
A Appendix

A.1 MIPS implementation

import jax
@jax.jit
def MIPS(query, database):

scores = jax.numpy.einsum('ik,jk->ij', query, database)
return jax.lax.approx_max_k(scores, k=10, recall_target=0.95)

Listing 1: Jax code for maximum inner product search (MIPS)

Listing 1 demonstrates a maximum inner product search (MIPS) kernel implemented with Jax.
Tensorflow users can use the tf.math.approx_max_k interface; the underlying XLA compiler
delivers the same kernel. There are several options to control the behavior of approx_max_k, listed
as below:

1. reduction_dimension specifies the dimension in which to search. Default -1 (the last
dimension.)

2. recall_target derives the number of bins L of the PartialReduce kernel output. Default
0.95.

3. reduction_input_size_override. When set to a positive value, it overrides the size
determined by input for evaluating the recall and bin numbers L. Users could use this option
to control the kernel output size in the distributed environment.

4. aggregate_to_topk. When set to True emits the ExactRescoring kernel. Default: True.

We also provid a separated approx_min_k interface for finding minimum distances, which is used in
the Euclidean distance search.

A.2 Euclidean distance search implementation

@jax.jit
def l2nns(qy, db, db_half_sqnorm):

dots = jax.numpy.einsum('ik,jk->ij', qy, db)
dists = db_half_sqnorm - dots
return jax.lax.approx_min_k(dists, k=10, recall_target=0.95)

Listing 2: Jax code for nearest neighbor search in the Euclidean space.

Listing 2 is the Jax implementation of Euclidean space nearest neighbor search. We made a few
adjustments to speed up the computation. First, for every query vector q, the following search
produces the same result:

S⇤
`2 = K-argmin

x2X
kq� xk2 (15)

= K-argmin
x2X

kq� xk2 (16)

= K-argmin
x2X

kqk2 + kxk2 � 2hq,xi (17)

= K-argmin
x2X

kxk2 � 2hq,xi (18)
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The last equation holds because omitting the query norm does not affect the rank of each result.
Nevertheless, (18) still uses 2 COPs for the distance computation (one subtract and one multiplication).
We can further reduce it to 1 COP by pre-computing the halved squared-norm:

S⇤
`2 = K-argmin

x2X

kxk2

2
� hq,xi (19)

A.3 MIPS PartialReduce kernel internals

The MIPS PartialReduce kernel follows the standard numerical computation best practices to utilize
the cache usage with the temporal and spatial locality. See Algorithm 2 that uncovers the omitted
details in Algorithm 1.

Algorithm 2: Detailed PartialReduce kernel for MIPS
Input: Q 2 RM⇥D Batch queries
Input: X 2 RN⇥D Database
Input: 2W Bin size
Output: V 2 RM⇥L Top-K values
Output: A 2 NM⇥L Top-K indices
/* Block iteration over rows */

1 for ii 1 to M step ib do
/* Block iteration over columns */

2 for jj  1 to N step jb do
/* i, j, k and l are often unrolled or even vectorized */

3 for i ii to ii+ ib� 1 do
/* Starts the inner loop of the systolic arrays */

4 yi  0 ;
5 for k  1 to D do
6 m qi,k;

/* Vectorized FMA (fused-multiply-add) */

7 for j  jj to jj + jb� 1 do
8 yi,j  yi,j +m · xj,k ;
9 end

10 end
/* Ends the inner loop of the systolic arrays */

11 for j  jj to jj + jb� 1 do
/* The exact j ! l mapping is determined by the compiler backend */

12 l RegisterAlignedShiftRight(j, W) ;
13 b yi,j > vi,l ; /* COP 1: Vectorized compare */

14 vi,l  if b then yi,j else vi,l ; /* COP 2: Vectorized conditional move */

15 ai,l  if b then j else ai,l ; /* COP 3: Vectorized conditional move */

16 end
17 end
18 end
19 end

The temporal locality refers to reusing previously accessed items. In line 1, we iterate by blocks of
queries. The block of queries is reused in the inner loops, achieving the temporal locality.

The spatial locality refers to accessing items nearby previously accessed. The block iteration loads a
chunk of data points (line 2) to achieve this optimization. The same block iteration structure may
apply recursively for multiple cache hierarchies till the register level.

The inner loops (indexed by i, j, and k in line 3) should be unrolled or even vectorized so that every
cycle can produce multiple results via the SIMD (Single Instruction Multiple Data) instructions or
systolic arrays.
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# qy shape: f32[1024,128], db shape: f32[1048576,128]
# output shapes: f32[1024, 128], i32[1024, 128]
@jax.jit
def mips_baseline(qy, db):

dists = jax.numpy.einsum('ik,jk->ij', qy, db)
reshaped = jax.lax.reshape(dists, [1024, 128, 8192])
return jax.lax.argmax(reshaped, 2, jnp.int32)

Listing 3: Baseline implementation without the approx_max_k operator

The algorithm principle is the same on every platform, except that the block factor and vectorization
sizes are platform-dependent. We refer readers to (Golub and Van Loan, 2013) for more details.

A.3.1 Estimate memory transfers

In Algorithm 2, memory transfer for each portion of the data is listed below:

• Query is only transferred once. Takes 4MD bytes.

• Database is transferred M
ib times. Takes 4NDM

ib bytes.

• Outputs are transferred once. Takes 2⇥ 4ML bytes.

The precise formulation for memory arithmetic intensity is

IMEM =
2MND

4
�
MD + MND

ib + 2ML
� , (20)

which would approach O(min(M,N)) as long as L ⌧ min(M,N) and the compiler chooses a
large enough ib to minimize the database transfer.

A.3.2 Estimate COPs used

The PartialReduce kernel listed in Algorithm 1 and 2 only use C = 3 per dot-product. However,
there are two cases that would increase the number of COPS on TPU due to the implementation
constraints:

1. When the dimension D is not multiple of 128, C increases by 1.

2. When the database size N is not power-of-2, C increases by 1.

See Appendix A.5 on how it affects the real world benchmarks.

A.3.3 Limitation of naive implementation

A naive implementation of Algorithm 1 and 2 can be composed of Reshape and ArgMax. However,
the performance is not comparable to the dedicated approx_max_k operator.

Our experiment setup is as follows: let query be Q 2 R1024⇥128 and database be X 2 R1048576⇥128;
we choose the reduction output size as L = 128, so the algorithm can be written as Listing 3.

We benchmark the implementations on a single-core TPU V4 instance by 100 times and collect
the averaged execution time. Listing 3 took 24.9ms to compute; in comparison, our proposed new
operator used in Listing 1 only took 2.6ms, which is 9.6x faster.

A.4 Lower bound approximation of the number of bins

We care about the number of bins L in the high recall region. Let the target recall r = 1� ✏, we have
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L �
1

1� r1/(K�1)
(21)

=
1

1� (1� ✏)1/(K�1)
(22)

⇡
1

1� exp[ ✏
K�1 ]

(23)

=
1

1� (1� ✏
K�1 + o(✏))

(24)

⇡
K � 1

✏
. (25)

The approximation in (23) follows from (1 � ✏)a = (1 � ✏)
1

�✏ (�✏a)
! e�✏a as ✏ ! 0, and (24)

follows from the Taylor expansion.

A.5 Benchmark details

Table 2: Dataset properties and the benchmark results
Glove1.2M Sift1M

Dimension D 100 (Padded to 128) 128
Database size N 1,183,514 1,000,000
Query size M 10,000 10,000
Distance Cosine Euclidean
C 4 6
IMEM 4,758 4,701
ICOP 64.0 42.7
Measured GFLOP/s on TPU V3 118,524 118,062
Measured GFLOP/s on TPU V4 251,166 172,035

Table 2 summarizes the dimensions and kernel properties for the two benchmarks. The memory
arithmetic intensity IMEM is reported by the TPU profiler, and the instruction throughput intensity
ICOP is manually derived. The following show how we derive C (COPs per dot-product) for each
dataset.

Glove The Glove dataset uses the cosine distance, which yields same search results as MIPS. As
described in Appendix A.3, when the database size is not power-of-2, we pay an extra C in the inner
loop. Therefore the total C used for the Glove benchmark are

• 3 C by PartialReduce, and
• 1 C by non power-of-2 database masking.

We pre-process the Glove dataset by padding the dimension from 100 to 128 to avoid one C. We are
not bottleneck on memory bandwidth so the padding is a good trade-off for better performance.

Sift The Sift dataset uses the Euclidean distance, which requires more coefficient-wise operations.
In Appendix A.2 we showed that we only need to use one extra C for distance computation. However,
there are some other inevitable operations used in the benchmark:

• 3 C by PartialReduce,
• 1 C by the relaxed Euclidean distance computation,
• 1 C by non power-of-2 database masking, and

• 1 C by broadcasting kxk2

2 .

Therefore the total number of C = 6, resulting a performance regression on TPU V4 as seen in
Figure 2.
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import jax
from jax.experimental import maps, PartitionSpec
from jax.experimental.pjit import pjit
from functools import partial

devices = np.asarray(jax.devices())
mesh_1 = maps.Mesh(devices, ('x'))

@partial(pjit,
in_axis_resources=(None, # replicate qy

PartitionSpec('x',None)),
out_axis_resources=PartitionSpec(None, None))

def pjit_mips(qy, db):
dot = jnp.einsum('ik,jk->ij',qy, db)
return jax.lax.approx_max_k(dot, k=10)

with maps.Mesh(mesh_1.devices, mesh_1.axis_names):
pjit_mips(qy, db)[1]

Listing 4: Multi-TPU implementation with Jax’s pjit.

A.6 Multi-TPU implementation

We demonstrate two snippets to run the approximate MIPS on multiple TPUs. Listing 4 uses the pjit
(parallel just-in-time) feature of Jax. The API provides an interface for users to declare how data
and computation should be sharded. In the code snippet we shard the dimension corresponds to the
dataset.

Listing 5 is an alternative approach to multi-TPU approximate MIPS, and is more explicit. User must
shard the data and manage the data merging manually. The program breaks down into two parts: a)
parallel execution of dot-product followed by approx max K, and b) top-K aggregation of results
collected from each TPU device. Let U denotes number of TPU devices, the number of items to
reorder is 2KU , where the complexity follows bitonic sort: O(KU log2(KU)).

Under the hood, Listing 4 and Listing 5 compiles to identical kernels. It is not hard to see the
performance scales linearly with the number of TPU used. User may choose number of TPUs
according to the desired throughput and the database size.
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from functools import partial
import jax
import jax.numpy as jnp

# Computes approx_max_k on each TPU device in parallel.
@partial(

jax.pmap,
# static args: db_size, k, recall_target
static_broadcasted_argnums=[3, 4, 5],
out_axes=(1, 1))

def pmap_mips(qy, db, db_offset, db_size, k, recall_target):
dists = jnp.einsum('ik,jk->ij', qy, db)
dists, neighbors = jax.lax.approx_max_k(

dists, k=k, recall_target=recall_target,
reduction_input_size_override=db_size)

return (dists, neighbors + db_offset)

# Collects partial results from each device, and
# aggregates to the final top-k.
@partial(

jax.jit,
static_argnames=["k"])

def mips_reorder(dists, neighbors, k):
flat_dists = jax.lax.collapse(dists, 1, 3)
flat_nn = jax.lax.collapse(neighbors, 1, 3)
_, sorted_nn = jax.lax.sort([-flat_dists, flat_nn])
return jax.lax.slice_in_dim(sorted_nn, 0, k, axis=1)

# Entry function for distributed MIPS.
def mips(qy, db, db_offset, db_size, k, recall_target):

dists, neighbor = pmap_mips(qy, db, db_offset, db_size, k,
recall_target)

return mips_reorder(dists, neighbor, k)

Listing 5: Multi-TPU implementation with Jax’s pmap.
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