑
s=1

rs ,

where OPT(ν, P,B) is larger than 8,000 for both values of B. This regret can take negative or positive
values, but in expectation, it is non-negative. This is not immediately clear from the figure, which
reports the empirical averages of the regret over 10 runs: these empirical averages are sometimes
negative, but they always lie in confidence intervals containing the value 0.

The figures also reports, in the second and third lines, the difference between a constant linear increase
of the costs (between a 0 initial cost and a final B cost) and the costs actually achieved by the adaptive
policies. I.e., these graphs report the averages and standard errors of the following quantities: for
each cost component i ∈ {1, 2},

t 7−→
t∑

s=1

cs,i −
t

T
B ;

by design, the difference above must be non-positive. The second line of Figure 1 deals with the first
cost component, and its third line reports the results for the second cost component.

The experiments reveal that while both adaptive policies seem to achieve sublinear regret, the Box D
adaptive policy, which is suited for the CBwK setting for a conversion model, performs better than
the Box C adaptive policy in terms of rewards: it achieves a smaller, sometimes negative, regret. In
terms of costs, we globally see the same trend, with, for a given value of C, the Box D adaptive
policy suffering smaller costs than the Box C adaptive policy while achieving higher rewards. This
hints at a better use of the discounts.

The hyper-parameter C has an interesting impact: the lower C, the lower the regret (the higher the
rewards) and the lower the costs. Rewards and costs go hand in hand: for a given adaptive policy,
higher rewards are associated with higher costs.

F.6 Computation Time and Environment

As requested by the NeurIPS checklist, we provide details on the computation time and environment.
Our experiments were ran on the following hardware environment: no GPU was required, CPU is
2.7 GHz Quad-Core with total of 8 threads and RAM is 16 GB 2133 MHz LPDDR3. We ran 5
simulations with different seeds on parallel each time. In the setting and for the data described above,
it took us 8 hours for each such bunch of 5 runs of the adaptive policy of Box C, and 1.5 hours for
Box D.
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Box C adaptive policy (specific to the conversion model)
C=0.025
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Box D adaptive policy (for linear CBwK)
C=0.025
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Figure 1: Averages (solid lines) and ±2 times standard errors (shaded areas), achieved on 10 runs by the
Box C (blue) and Box D (orange) adaptive policies: of the regret (first line), of the difference of the first cost
component to tB/T (second line), and of the difference of the second cost component to tB/T (third line), by
the values of the budget (B = 1,600 in the first column, B = 2,200 in the second column). Figures are generated
with Matplotlib (Hunter [2007]).
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